Academic literature on the topic 'Generative classifiers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generative classifiers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generative classifiers"
Varga, Michal, Ján Jadlovský, and Slávka Jadlovská. "Generative Enhancement of 3D Image Classifiers." Applied Sciences 10, no. 21 (2020): 7433. http://dx.doi.org/10.3390/app10217433.
Full textZervou, Michaela, Effrosyni Doutsi, Yannis Pantazis, and Panagiotis Tsakalides. "De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks." International Journal of Molecular Sciences 25, no. 10 (2024): 5506. http://dx.doi.org/10.3390/ijms25105506.
Full textShakhuro, V. I., and A. S. Konushin. "IMAGE SYNTHESIS WITH NEURAL NETWORKS FOR TRAFFIC SIGN CLASSIFICATION." Computer Optics 42, no. 1 (2018): 105–12. http://dx.doi.org/10.18287/2412-6179-2018-42-1-105-112.
Full textHassan, Anthony Rotimi, Rasaki Olawale Olanrewaju, Queensley C. Chukwudum, Sodiq Adejare Olanrewaju, and S. E. Fadugba. "Comparison Study of Generative and Discriminative Models for Classification of Classifiers." International Journal of Mathematics and Computers in Simulation 16 (June 28, 2022): 76–87. http://dx.doi.org/10.46300/9102.2022.16.12.
Full textJoo, Jaehan, Sang Yoon Kim, Donghwan Kim, et al. "Enhancing automated strabismus classification with limited data: Data augmentation using StyleGAN2-ADA." PLOS ONE 19, no. 5 (2024): e0303355. http://dx.doi.org/10.1371/journal.pone.0303355.
Full textAnil, Gautham, Vishnu Vinod, and Apurva Narayan. "Generating Universal Adversarial Perturbations for Quantum Classifiers." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 10 (2024): 10891–99. http://dx.doi.org/10.1609/aaai.v38i10.28963.
Full textAbady, Lydia, Giovanna Maria Dimitri, and Mauro Barni. "A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images." Remote Sensing 16, no. 5 (2024): 781. http://dx.doi.org/10.3390/rs16050781.
Full textKumar Bhowmik, Tapan. "Naive Bayes vs Logistic Regression: Theory, Implementation and Experimental Validation." Inteligencia Artificial 18, no. 56 (2015): 14. http://dx.doi.org/10.4114/intartif.vol18iss56pp14-30.
Full textLu, Zhengdong, Todd K. Leen, and Jeffrey Kaye. "Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals." Neural Computation 23, no. 9 (2011): 2390–420. http://dx.doi.org/10.1162/neco_a_00164.
Full textSensoy, Murat, Lance Kaplan, Federico Cerutti, and Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Full textDissertations / Theses on the topic "Generative classifiers"
Xue, Jinghao. "Aspects of generative and discriminative classifiers." Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/272/.
Full textChali, Samy. "Robustness Analysis of Classifiers Against Out-of-Distribution and Adversarial Inputs." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST012.
Full textROGER-YUN, Soyoung. "Les expressions nominales à classificateurs et les propositions à cas multiples du coréen : recherches sur leur syntaxe interne et mise en évidence de quelques convergences structurales." Phd thesis, Université de la Sorbonne nouvelle - Paris III, 2002. http://tel.archives-ouvertes.fr/tel-00002834.
Full textMcClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Full textGuo, Hong Yu. "Multiple classifier combination through ensembles and data generation." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26648.
Full textKang, Dae-Ki. "Abstraction, aggregation and recursion for generating accurate and simple classifiers." [Ames, Iowa : Iowa State University], 2006.
Find full textKimura, Takayuki. "RNA-protein structure classifiers incorporated into second-generation statistical potentials." Thesis, San Jose State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10241445.
Full textAlani, Shayma. "Design of intelligent ensembled classifiers combination methods." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/12793.
Full textDING, ZEJIN. "Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/cs_diss/60.
Full textSvénsen, Johan F. M. "GTM: the generative topographic mapping." Thesis, Aston University, 1998. http://publications.aston.ac.uk/1245/.
Full textBooks on the topic "Generative classifiers"
Bondarenko, Natal'ya. Pattern recognition. The initial course of theory. INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2111834.
Full textMartín-Vide, Carlos. Formal Grammars and Languages. Edited by Ruslan Mitkov. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199276349.013.0008.
