Academic literature on the topic 'Generative Adversarial Network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generative Adversarial Network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generative Adversarial Network"
Chandra, B. Yashas. "Building a Generative Adversarial Network for Image Synthesis." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 07 (July 20, 2024): 1–10. http://dx.doi.org/10.55041/ijsrem36641.
Full textSong, Wenyin, and Haibin Li. "Research on asphalt materials based on machine vision and generate adversarial networks." Highlights in Science, Engineering and Technology 52 (July 4, 2023): 119–24. http://dx.doi.org/10.54097/hset.v52i.8846.
Full textIranmanesh, Seyed Mehdi, and Nasser M. Nasrabadi. "HGAN: Hybrid generative adversarial network." Journal of Intelligent & Fuzzy Systems 40, no. 5 (April 22, 2021): 8927–38. http://dx.doi.org/10.3233/jifs-201202.
Full textHuo, Lin, Huanchao Qi, Simiao Fei, Cong Guan, and Ji Li. "A Generative Adversarial Network Based a Rolling Bearing Data Generation Method Towards Fault Diagnosis." Computational Intelligence and Neuroscience 2022 (July 13, 2022): 1–21. http://dx.doi.org/10.1155/2022/7592258.
Full textImamverdiyev, Yadigar, and Firangiz Musayeva. "Analysis of generative adversarial networks." Problems of Information Technology 13, no. 1 (January 24, 2022): 20–27. http://dx.doi.org/10.25045/jpit.v13.i1.03.
Full textThakur, Amey. "Generative Adversarial Networks." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 2307–25. http://dx.doi.org/10.22214/ijraset.2021.37723.
Full textChang, Yeong-Hwa, Pei-Hua Chung, Yu-Hsiang Chai, and Hung-Wei Lin. "Color Face Image Generation with Improved Generative Adversarial Networks." Electronics 13, no. 7 (March 25, 2024): 1205. http://dx.doi.org/10.3390/electronics13071205.
Full textHuang, Wenqi, Lingyu Liang, Zhen Dai, Shang Cao, Huanming Zhang, Xiangyu Zhao, Jiaxuan Hou, Hanju Li, Wenhao Ma, and Liang Che. "Scenario Reduction of Power Systems with Renewable Generations Using Improved Time-GAN." Journal of Physics: Conference Series 2662, no. 1 (December 1, 2023): 012009. http://dx.doi.org/10.1088/1742-6596/2662/1/012009.
Full textWang, Donghua, Li Dong, Rangding Wang, Diqun Yan, and Jie Wang. "Targeted Speech Adversarial Example Generation With Generative Adversarial Network." IEEE Access 8 (2020): 124503–13. http://dx.doi.org/10.1109/access.2020.3006130.
Full textLee, Minhyeok, and Junhee Seok. "Controllable Generative Adversarial Network." IEEE Access 7 (2019): 28158–69. http://dx.doi.org/10.1109/access.2019.2899108.
Full textDissertations / Theses on the topic "Generative Adversarial Network"
Daley, Jr John. "Generating Synthetic Schematics with Generative Adversarial Networks." Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20901.
Full textZeid, Baker Mousa. "Generation of Synthetic Images with Generative Adversarial Networks." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15866.
Full textAftab, Nadeem. "Disocclusion Inpainting using Generative Adversarial Networks." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-40502.
Full textVanhainen, Erik, and Johan Adamsson. "Generating Realistic Neuronal Morphologies in 3D using a Generative Adversarial Network." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301788.
Full textNeuroners morfologier är primärt ansvariga för strukturen hos kopplingarna mellan neuroner och är en avgörande faktor för neuronaktivitet. Detta väcker frågor om sambandet mellan neuroners form och funktionalitet. För att undersöka detta samband är omfattande modellering med mycket morfologidata viktigt. Digital rekonstruktion av neuroner är omfattande och kräver mycket manuellt arbete. Av den anledning har flera generativa metoder föreslagits, dock bygger dessa metoder på vår nuvarande förståelse om neuroners morfologi som kan vara felaktig eller ofullständig. Vi föreslår en alternativ metod som med ett Generative Adversarial Network genererar neuroner utan att begränsas av vår nuvarande förståelse om neuroner. Modellen tränades på digitala rekonstruktioner av pyramidalceller från råttor och möss där varje neuron är representerad med 1283 voxlar. Resultaten visar att modellen kan generera objekt med realistiska neuronala särdrag och former. Även fast genererade objekt har realistiska former går de lätt att urskilja från riktiga neuroner på grund av små diskontinuerliga delar och brus i komplexa förgreningar. Detta arbete kan icke desto mindre ses som en grund till framtida arbete inom generering av tredimensionella nervceller utan mänsklig bias.
