Academic literature on the topic 'Genetic Fitness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Genetic Fitness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Genetic Fitness"
Montgomery, Hugh, and Latif Safari. "Genetic Basis of Physical Fitness." Annual Review of Anthropology 36, no. 1 (September 2007): 391–405. http://dx.doi.org/10.1146/annurev.anthro.36.081406.094333.
Full textBouchard, C., T. Rankinen, L. Perusse, F. Booth, and S. Britton. "GENETIC DIFFERENCES, FITNESS AND PERFORMANCE." Medicine & Science in Sports & Exercise 34, no. 5 (May 2002): S46. http://dx.doi.org/10.1097/00005768-200205001-00248.
Full textZhai, W., P. Kelly, and W. B. Gong. "Genetic algorithms with noisy fitness." Mathematical and Computer Modelling 23, no. 11-12 (June 1996): 131–42. http://dx.doi.org/10.1016/0895-7177(96)00068-4.
Full textCharlesworth, Brian. "Causes of natural variation in fitness: Evidence from studies of Drosophila populations." Proceedings of the National Academy of Sciences 112, no. 6 (January 8, 2015): 1662–69. http://dx.doi.org/10.1073/pnas.1423275112.
Full textO’Brien, Anna M., Chandra N. Jack, Maren L. Friesen, and Megan E. Frederickson. "Whose trait is it anyways? Coevolution of joint phenotypes and genetic architecture in mutualisms." Proceedings of the Royal Society B: Biological Sciences 288, no. 1942 (January 13, 2021): 20202483. http://dx.doi.org/10.1098/rspb.2020.2483.
Full textGUO, Guang-song, Dun-wei GONG, Guo-sheng HAO, and Yong ZHANG. "Interactive Genetic Algorithms with Fitness Adjustment." Journal of China University of Mining and Technology 16, no. 4 (December 2006): 480–84. http://dx.doi.org/10.1016/s1006-1266(07)60052-2.
Full textTakahashi, Yuma, Ryoya Tanaka, Daisuke Yamamoto, Suzuki Noriyuki, and Masakado Kawata. "Balanced genetic diversity improves population fitness." Proceedings of the Royal Society B: Biological Sciences 285, no. 1871 (January 17, 2018): 20172045. http://dx.doi.org/10.1098/rspb.2017.2045.
Full textRankinen, Tuomo. "Genetic Influences on Fitness and Activity." Medicine & Science in Sports & Exercise 40, Supplement (May 2008): 65. http://dx.doi.org/10.1249/01.mss.0000321314.29517.2e.
Full textVose, Michael D., and Alden H. Wright. "Simple Genetic Algorithms with Linear Fitness." Evolutionary Computation 2, no. 4 (December 1994): 347–68. http://dx.doi.org/10.1162/evco.1994.2.4.347.
Full textReed, David H., and Richard Frankham. "Correlation between Fitness and Genetic Diversity." Conservation Biology 17, no. 1 (February 2003): 230–37. http://dx.doi.org/10.1046/j.1523-1739.2003.01236.x.
Full textDissertations / Theses on the topic "Genetic Fitness"
Bancroft, David. "Genetic variation and fitness in Soay sheep." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338112.
Full textHietpas, Ryan T. "Experimental Illumination of Comprehensive Fitness Landscapes: A Dissertation." eScholarship@UMMS, 2006. http://escholarship.umassmed.edu/gsbs_diss/667.
Full textHietpas, Ryan T. "Experimental Illumination of Comprehensive Fitness Landscapes: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/667.
Full textRicketts, Huw John. "Molecular genetic biomarkers of reproductive fitness in earthworms." Thesis, Cardiff University, 2004. http://orca.cf.ac.uk/55966/.
Full textMay, Shoshanna. "Fitness and genetic diversity in Bufo calamita populations." Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505908.
Full textCooper, Jason. "Improving performance of genetic algorithms by using novel fitness functions." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/2271.
Full textHaram, Per Magnus. "Genetic vs. Aquired fitness: Metabolic, Vascular and Cardiomyocyte Adaptations." Doctoral thesis, Norwegian University of Science and Technology, Department of Circulation and Medical Imaging, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1921.
