Journal articles on the topic 'Genome architecture mapping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Genome architecture mapping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
McKay, Daniel J., Alexis V. Stutzman, and Jill M. Dowen. "Advancements in mapping 3D genome architecture." Methods 170 (January 2020): 75–81. http://dx.doi.org/10.1016/j.ymeth.2019.06.002.
Full textChowdhary, Surabhi, Amoldeep S. Kainth, and David S. Gross. "Methods for mapping three-dimensional genome architecture." Methods 170 (January 2020): 1–3. http://dx.doi.org/10.1016/j.ymeth.2019.10.011.
Full textFeng, Yi, Leslie Y. Beh, Wei-Jen Chang, and Laura F. Landweber. "SIGAR: Inferring Features of Genome Architecture and DNA Rearrangements by Split-Read Mapping." Genome Biology and Evolution 12, no. 10 (2020): 1711–18. http://dx.doi.org/10.1093/gbe/evaa147.
Full textDanchin, Antoine, Pascale Guerdoux-Jamet, Ivan Moszer, and Patrick Nitschké. "Mapping the bacterial cell architecture into the chromosome." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355, no. 1394 (2000): 179–90. http://dx.doi.org/10.1098/rstb.2000.0557.
Full textSchmitt, Anthony D., Ming Hu, and Bing Ren. "Genome-wide mapping and analysis of chromosome architecture." Nature Reviews Molecular Cell Biology 17, no. 12 (2016): 743–55. http://dx.doi.org/10.1038/nrm.2016.104.
Full textBeagrie, Robert A., Antonio Scialdone, Markus Schueler, et al. "Complex multi-enhancer contacts captured by genome architecture mapping." Nature 543, no. 7646 (2017): 519–24. http://dx.doi.org/10.1038/nature21411.
Full textRamani, Vijay, Darren A. Cusanovich, Ronald J. Hause, et al. "Mapping 3D genome architecture through in situ DNase Hi-C." Nature Protocols 11, no. 11 (2016): 2104–21. http://dx.doi.org/10.1038/nprot.2016.126.
Full textMaluszynska, J., and J. S. Heslop-Harrison. "Physical mapping of rDNA loci in Brassica species." Genome 36, no. 4 (1993): 774–81. http://dx.doi.org/10.1139/g93-102.
Full textBurridge, James D., Hannah M. Schneider, Bao-Lam Huynh, Philip A. Roberts, Alexander Bucksch, and Jonathan P. Lynch. "Genome-wide association mapping and agronomic impact of cowpea root architecture." Theoretical and Applied Genetics 130, no. 2 (2016): 419–31. http://dx.doi.org/10.1007/s00122-016-2823-y.
Full textThoen, Manus P. M., Nelson H. Davila Olivas, Karen J. Kloth, et al. "Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping." New Phytologist 213, no. 3 (2016): 1346–62. http://dx.doi.org/10.1111/nph.14220.
Full textJaroszewicz, Artur, and Jason Ernst. "An integrative approach for fine-mapping chromatin interactions." Bioinformatics 36, no. 6 (2019): 1704–11. http://dx.doi.org/10.1093/bioinformatics/btz843.
Full textZENG, ZHAO-BANG, CHEN-HUNG KAO, and CHRISTOPHER J. BASTEN. "Estimating the genetic architecture of quantitative traits." Genetical Research 74, no. 3 (1999): 279–89. http://dx.doi.org/10.1017/s0016672399004255.
Full textWang, Jiachi, Andy Pang, Karl Hong, Jill Lai, Dipa Roychoudhury, and Joyce L. Murata-Colllins. "Integrative structural variant and breakpoint detection using optical genome mapping in a patient with a transformed diffuse large B-cell lymphoma from chronic lymphocytic leukemia." Journal of Clinical Oncology 39, no. 15_suppl (2021): e19511-e19511. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e19511.
Full textLee, Ling Sze, Beatriz M. Navarro-Domínguez, Zhiqiang Wu, et al. "Karyotypic Evolution of Sauropsid Vertebrates Illuminated by Optical and Physical Mapping of the Painted Turtle and Slider Turtle Genomes." Genes 11, no. 8 (2020): 928. http://dx.doi.org/10.3390/genes11080928.
Full textTian, Feng, Peter J. Bradbury, Patrick J. Brown, et al. "Genome-wide association study of leaf architecture in the maize nested association mapping population." Nature Genetics 43, no. 2 (2011): 159–62. http://dx.doi.org/10.1038/ng.746.
Full textZurek, Paul R., Christopher N. Topp, and Philip N. Benfey. "Quantitative Trait Locus Mapping Reveals Regions of the Maize Genome Controlling Root System Architecture." Plant Physiology 167, no. 4 (2015): 1487–96. http://dx.doi.org/10.1104/pp.114.251751.
Full textYu, Kang, Dongcheng Liu, Yong Chen, et al. "Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling." Journal of Experimental Botany 70, no. 18 (2019): 4671–88. http://dx.doi.org/10.1093/jxb/erz247.