Yamazaki, Hiroyuki Vincent. "On Depth and Complexity of Generative Adversarial Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217293.
Full textTrots att Generative Adversarial Networks (GAN) har lyckats generera realistiska bilder består de än idag av neurala nätverk som är parametriserade med relativt få tränbara vikter jämfört med neurala nätverk som används för klassificering. Vi tror att en sådan modell är suboptimal vad gäller generering av högdimensionell och komplicerad data och anser att modeller med högre kapaciteter bör ge bättre estimeringar. Dessutom, i en generativ uppgift så förväntas en modell kunna extrapolera information från lägre till högre dimensioner medan i en klassificeringsuppgift så behöver modellen endast att extrahera lågdimensionell information från högdimensionell data. Vi evaluerar ett flertal GAN med varierande kapaciteter genom att använda shortcut connections för att studera hur kapaciteten påverkar träningsstabiliteten, samt kvaliteten av de genererade datapunkterna. Resultaten visar att träningen blir mindre stabil för modeller som fått högre kapaciteter genom naivt tillsatta lager men visar samtidigt att datapunkternas kvaliteter kan öka, specifikt för bilder, bilder med hög visuell fidelitet. Detta åstadkoms med hjälp utav regularisering och noggrann balansering.
Oskarsson, Joel. "Probabilistic Regression using Conditional Generative Adversarial Networks." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166637.
Full textLi, Yuchuan. "Dual-Attention Generative Adversarial Network and Flame and Smoke Analysis." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42774.
Full textRinnarv, Jonathan. "GANChat : A Generative Adversarial Network approach for chat bot learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278143.
Full textNyligen har en ny metod för att träna generativa neurala nätverk kallad Generative Adversarial Networks (GAN) visat bra resultat inom datorseendedomänen och visat potential inom andra maskininlärningsområden också GAN-träning är en träningsmetod där två neurala nätverk tävlar och försöker överträffa varandra, och i processen lär sig båda. I detta examensarbete har effektiviteten av GAN-träning testats på konversationsagenter, som också kallas Chat bots. För att testa det här jämfördes modeller tränade med nuvarande state-of- the-art träningsmetoder, så som Maximum likelihood-metoden (ML), med GAN-tränade modeller. Modellernas prestation mättes genom distans från modelldistribution till måldistribution efter träning. Det här examensarbetet visar att GAN-metoden presterar sämre än ML-metoden i vissa scenarier men kan överträffa ML i vissa fall.
Cabezas, Rodríguez Juan Pablo. "Generative adversarial network based model for multi-domain fault diagnosis." Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/170996.
Full textCon el uso de las redes neuronal profundas ganando terreno en el área de PHM, los sensores disminuyendo progresivamente su precio y mejores algoritmos, la falta de datos se ha vuelto un problema principal para los modelos enfocados en datos. Los datos etiquetados y aplicables a escenarios específicos son, en el mejor de los casos, escasos. El objetivo de este trabajo es desarrollar un método para diagnosticas el estado de un rodamiento en situaciones con datos limitados. Hoy en día la mayoría de las técnicas se enfocan en mejorar la precisión del diagnóstico y en estimar la vida útil remanente en componentes bien documentados. En el presente, los métodos actuales son ineficiente en escenarios con datos limitados. Se desarrolló un método en el cual las señales vibratorias son usadas para crear escalogramas y espectrogramas, los cuales a su vez se usan para entrenar redes neuronales generativas y de clasificación, en función de diagnosticar un set de datos parcial o totalmente desconocido, en base a uno conocido. Los resultados se comparan con un método más sencillo en el cual la red para clasificación es entrenada con el set de datos conocidos y usada directamente para diagnosticar el set de datos desconocido. El Case Western Reserve University Bearing Dataset y el Machine Failure Prevention Technology Bearing Dataset fueron usados como datos de entrada. Ambos sets se usaron como conocidos tanto como desconocidos. Para la clasificación una red neuronal convolucional (CNN por sus siglas en inglés) fue diseñada. Una red adversaria generativa (GAN por sus siglas en inglés) fue usada como red generativa. Esta red fue basada en una introducida en el paper StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Los resultados fueron favorables para la red CNN mientras que fueron -en general- desfavorables para la red GAN. El análisis de