Academic literature on the topic 'Generative adversarial networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generative adversarial networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generative adversarial networks"
Imamverdiyev, Yadigar, and Firangiz Musayeva. "Analysis of generative adversarial networks." Problems of Information Technology 13, no. 1 (January 24, 2022): 20–27. http://dx.doi.org/10.25045/jpit.v13.i1.03.
Full textThakur, Amey. "Generative Adversarial Networks." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 2307–25. http://dx.doi.org/10.22214/ijraset.2021.37723.
Full textProzur, Vitalii. "Architecture and Formal-mathematical Justification of Generative Adversarial Networks." Vìsnik Nacìonalʹnogo unìversitetu "Lʹvìvsʹka polìtehnìka". Serìâ Ìnformacìjnì sistemi ta merežì 15 (July 15, 2024): 15–22. http://dx.doi.org/10.23939/sisn2024.15.015.
Full textChandra, B. Yashas. "Building a Generative Adversarial Network for Image Synthesis." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 07 (July 20, 2024): 1–10. http://dx.doi.org/10.55041/ijsrem36641.
Full textCai, Zhipeng, Zuobin Xiong, Honghui Xu, Peng Wang, Wei Li, and Yi Pan. "Generative Adversarial Networks." ACM Computing Surveys 54, no. 6 (July 2021): 1–38. http://dx.doi.org/10.1145/3459992.
Full textGoodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. "Generative adversarial networks." Communications of the ACM 63, no. 11 (October 22, 2020): 139–44. http://dx.doi.org/10.1145/3422622.
Full textSong, Wenyin, and Haibin Li. "Research on asphalt materials based on machine vision and generate adversarial networks." Highlights in Science, Engineering and Technology 52 (July 4, 2023): 119–24. http://dx.doi.org/10.54097/hset.v52i.8846.
Full textM. Alghazzawi, Daniyal, Syed Hamid Hasan, and Surbhi Bhatia. "Optimized Generative Adversarial Networks for Adversarial Sample Generation." Computers, Materials & Continua 72, no. 2 (2022): 3877–97. http://dx.doi.org/10.32604/cmc.2022.024613.
Full textChang, Yeong-Hwa, Pei-Hua Chung, Yu-Hsiang Chai, and Hung-Wei Lin. "Color Face Image Generation with Improved Generative Adversarial Networks." Electronics 13, no. 7 (March 25, 2024): 1205. http://dx.doi.org/10.3390/electronics13071205.
Full textHuang, Yueming, and Jianhua He. "Advancing Architectural Design Through Generative Adversarial Network Deep Learning Technology." International Journal of Distributed Systems and Technologies 15, no. 1 (August 29, 2024): 1–15. http://dx.doi.org/10.4018/ijdst.353305.
Full textDissertations / Theses on the topic "Generative adversarial networks"
Wang, Zesen. "Generative Adversarial Networks in Text Generation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264575.
Full textDet generativa motståndsnätverket (GAN) introducerades först 2014 och det har studerats samt utvecklats starkt under senare år. GAN har uppnått stor framgång för problem som inte kan definieras uttryckligen av en matematisk ekvation, som att generera riktiga bilder. Men eftersom GAN ursprungligen var utformat för att lösa problemet i en kontinuerlig domän (till exempel bildgenerering), utvecklas GAN:s prestanda i textgenerering eftersom meningarna är naturligt diskreta (ingen interpolering finns mellan “hej" och “hejdå"). I examensarbetet introduceras grundläggande begrepp i naturlig språkbearbetning, generativa modeller och förstärkningslärande. För varje del introduceras några bästa tillgängliga metoder och vanligt förekommande mätvärden. Examensarbetet föreslår också två modeller för slumpmässig meningsgenerering respektive sammanfattningsgenerering baserat på sammanhang. Båda modellerna involverar tekniken för GAN och är tränade på storskaliga datamängder. På grund av begränsningen av resurser är modellen designad och tränad som en prototyp. Därför kan den inte heller uppnå bästa möjliga prestanda. Resultaten visar ändå lovande prestanda för tillämpningen av GAN i textgenerering. Den föreslår också en ny modellbaserad metrik för att utvärdera kvaliteten på sammanfattningen som hänvisar både till källtexten och sammanfattningen. Examensarbetets källkod kommer snart att finnas tillgänglig i GitHubförvaret: https://github.com/WangZesen/Text-Generation-GAN.
Daley, Jr John. "Generating Synthetic Schematics with Generative Adversarial Networks." Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20901.