Full textLee, Tong Geon, Samuel F. Hutton, and Reza Shekasteband. "Fine Mapping of the brachytic Locus on the Tomato Genome." Journal of the American Society for Horticultural Science 143, no. 4 (2018): 239–47. http://dx.doi.org/10.21273/jashs04423-18.
Full textSeda, Ondrej, Frantisek Liska, Drahomira Krenova, et al. "Dynamic genetic architecture of metabolic syndrome attributes in the rat." Physiological Genomics 21, no. 2 (2005): 243–52. http://dx.doi.org/10.1152/physiolgenomics.00230.2004.
Full textUngerer, Mark C., Solveig S. Halldorsdottir, Jennifer L. Modliszewski, Trudy F. C. Mackay, and Michael D. Purugganan. "Quantitative Trait Loci for Inflorescence Development in Arabidopsis thaliana." Genetics 160, no. 3 (2002): 1133–51. http://dx.doi.org/10.1093/genetics/160.3.1133.
Full textYang, Fangping, Jindong Liu, Ying Guo, et al. "Genome-Wide Association Mapping of Adult-Plant Resistance to Stripe Rust in Common Wheat (Triticum aestivum)." Plant Disease 104, no. 8 (2020): 2174–80. http://dx.doi.org/10.1094/pdis-10-19-2116-re.
Full textMa, Yu, Afef Marzougui, Clarice J. Coyne, et al. "Dissecting the Genetic Architecture of Aphanomyces Root Rot Resistance in Lentil by QTL Mapping and Genome-Wide Association Study." International Journal of Molecular Sciences 21, no. 6 (2020): 2129. http://dx.doi.org/10.3390/ijms21062129.
Full textHeckel, D. G., L. J. Gahan, J. C. Daly, and S. Trowell. "A genomic approach to understanding Heliothis and Helicoverpa resistance to chemical and biological insecticides." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353, no. 1376 (1998): 1713–22. http://dx.doi.org/10.1098/rstb.1998.0323.
Full textZhang, Ning, and Xueqing Huang. "Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize." PLOS ONE 16, no. 1 (2021): e0245129. http://dx.doi.org/10.1371/journal.pone.0245129.
Full textKooke, Rik, Willem Kruijer, Ralph Bours, et al. "Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis." Plant Physiology 170, no. 4 (2016): 2187–203. http://dx.doi.org/10.1104/pp.15.00997.
Full textResende, Rafael T., Marcos Deon V. de Resende, Camila F. Azevedo, et al. "Genome-Wide Association and Regional Heritability Mapping of Plant Architecture, Lodging and Productivity in Phaseolus vulgaris." G3: Genes|Genomes|Genetics 8, no. 8 (2018): 2841–54. http://dx.doi.org/10.1534/g3.118.200493.
Full textSchödel, Johannes, Spyros Oikonomopoulos, Jiannis Ragoussis, Christopher W. Pugh, Peter J. Ratcliffe, and David R. Mole. "High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq." Blood 117, no. 23 (2011): e207-e217. http://dx.doi.org/10.1182/blood-2010-10-314427.
Full textJowhar, Ziad, Sigal Shachar, Prabhakar R. Gudla, et al. "Effects of human sex chromosome dosage on spatial chromosome organization." Molecular Biology of the Cell 29, no. 20 (2018): 2458–69. http://dx.doi.org/10.1091/mbc.e18-06-0359.
Full textDemetci, Pinar, Wei Cheng, Gregory Darnell, Xiang Zhou, Sohini Ramachandran, and Lorin Crawford. "Multi-scale inference of genetic trait architecture using biologically annotated neural networks." PLOS Genetics 17, no. 8 (2021): e1009754. http://dx.doi.org/10.1371/journal.pgen.1009754.
Full textKitony, Justine K., Hidehiko Sunohara, Mikako Tasaki, et al. "Development of an Aus-Derived Nested Association Mapping (Aus-NAM) Population in Rice." Plants 10, no. 6 (2021): 1255. http://dx.doi.org/10.3390/plants10061255.
Full textMartin, Anke, Paula Moolhuijzen, Yongfu Tao, et al. "Genomic Regions Associated with Virulence in Pyrenophora teres f. teres Identified by Genome-Wide Association Analysis and Biparental Mapping." Phytopathology® 110, no. 4 (2020): 881–91. http://dx.doi.org/10.1094/phyto-10-19-0372-r.
Full textDutta, Anik, Fanny E. Hartmann, Carolina Sardinha Francisco, Bruce A. McDonald, and Daniel Croll. "Mapping the adaptive landscape of a major agricultural pathogen reveals evolutionary constraints across heterogeneous environments." ISME Journal 15, no. 5 (2021): 1402–19. http://dx.doi.org/10.1038/s41396-020-00859-w.
Full textRaj, Towfique, Lori B. Chibnik, Cristin McCabe, et al. "Genetic architecture of age-related cognitive decline in African Americans." Neurology Genetics 3, no. 1 (2016): e125. http://dx.doi.org/10.1212/nxg.0000000000000125.