Full textAbbas, Atheir I., and Jeffrey A. Lieberman. Pharmacological Treatments for Schizophrenia. Oxford University Press, 2015. http://dx.doi.org/10.1093/med:psych/9780199342211.003.0006.
Full textSolms, Mark. Sleep and dreams. Edited by Sudhansu Chokroverty, Luigi Ferini-Strambi, and Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0034.
Full textFerguson, Ben, and Hillel Steiner. Exploitation. Edited by Serena Olsaretti. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199645121.013.21.
Full textBiddle, Justin B., and Rebecca Kukla. The Geography of Epistemic Risk. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190467715.003.0011.
Full textLalvani, Ajit, and Katrina Pollock. Defences against infection. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0303.
Full textCaramello, Olivia. Theories of presheaf type: general criteria. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198758914.003.0008.
Full textBook chapters on the topic "Generative classifiers"
Yang, Xiulong, Hui Ye, Yang Ye, Xiang Li, and Shihao Ji. "Generative Max-Mahalanobis Classifiers for Image Classification, Generation and More." In Machine Learning and Knowledge Discovery in Databases. Research Track. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86520-7_5.
Full textWang, Yaxiao, Yuanzhang Li, Quanxin Zhang, Jingjing Hu, and Xiaohui Kuang. "Evading PDF Malware Classifiers with Generative Adversarial Network." In Cyberspace Safety and Security. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37337-5_30.
Full textDrummond, Chris. "Discriminative vs. Generative Classifiers for Cost Sensitive Learning." In Advances in Artificial Intelligence. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11766247_41.
Full textSantafé, Guzmán, Jose A. Lozano, and Pedro Larrañaga. "Discriminative vs. Generative Learning of Bayesian Network Classifiers." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75256-1_41.
Full textTran, Quang Duy, and Fabio Di Troia. "Word Embeddings for Fake Malware Generation." In Silicon Valley Cybersecurity Conference. Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24049-2_2.
Full textAntoniou, Antreas, Amos Storkey, and Harrison Edwards. "Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks." In Artificial Neural Networks and Machine Learning – ICANN 2018. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_58.
Full textAgarwal, Chirag, and Anh Nguyen. "Explaining Image Classifiers by Removing Input Features Using Generative Models." In Computer Vision – ACCV 2020. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69544-6_7.
Full textCarrasco Limeros, Sandra, Sylwia Majchrowska, Mohamad Khir Zoubi, et al. "Assessing GAN-Based Generative Modeling on Skin Lesions Images." In Digital Interaction and Machine Intelligence. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37649-8_10.
Full textPingi, Sharon Torao, Md Abul Bashar, and Richi Nayak. "A Comparative Look at the Resilience of Discriminative and Generative Classifiers to Missing Data in Longitudinal Datasets." In Communications in Computer and Information Science. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8746-5_10.
Full textZanda, Manuela, and Gavin Brown. "A Study of Semi-supervised Generative Ensembles." In Multiple Classifier Systems. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02326-2_25.
Full textConference papers on the topic "Generative classifiers"
Boum, Marie-Ange, Stéphane Herbin, Pierre Fournier, and Pierre Lassalle. "Continual Learning in Remote Sensing : Leveraging Foundation Models and Generative Classifiers to Mitigate Forgetting." In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10640659.
Full textRoy, Bipraneel, Hon Cheung, and Chun Ruan. "Intrusion Classifier Architecture Generation with Zero Prior Knowledge Employing Generative Adversarial Networks." In 2024 IEEE International Conference on Future Machine Learning and Data Science (FMLDS). IEEE, 2024. https://doi.org/10.1109/fmlds63805.2024.00016.
Full textBallesteros, Miguel, Simon Mille, and Leo Wanner. "Classifiers for data-driven deep sentence generation." In Proceedings of the 8th International Natural Language Generation Conference (INLG). Association for Computational Linguistics, 2014. https://doi.org/10.18653/v1/w14-4416.
Full textSathan, Dassen, and Shakuntala Baichoo. "Drug Target Interaction prediction using Variational Quantum classifier." In 2024 International Conference on Next Generation Computing Applications (NextComp). IEEE, 2024. https://doi.org/10.1109/nextcomp63004.2024.10779674.