Full textBerman, Alan. "Generative adversarial networks for fine art generation." Master's thesis, University of Cape Town, 2020. http://hdl.handle.net/11427/32458.
Full textZeid, Baker Mousa. "Generation of Synthetic Images with Generative Adversarial Networks." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15866.
Full textHaiderbhai, Mustafa. "Generating Synthetic X-rays Using Generative Adversarial Networks." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41092.
Full textGarcia, Torres Douglas. "Generation of Synthetic Data with Generative Adversarial Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254366.
Full textSyftet med syntetisk datagenerering är att tillhandahålla data som inte är verkliga i fall där användningen av reella data på något sätt är begränsad. Till exempel, när det finns behov av större datamängder, när data är känsliga för användning, eller helt enkelt när det är svårt att få tillgång till den verkliga data. Traditionella metoder för syntetiska datagenererande använder tekniker som inte avser att replikera viktiga statistiska egenskaper hos de ursprungliga data. Egenskaper som fördelningen, mönstren eller korrelationen mellan variabler utelämnas ofta. Dessutom kräver de flesta av de befintliga verktygen och metoderna en hel del användardefinierade regler och använder inte avancerade tekniker som Machine Learning eller Deep Learning. Machine Learning är ett innovativt område för artificiell intelligens och datavetenskap som använder statistiska tekniker för att ge datorer möjlighet att lära av data. Deep Learning ett närbesläktat fält baserat på inlärningsdatapresentationer, vilket kan vara användbart för att generera syntetisk data. Denna avhandling fokuserar på en av de mest intressanta och lovande innovationerna från de senaste åren i Machine Learning-samhället: Generative Adversarial Networks. Generative Adversarial Networks är ett tillvägagångssätt för att generera diskret, kontinuerlig eller textsyntetisk data som föreslås, testas, utvärderas och jämförs med en baslinjemetod. Resultaten visar genomförbarheten och visar fördelarna och nackdelarna med att använda denna metod. Trots dess stora efterfrågan på beräkningsresurser kan ett generativt adversarialnätverk skapa generell syntetisk data som bevarar de statistiska egenskaperna hos ett visst dataset.
Graffieti, Gabriele. "Style Transfer with Generative Adversarial Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17015/.
Full textAftab, Nadeem. "Disocclusion Inpainting using Generative Adversarial Networks." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-40502.
Full textPaget, Bryan. "An Introduction to Generative Adversarial Networks." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39603.
Full textDaniel, Filippo <1995>. "Transfer learning with generative adversarial networks." Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/16989.
Full textBooks on the topic "Generative adversarial networks"
Mao, Xudong, and Qing Li. Generative Adversarial Networks for Image Generation. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6048-8.
Full textRaut, Roshani, Pranav D Pathak, Sachin R Sakhare, and Sonali Patil. Generative Adversarial Networks and Deep Learning. New York: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003203964.
Full textKaddoura, Sanaa. A Primer on Generative Adversarial Networks. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32661-5.
Full textMao, Xudong, and Qing Li. Generative Adversarial Networks for Image Generation. Springer Singapore Pte. Limited, 2022.
Find full textMao, Xudong, and Qing Li. Generative Adversarial Networks for Image Generation. Springer Singapore Pte. Limited, 2021.
Find full textKaddoura, Sanaa. Primer on Generative Adversarial Networks. Springer International Publishing AG, 2023.
Find full textValle, Rafael. Hands-On Generative Adversarial Networks with Keras: Your Guide to Implementing Next-Generation Generative Adversarial Networks. Packt Publishing, Limited, 2019.
Find full textAhirwar, Kailash. Generative Adversarial Networks Projects: Build Next-Generation Generative Models Using TensorFlow and Keras. Packt Publishing, Limited, 2019.
Find full textBook chapters on the topic "Generative adversarial networks"
Tomczak, Jakub M. "Generative Adversarial Networks." In Deep Generative Modeling, 159–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93158-2_7.
Full textTomczak, Jakub M. "Generative Adversarial Networks." In Deep Generative Modeling, 201–15. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-64087-2_8.
Full textMao, Xudong, and Qing Li. "Generative Adversarial Networks (GANs)." In Generative Adversarial Networks for Image Generation, 1–7. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-6048-8_1.
Full textSalvaris, Mathew, Danielle Dean, and Wee Hyong Tok. "Generative Adversarial Networks." In Deep Learning with Azure, 187–208. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3679-6_8.
Full textLeili Mirtaheri, Seyedeh, and Reza Shahbazian. "Generative Adversarial Networks." In Machine Learning Theory to Applications, 158–70. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003119258-6.