resultados sugiere que la función de costo es inapropiada para el problema propuesto. Las conclusiones dictaminan que la traducción imagen-a-imagen basada en la función ciclo no funciona correctamente en señal vibratorias para diagnóstico de rodamientos. With the use of deep neural networks gaining notoriety on the prognostics & health management field, sensors getting progressively cheaper and improved algorithms, the lack of data has become a major issue for data-driven models. Data which is labelled and applicable for specific scenarios is scarce at best. The purpose of this works is to develop a method to diagnose the health state of a bearing on limited data situations. Now a days most techniques focus on improving accuracy for diagnosis and estimating remaining useful life on well documented components. As it stands, current methods are ineffective on limited data scenarios. A method was developed were in vibration signals are used to create scalograms and spectrograms, which in turn are used to train generative and classification neural networks with the goal of diagnosing a partially or totally unknown dataset based on a fully labelled one. Results were compared to a simpler method in which a classification network is trained on the labelled dataset to diagnose the unknown dataset. As inputs the Case Western Reserve University Bearing Dataset (CWR) and the Society for Machine Failure Prevention Technology Bearing Dataset. Both datasets are used as labelled and unknown. For classification a Convolutional Neural Network (CNN) is designed. A Generative Adversarial Network (GAN) is used as generative model. The generative model is based of a previous paper called StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Results were favourable for the CNN network whilst generally negative for the GAN network. Result analysis suggests that the cost function is unsuitable for the proposed problem. Conclusions state that cycle based image-to-image translation does not work correctly on vibration signals for bearing diagnosis.
Desentz, Derek. "Partial Facial Re-imaging Using Generative Adversarial Networks." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1622122813797895.
Full textBooks on the topic "Generative Adversarial Network"
Mao, Xudong, and Qing Li. Generative Adversarial Networks for Image Generation. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6048-8.
Full textRaut, Roshani, Pranav D Pathak, Sachin R Sakhare, and Sonali Patil. Generative Adversarial Networks and Deep Learning. New York: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003203964.
Full textKaddoura, Sanaa. A Primer on Generative Adversarial Networks. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32661-5.
Full textMao, Xudong, and Qing Li. Generative Adversarial Networks for Image Generation. Springer Singapore Pte. Limited, 2022.
Find full textMao, Xudong, and Qing Li. Generative Adversarial Networks for Image Generation. Springer Singapore Pte. Limited, 2021.
Find full textValle, Rafael. Hands-On Generative Adversarial Networks with Keras: Your Guide to Implementing Next-Generation Generative Adversarial Networks. Packt Publishing, Limited, 2019.
Find full textKaddoura, Sanaa. Primer on Generative Adversarial Networks. Springer International Publishing AG, 2023.
Find full textAhirwar, Kailash. Generative Adversarial Networks Projects: Build Next-Generation Generative Models Using TensorFlow and Keras. Packt Publishing, Limited, 2019.
Find full textBook chapters on the topic "Generative Adversarial Network"
Yalçın, Orhan Gazi. "Generative Adversarial Network." In Applied Neural Networks with TensorFlow 2, 259–84. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6513-0_12.
Full textRakesh, K., and V. Uma. "Generative Adversarial Network." In Artificial Intelligence (AI), 131–48. First edition. | Boca Raton : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003005629-7.
Full textMiyato, Takeru, and Masanori Koyama. "Generative Adversarial Network (GAN)." In Computer Vision, 1–6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-03243-2_860-1.
Full textMiyato, Takeru, and Masanori Koyama. "Generative Adversarial Network (GAN)." In Computer Vision, 508–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_860.
Full textTony, Suman Maria, and S. Sasikumar. "Generative Adversarial Network for Music Generation." In Lecture Notes in Electrical Engineering, 109–19. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9885-9_9.
Full textGhayoumi, Mehdi. "Conditional Generative Adversarial Network (cGAN)." In Generative Adversarial Networks in Practice, 258–313. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003281344-9.