Full textHossain, Md Radowan, Shakiruzzaman, Gazi Jannatul Ferdous, and Md Azad Hossain. "BrainACGAN: Auxiliary Classifier Generative Adversarial Network for Brain Tumor Images." In 2024 International Conference on Innovations in Science, Engineering and Technology (ICISET). IEEE, 2024. https://doi.org/10.1109/iciset62123.2024.10939632.
Full textvan de Ven, Gido M., Zhe Li, and Andreas S. Tolias. "Class-Incremental Learning with Generative Classifiers." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2021. http://dx.doi.org/10.1109/cvprw53098.2021.00400.
Full textSmith, Andrew T., and Charles Elkan. "Making generative classifiers robust to selection bias." In the 13th ACM SIGKDD international conference. ACM Press, 2007. http://dx.doi.org/10.1145/1281192.1281263.
Full textWang, Xin, and Siu Ming Yiu. "Classification with Rejection: Scaling Generative Classifiers with Supervised Deep Infomax." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/412.
Full textYoshida, Hidefumi, Daichi Suzuo, Daisuke Deguchi, et al. "Pedestrian detection by scene dependent classifiers with generative learning." In 2013 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2013. http://dx.doi.org/10.1109/ivs.2013.6629541.
Full textShin, Donghwa, Daehee Han, and Sunghyon Kyeong. "Performance Enhancement of Malware Classifiers Using Generative Adversarial Networks." In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020505.
Full textReports on the topic "Generative classifiers"
Mittal, Vibhu O., and Cecile L. Paris. Generating Examples for Use in Tutorial Explanations: The Use of a Subsumption Based Classifier. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada286028.
Full textMbani, Benson, Timm Schoening, and Jens Greinert. Automated and Integrated Seafloor Classification Workflow (AI-SCW). GEOMAR, 2023. http://dx.doi.org/10.3289/sw_2_2023.
Full textLasko, Kristofer, Francis O’Neill, and Elena Sava. Automated mapping of land cover type within international heterogenous landscapes using Sentinel-2 imagery with ancillary geospatial data. Engineer Research and Development Center (U.S.), 2024. http://dx.doi.org/10.21079/11681/49367.
Full textBueso-Merriam, Jacqueline, Francisco Demichelis, María Carmen Fernández Díez, David Giuliodori, Alejandro Rodríguez, and Rodolfo Stucchi. The Impact of the Lending Program for the Productive Development and Employment Generation of the San Juan Province. Inter-American Development Bank, 2016. http://dx.doi.org/10.18235/0007975.
Full textโขวิฑูรกิจ, วีรพันธุ์, พัชญา บุญชยาอนันต์ та มงคลธิดา อัมพลเสถียร. รายงานฉบับสมบูรณ์ แผนงานวิจัยเพื่อองค์ความรู้ใหม่ทางวิทยาศาสตร์พื้นฐานและการประยุกต์ใช้ทางคลินิกในคนไข้ที่มีภาวะโรคอ้วนและโรคเบาหวาน. จุฬาลงกรณ์มหาวิทยาลัย, 2017. https://doi.org/10.58837/chula.res.2017.12.
Full textDzanku, Fred M., and Louis S. Hodey. Achieving Inclusive Oil Palm Commercialisation in Ghana. Institute of Development Studies (IDS), 2022. http://dx.doi.org/10.19088/apra.2022.007.
Full textvan den Boogaard, Vanessa, and Fabrizio Santoro. Explaining Informal Taxation and Revenue Generation: Evidence from south-central Somalia. Institute of Development Studies, 2021. http://dx.doi.org/10.19088/ictd.2021.003.
Full textBäumler, Maximilian, and Matthias Lehmann. Generating representative test scenarios: The FUSE for Representativity (fuse4rep) process model for collecting and analysing traffic observation data. TU Dresden, 2024. http://dx.doi.org/10.26128/2024.2.
Full textRodriguez, Russell, and Stanley Freeman. Characterization of fungal symbiotic lifestyle expression in Colletotrichum and generating non-pathogenic mutants that confer disease resistance, drought tolerance, and growth enhancement to plant hosts. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7587215.bard.
Full textKwon, Heeseo Rain, HeeAh Cho, Jongbok Kim, Sang Keon Lee, and Donju Lee. International Case Studies of Smart Cities: Pangyo, Republic of Korea. Inter-American Development Bank, 2016. http://dx.doi.org/10.18235/0007011.
Full text