Full textChen, Shaolong, and Miquel Angel Senar. "Exploring efficient data parallelism for genome read mapping on multicore and manycore architectures." Parallel Computing 87 (September 2019): 11–24. http://dx.doi.org/10.1016/j.parco.2019.04.014.
Full textWu, Zhiqiang, Jocelyn M. Cuthbert, Douglas R. Taylor, and Daniel B. Sloan. "The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes." Proceedings of the National Academy of Sciences 112, no. 33 (2015): 10185–91. http://dx.doi.org/10.1073/pnas.1421397112.
Full textOnogi, Akio. "Connecting mathematical models to genomes: joint estimation of model parameters and genome-wide marker effects on these parameters." Bioinformatics 36, no. 10 (2020): 3169–76. http://dx.doi.org/10.1093/bioinformatics/btaa129.
Full textJordan, Katherine W., Shichen Wang, Fei He, et al. "The genetic architecture of genome‐wide recombination rate variation in allopolyploid wheat revealed by nested association mapping." Plant Journal 95, no. 6 (2018): 1039–54. http://dx.doi.org/10.1111/tpj.14009.
Full textLi, Zhaoling, Peng Liu, Xiaoxiang Zhang, et al. "Genome‐wide association studies and QTL mapping uncover the genetic architecture of ear tip‐barrenness in maize." Physiologia Plantarum 170, no. 1 (2020): 27–39. http://dx.doi.org/10.1111/ppl.13087.
Full textTopp, C. N., A. S. Iyer-Pascuzzi, J. T. Anderson, et al. "3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture." Proceedings of the National Academy of Sciences 110, no. 18 (2013): E1695—E1704. http://dx.doi.org/10.1073/pnas.1304354110.
Full textZhou, Hao, and Brian Steffenson. "Genome-wide association mapping reveals genetic architecture of durable spot blotch resistance in US barley breeding germplasm." Molecular Breeding 32, no. 1 (2013): 139–54. http://dx.doi.org/10.1007/s11032-013-9858-4.
Full textChapman, Carol, Matthew Henry, Kimberly A. Bishop-Lilly, et al. "Scanning the Landscape of Genome Architecture of Non-O1 and Non-O139 Vibrio cholerae by Whole Genome Mapping Reveals Extensive Population Genetic Diversity." PLOS ONE 10, no. 3 (2015): e0120311. http://dx.doi.org/10.1371/journal.pone.0120311.
Full textAlomari, Dalia, Kai Eggert, Nicolaus von Wirén, et al. "Whole-Genome Association Mapping and Genomic Prediction for Iron Concentration in Wheat Grains." International Journal of Molecular Sciences 20, no. 1 (2018): 76. http://dx.doi.org/10.3390/ijms20010076.
Full textLuo, Z. W., Chung-I. Wu, and M. J. Kearsey. "Precision and High-Resolution Mapping of Quantitative Trait Loci by Use of Recurrent Selection, Backcross or Intercross Schemes." Genetics 161, no. 2 (2002): 915–29. http://dx.doi.org/10.1093/genetics/161.2.915.
Full textDickel, D. E., A. Visel, and L. A. Pennacchio. "Functional anatomy of distant-acting mammalian enhancers." Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1620 (2013): 20120359. http://dx.doi.org/10.1098/rstb.2012.0359.
Full textRen, Bing. "Organization and Regulation of the Human Genome." Blood 128, no. 22 (2016): SCI—16—SCI—16. http://dx.doi.org/10.1182/blood.v128.22.sci-16.sci-16.
Full textYuan, Ruizhi, Neng Zhao, Babar Usman, et al. "Development of Chromosome Segment Substitution Lines (CSSLs) Derived from Guangxi Wild Rice (Oryza rufipogon Griff.) under Rice (Oryza sativa L.) Background and the Identification of QTLs for Plant Architecture, Agronomic Traits and Cold Tolerance." Genes 11, no. 9 (2020): 980. http://dx.doi.org/10.3390/genes11090980.
Full textDarrow, Emily M., Miriam H. Huntley, Olga Dudchenko, et al. "Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture." Proceedings of the National Academy of Sciences 113, no. 31 (2016): E4504—E4512. http://dx.doi.org/10.1073/pnas.1609643113.
Full textWang, Yuanyuan, Guirong Li, Xinlei Guo, et al. "Dissecting the genetic architecture of seed-cotton and lint yields in Upland cotton using genome-wide association mapping." Breeding Science 69, no. 4 (2019): 611–20. http://dx.doi.org/10.1270/jsbbs.19057.
Full textFamoso, Adam N., Keyan Zhao, Randy T. Clark, et al. "Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping." PLoS Genetics 7, no. 8 (2011): e1002221. http://dx.doi.org/10.1371/journal.pgen.1002221.
Full textLI, C. Q., N. J. AI, Y. J. ZHU, et al. "Association mapping and favourable allele exploration for plant architecture traits in upland cotton (Gossypium hirsutum L.) accessions." Journal of Agricultural Science 154, no. 4 (2015): 567–83. http://dx.doi.org/10.1017/s0021859615000428.
Full text