Full textPaper, David. "Generative Adversarial Networks." In State-of-the-Art Deep Learning Models in TensorFlow, 243–63. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7341-8_10.
Full textZeng, Xiangming, and Liangqu Long. "Generative Adversarial Networks." In Beginning Deep Learning with TensorFlow, 553–99. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7915-1_13.
Full textXiong, Momiao. "Generative Adversarial Networks." In Artificial Intelligence and Causal Inference, 109–50. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003028543-4.
Full textAdari, Suman Kalyan, and Sridhar Alla. "Generative Adversarial Networks." In Beginning Anomaly Detection Using Python-Based Deep Learning, 321–43. Berkeley, CA: Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0008-5_7.
Full textCohen, Gilad, and Raja Giryes. "Generative Adversarial Networks." In Machine Learning for Data Science Handbook, 375–400. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24628-9_17.
Full textConference papers on the topic "Generative adversarial networks"
Tikas, Evangelos, Lazaros Alexios Iliadis, Sotirios Sotiroudis, Achilles Boursianis, Konstantinos-Iraklis D. Kokkinidis, Achilleas Papatheodorou, and Sotirios K. Goudos. "Human Blastocyst Image Generation Using Generative Adversarial Networks." In 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635904.
Full textHayawi, Kadhim, Sakib Shahriar, and Hakim Hacid. "On Digital Art Generation Using Generative Adversarial Networks." In 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icecet61485.2024.10698003.
Full textHu, Xufei, Ou Ye, and Zhenhua Yu. "A Method for Generating Speech Adversarial Examples Using Conditional Generative Adversarial Networks." In 2024 9th International Conference on Intelligent Computing and Signal Processing (ICSP), 538–41. IEEE, 2024. http://dx.doi.org/10.1109/icsp62122.2024.10743496.
Full textSharpe, Conner, and Carolyn Conner Seepersad. "Topology Design With Conditional Generative Adversarial Networks." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97833.
Full textKrichen, Moez. "Generative Adversarial Networks." In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, 2023. http://dx.doi.org/10.1109/icccnt56998.2023.10306417.
Full textYe, Yang. "Generative adversarial networks." In 2021 International Conference on Computer Vision and Pattern Analysis, edited by Ruimin Hu, Yang Yue, and Siting Chen. SPIE, 2022. http://dx.doi.org/10.1117/12.2626949.
Full textLiu, Dong, Yu Hong, Jianmin Yao, and Guodong Zhou. "Question Generation via Generative Adversarial Networks." In 2023 International Joint Conference on Neural Networks (IJCNN). IEEE, 2023. http://dx.doi.org/10.1109/ijcnn54540.2023.10191871.
Full textHuang, Xun, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge Belongie. "Stacked Generative Adversarial Networks." In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.202.
Full textVolkhonskiy, Denis, Ivan Nazarov, and Evgeny Burnaev. "Steganographic generative adversarial networks." In Twelfth International Conference on Machine Vision, edited by Wolfgang Osten and Dmitry P. Nikolaev. SPIE, 2020. http://dx.doi.org/10.1117/12.2559429.
Full textNguyen, Khoa, Nghia Vu, Dung Nguyen, and Khoat Than. "Random Generative Adversarial Networks." In SoICT 2022: The 11th International Symposium on Information and Communication Technology. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3568562.3568589.
Full textReports on the topic "Generative adversarial networks"
Martinez, Matthew, and Olivia Heiner. Conditional Generative Adversarial Networks for Solving Heat Transfer Problems. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1673172.
Full textAthey, Susan, Guido Imbens, Jonas Metzger, and Evan Munro. Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations. Cambridge, MA: National Bureau of Economic Research, December 2019. http://dx.doi.org/10.3386/w26566.
Full textHuang, Lei, Meng Song, Hui Shen, Huixiao Hong, Ping Gong, Deng Hong-Wen, and Zhang Chaoyang. Deep learning methods for omics data imputation. Engineer Research and Development Center (U.S.), February 2024. http://dx.doi.org/10.21079/11681/48221.
Full textEllis, John. miniGAN: A Generative Adversarial Network proxy application. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1763585.
Full textMcKee, Philip, and Jeffrey Lloyd. A Generative Adversarial Network Approach with a Random Patch Discriminator to Generate 3D Synthetic Microstructures Containing Second Phase Particles. DEVCOM Army Research Laboratory, August 2023. http://dx.doi.org/10.21236/ad1207921.
Full text