Full textGhayoumi, Mehdi. "Cycle Generative Adversarial Network (CycleGAN)." In Generative Adversarial Networks in Practice, 314–40. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003281344-10.
Full textGhayoumi, Mehdi. "Wasserstein Generative Adversarial Network (WGAN)." In Generative Adversarial Networks in Practice, 401–35. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003281344-13.
Full textTeoh, Teik Toe, and Zheng Rong. "Deep Convolutional Generative Adversarial Network." In Machine Learning: Foundations, Methodologies, and Applications, 289–301. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8615-3_18.
Full textJaiswal, Ayush, Wael AbdAlmageed, Yue Wu, and Premkumar Natarajan. "CapsuleGAN: Generative Adversarial Capsule Network." In Lecture Notes in Computer Science, 526–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11015-4_38.
Full textConference papers on the topic "Generative Adversarial Network"
Chen, Yijia. "Speech Generation by Generative Adversarial Network." In 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE, 2021. http://dx.doi.org/10.1109/icbase53849.2021.00086.
Full textWang, Chaoyue, Chaohui Wang, Chang Xu, and Dacheng Tao. "Tag Disentangled Generative Adversarial Network for Object Image Re-rendering." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/404.
Full textMahdizadehaghdam, Shahin, Ashkan Panahi, and Hamid Krim. "Sparse Generative Adversarial Network." In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE, 2019. http://dx.doi.org/10.1109/iccvw.2019.00369.
Full textSharpe, Conner, and Carolyn Conner Seepersad. "Topology Design With Conditional Generative Adversarial Networks." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97833.
Full textZhang, Qiang, Jibin Yang, Xiongwei Zhang, and Tieyong Cao. "Generating Adversarial Examples in Audio Classification with Generative Adversarial Network." In 2022 7th International Conference on Image, Vision and Computing (ICIVC). IEEE, 2022. http://dx.doi.org/10.1109/icivc55077.2022.9886154.
Full textQin, Liwen, Xiaoyong Yu, Yuteng Luo, Shan Li, and Yangjun Zhou. "Generative Adversarial Networks-based Distribution Network Operation Scenario Generation." In 2022 Power System and Green Energy Conference (PSGEC). IEEE, 2022. http://dx.doi.org/10.1109/psgec54663.2022.9881069.
Full textManocchio, Liam Daly, Siamak Layeghy, and Marius Portmann. "FlowGAN - Synthetic Network Flow Generation using Generative Adversarial Networks." In 2021 IEEE 24th International Conference on Computational Science and Engineering (CSE). IEEE, 2021. http://dx.doi.org/10.1109/cse53436.2021.00033.
Full textJi, Y., Y. Dai, K. Zhao, and S. Li. "Generative adversarial network for image deblurring using generative adversarial constraint loss." In 14th International FLINS Conference (FLINS 2020). WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811223334_0141.
Full textDai, Guoxian, Jin Xie, and Yi Fang. "Metric-based Generative Adversarial Network." In MM '17: ACM Multimedia Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3123266.3123334.
Full textSun, Yiwei, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, and Vasant Honavar. "MEGAN: A Generative Adversarial Network for Multi-View Network Embedding." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/489.
Full textReports on the topic "Generative Adversarial Network"
Ellis, John. miniGAN: A Generative Adversarial Network proxy application. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1763585.
Full textMcKee, Philip, and Jeffrey Lloyd. A Generative Adversarial Network Approach with a Random Patch Discriminator to Generate 3D Synthetic Microstructures Containing Second Phase Particles. DEVCOM Army Research Laboratory, August 2023. http://dx.doi.org/10.21236/ad1207921.
Full textMartinez, Matthew, and Olivia Heiner. Conditional Generative Adversarial Networks for Solving Heat Transfer Problems. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1673172.
Full textAthey, Susan, Guido Imbens, Jonas Metzger, and Evan Munro. Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations. Cambridge, MA: National Bureau of Economic Research, December 2019. http://dx.doi.org/10.3386/w26566.
Full textHuang, Lei, Meng Song, Hui Shen, Huixiao Hong, Ping Gong, Deng Hong-Wen, and Zhang Chaoyang. Deep learning methods for omics data imputation. Engineer Research and Development Center (U.S.), February 2024. http://dx.doi.org/10.21079/11681/48221.
Full text