Full textAli, Mohamed Medhat. "Studying the genetic determinants of Salmonella fitness in vivo." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397816634.
Full textGrieshop, Karl. "Sexual conflict, sexual selection, and genetic variance in fitness." Doctoral thesis, Uppsala universitet, Zooekologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-327304.
Full textVår kunskap om könsspecifik selektion och genetisk variation för fitness är central för förståelsen av evolutionära processer. I den här avhandligen presenteras resultaten av empiriska undersökningar av just könsspecifik genetisk variation för fitness. Resultaten diskuteras med fokus på deras betydelse för de klassiska evolutionära paradoxerna angående vad som bibehåller genetisk variation i fitness och varför organismer som förökar sig sexuellt är så vanliga, men även mer specifika konsekvenser för en populations anpassningsförmåga och livskraftighet avhandlas. Evolutionen har ofta gynnat olika reproduktiva strategier hos hannar och honor, och dessa strategier kan medföra kostnader för det motsatta könet. Den könskonflikt som uppstår på grund av detta kan också inbegripa en genetisk dragkamp eftersom könen delar genetisk arvsmassa men gynnas av olika anpassningar. Konsekvensen är att alternativa varianter av gener gynnas hos honor och hanar, vilket resulterar i en form av balanserande selektion som kan bibehålla genetisk variation i en population. Genetisk variation i fitness kan även upprätthållas genom en jämvikt mellan ett konstant inflöde av genetisk variation via mutationer med svagt negativ effekt och svag selektion mot dessa mutationer. Eftersom en negativ mutation normalt kommer vara skadlig för båda könen kommer den här typen av källa till genetisk variation i fitness ha liknande effekt hos könen. I arbetet med denna avhandlig har jag använt en vilt infångad population av fröbaggaen Callosobruchus maculatus för att undersöka dessa två underliggande mekanismer bakom upprätthållandet av genetisk variation för fitness, samt vilka potentiella konsekvenser de kan ha för en populations anpassningsförmåga och för bibehållandet av sexuell reproduktion. Resultaten i denna avhandling stödjer i stort många av de antaganden som ligger till grund för teorin om könskonflikter, sexuell selektion och vad som upprätthåller genetisk variation för fitness. Resultaten ger också upphov till nya idéer och hypoteser angående genetisk variation med könsspecifika effekter och dess interaktion med partiellt recessiva negativa mutationer.
The alternative abstract I uploaded should be used as the Swedish summary.
Drahošová, Michaela. "Koevoluce prediktorů fitness v kartézském genetickém programování." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-412587.
Full textBooks on the topic "Genetic Fitness"
M, Malina Robert, and Pérusse Louis 1957-, eds. Genetics of fitness and physical performance. Champaign, IL: Human Kinetics, 1997.
Find full text1933-, Simopoulos Artemis P., ed. Nutrition and fitness: Cultural, genetic, and metabolic aspects. Basel: Karger, 2008.
Find full textParker, James N., and Philip M. Parker. The official parent's sourcebook on aicardi syndrome. San Diego, CA: ICON Health Publications, 2003.
Find full textSmith, Moyra. Translational research in genetics and genomics. Oxford: Oxford University Press, 2008.
Find full textSmith, Moyra. Translational research in genetics and genomics. Oxford: Oxford University Press, 2008.
Find full text1933-, Simopoulos Artemis P., and Pavlou Konstantinos N, eds. Nutrition and fitness: Diet, genes, physical activity, and health. Basel: Karger, 2001.
Find full textFitness landscapes and the origin of species. Princeton, N.J: Princeton University Press, 2004.
Find full textPrista, António. O desafio de Calanga: Do lugar e das pessoas à aventura da ciência. Maputo, Moçambique: Facultade de Educac̥aõ Física e Desporto, 2010.
Find full textEric, Engel. Genomic imprinting and uniparental disomy in medicine: Clinical and molecular aspects. New York: Wiley-Liss, 2002.
Find full textBook chapters on the topic "Genetic Fitness"
Langdon, William B., and Riccardo Poli. "Fitness Landscapes." In Foundations of Genetic Programming, 17–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04726-2_2.
Full textEkárt, Anikó. "Shorter Fitness Preserving Genetic Programs." In Lecture Notes in Computer Science, 73–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10721187_5.
Full textHill, William G., and Xu-Sheng Zhang. "Maintaining Genetic Variation in Fitness." In Adaptation and Fitness in Animal Populations, 59–81. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9005-9_5.
Full textHowden, Reuben, Benjamin D. H. Gordon, and Ebony C. Gaillard. "Genetic Contributions to Cardiorespiratory Fitness." In Routledge Handbook of Sport and Exercise Systems Genetics, 187–99. Abingdon, Oxon ; New York, NY : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9781315146287-19.
Full textGibson, John P. "Livestock Genetic Resources: Preserving Genetic Adaptations for Future Use." In Adaptation and Fitness in Animal Populations, 229–32. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9005-9_15.
Full textSchmidt, Michael, and Hod Lipson. "Age-Fitness Pareto Optimization." In Genetic Programming Theory and Practice VIII, 129–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7747-2_8.
Full textOllivier, Louis, and Jean-Louis Foulley. "Managing Genetic Diversity, Fitness and Adaptation of Farm Animal Genetic Resources." In Adaptation and Fitness in Animal Populations, 201–27. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9005-9_14.
Full textLangdon, W. B. "Convergence of Program Fitness Landscapes." In Genetic and Evolutionary Computation — GECCO 2003, 1702–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45110-2_63.
Full textSlavov, V., and N. I. Nikolaev. "Fitness Landscapes and Inductive Genetic Programming." In Artificial Neural Nets and Genetic Algorithms, 414–18. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6492-1_91.
Full textLangdon, W. B., and R. Poli. "Genetic programming bloat with dynamic fitness." In Lecture Notes in Computer Science, 97–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0055931.
Full textConference papers on the topic "Genetic Fitness"
Hasegawa, Taku, Kaname Matsumura, Kaiki Tsuchie, Naoki Mori, and Keinosuke Matsumoto. "Novel virtual fitness evaluation framework for fitness landscape learning evolutionary computation." In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2598496.
Full textKrawiec, Krzysztof, and PrzemysBaw Polewski. "Potential fitness for genetic programming." In the 2008 GECCO conference companion. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1388969.1389043.
Full textSmith, Robert E., B. A. Dike, and S. A. Stegmann. "Fitness inheritance in genetic algorithms." In the 1995 ACM symposium. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/315891.316014.
Full textLockett, Alan J. "Insights From Adversarial Fitness Functions." In FOGA '15: Foundations of Genetic Algorithms XIII. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2725494.2725501.
Full textLangdon, William B. "Fitness first and fatherless crossover." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3459437.
Full textBiazzi, Renata B., André Fujita, and Daniel Y. Takahashi. "Predicting soft robot's locomotion fitness." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3459417.
Full textJohnson, Colin G., and John R. Woodward. "Fitness as Task-relevant Information Accumulation." In GECCO '15: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2739482.2768428.
Full textOchoa, Gabriela, and Katherine Malan. "Recent advances in fitness landscape analysis." In GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3323383.
Full textAleti, Aldeida, Katherine Malan, and Irene Moser. "Fitness landscape characterisation of optimisation problems." In GECCO '17: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3067695.3067720.
Full textCleghorn, Christopher W., and Andries P. Engelbrecht. "Fitness-distance-ratio particle swarm optimization." In GECCO '17: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3071178.3071256.
Full textReports on the topic "Genetic Fitness"
Ankenbrandt, C. A., B. P. Buckles, F. E. Petry, and M. Lybanon. Ocean Feature Recognition Using Genetic Algorithms with Fuzzy Fitness Functions (GA/F3). Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada230891.
Full textDi Giulio, Richard T. Adaptation of a Population of Fundulus heteroclitus to a Creosote-Contaminated Environment: Mechanisms, Genetic Consequences and Fitness Trade-Offs. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada437526.
Full text