Journal articles on the topic 'Genome architecture mapping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Genome architecture mapping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tavallaee, Ghazaleh, and Elias Orouji. "Mapping the 3D genome architecture." Computational and Structural Biotechnology Journal 27 (2025): 89–101. https://doi.org/10.1016/j.csbj.2024.12.018.
Full textMcKay, Daniel J., Alexis V. Stutzman, and Jill M. Dowen. "Advancements in mapping 3D genome architecture." Methods 170 (January 2020): 75–81. http://dx.doi.org/10.1016/j.ymeth.2019.06.002.
Full textFeng, Yi, Leslie Y. Beh, Wei-Jen Chang, and Laura F. Landweber. "SIGAR: Inferring Features of Genome Architecture and DNA Rearrangements by Split-Read Mapping." Genome Biology and Evolution 12, no. 10 (2020): 1711–18. http://dx.doi.org/10.1093/gbe/evaa147.
Full textChowdhary, Surabhi, Amoldeep S. Kainth, and David S. Gross. "Methods for mapping three-dimensional genome architecture." Methods 170 (January 2020): 1–3. http://dx.doi.org/10.1016/j.ymeth.2019.10.011.
Full textDanchin, Antoine, Pascale Guerdoux-Jamet, Ivan Moszer, and Patrick Nitschké. "Mapping the bacterial cell architecture into the chromosome." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355, no. 1394 (2000): 179–90. http://dx.doi.org/10.1098/rstb.2000.0557.
Full textSchmitt, Anthony D., Ming Hu, and Bing Ren. "Genome-wide mapping and analysis of chromosome architecture." Nature Reviews Molecular Cell Biology 17, no. 12 (2016): 743–55. http://dx.doi.org/10.1038/nrm.2016.104.
Full textBeagrie, Robert A., Antonio Scialdone, Markus Schueler, et al. "Complex multi-enhancer contacts captured by genome architecture mapping." Nature 543, no. 7646 (2017): 519–24. http://dx.doi.org/10.1038/nature21411.
Full textMaluszynska, J., and J. S. Heslop-Harrison. "Physical mapping of rDNA loci in Brassica species." Genome 36, no. 4 (1993): 774–81. http://dx.doi.org/10.1139/g93-102.
Full textRamani, Vijay, Darren A. Cusanovich, Ronald J. Hause, et al. "Mapping 3D genome architecture through in situ DNase Hi-C." Nature Protocols 11, no. 11 (2016): 2104–21. http://dx.doi.org/10.1038/nprot.2016.126.
Full textBurridge, James D., Hannah M. Schneider, Bao-Lam Huynh, Philip A. Roberts, Alexander Bucksch, and Jonathan P. Lynch. "Genome-wide association mapping and agronomic impact of cowpea root architecture." Theoretical and Applied Genetics 130, no. 2 (2016): 419–31. http://dx.doi.org/10.1007/s00122-016-2823-y.
Full textJaroszewicz, Artur, and Jason Ernst. "An integrative approach for fine-mapping chromatin interactions." Bioinformatics 36, no. 6 (2019): 1704–11. http://dx.doi.org/10.1093/bioinformatics/btz843.
Full textLee, Ling Sze, Beatriz M. Navarro-Domínguez, Zhiqiang Wu, et al. "Karyotypic Evolution of Sauropsid Vertebrates Illuminated by Optical and Physical Mapping of the Painted Turtle and Slider Turtle Genomes." Genes 11, no. 8 (2020): 928. http://dx.doi.org/10.3390/genes11080928.
Full textWang, Jiachi, Andy Pang, Karl Hong, Jill Lai, Dipa Roychoudhury, and Joyce L. Murata-Colllins. "Integrative structural variant and breakpoint detection using optical genome mapping in a patient with a transformed diffuse large B-cell lymphoma from chronic lymphocytic leukemia." Journal of Clinical Oncology 39, no. 15_suppl (2021): e19511-e19511. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e19511.
Full textYost, Kathryn E., Yanding Zhao, King L. Hung, et al. "Three-dimensional genome landscape of primary human cancers." Nature Genetics 57, no. 5 (2025): 1189–200. https://doi.org/10.1038/s41588-025-02188-0.
Full textZENG, ZHAO-BANG, CHEN-HUNG KAO, and CHRISTOPHER J. BASTEN. "Estimating the genetic architecture of quantitative traits." Genetical Research 74, no. 3 (1999): 279–89. http://dx.doi.org/10.1017/s0016672399004255.
Full textDutta, Anik, Bruce A. McDonald, and Daniel Croll. "Combined reference-free and multi-reference based GWAS uncover cryptic variation underlying rapid adaptation in a fungal plant pathogen." PLOS Pathogens 19, no. 11 (2023): e1011801. http://dx.doi.org/10.1371/journal.ppat.1011801.
Full textThoen, Manus P. M., Nelson H. Davila Olivas, Karen J. Kloth, et al. "Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping." New Phytologist 213, no. 3 (2016): 1346–62. http://dx.doi.org/10.1111/nph.14220.
Full textYounessi-Hamzekhanlu, Mehdi, and Oliver Gailing. "Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection." International Journal of Molecular Sciences 23, no. 20 (2022): 12315. http://dx.doi.org/10.3390/ijms232012315.
Full textKumar, Anand, Laxmidas Verma, Anup Pratap Singh, Shubham Singh, Keshav Babu, and Soyal Kumar. "Quantitative Traits Loci Associated with Biotic and Abiotic Resistance in Maize (Zea mays L.)." International Journal of Plant & Soil Science 35, no. 18 (2023): 1061–69. http://dx.doi.org/10.9734/ijpss/2023/v35i183371.
Full textWhiting, James R., Josephine R. Paris, Paul J. Parsons, et al. "On the genetic architecture of rapidly adapting and convergent life history traits in guppies." Heredity 128, no. 4 (2022): 250–60. http://dx.doi.org/10.1038/s41437-022-00512-6.
Full textTetteh, Michael, Allan de de Lima, Jack McEllin, Aidan Murphy, Douglas Mota Dias, and Conor Ryan. "Evolving Multi-Output Digital Circuits Using Multi-Genome Grammatical Evolution." Algorithms 16, no. 8 (2023): 365. http://dx.doi.org/10.3390/a16080365.
Full textYu, Kang, Dongcheng Liu, Yong Chen, et al. "Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling." Journal of Experimental Botany 70, no. 18 (2019): 4671–88. http://dx.doi.org/10.1093/jxb/erz247.
Full textUngerer, Mark C., Solveig S. Halldorsdottir, Jennifer L. Modliszewski, Trudy F. C. Mackay, and Michael D. Purugganan. "Quantitative Trait Loci for Inflorescence Development in Arabidopsis thaliana." Genetics 160, no. 3 (2002): 1133–51. http://dx.doi.org/10.1093/genetics/160.3.1133.
Full textSeda, Ondrej, Frantisek Liska, Drahomira Krenova, et al. "Dynamic genetic architecture of metabolic syndrome attributes in the rat." Physiological Genomics 21, no. 2 (2005): 243–52. http://dx.doi.org/10.1152/physiolgenomics.00230.2004.
Full textHeckel, D. G., L. J. Gahan, J. C. Daly, and S. Trowell. "A genomic approach to understanding Heliothis and Helicoverpa resistance to chemical and biological insecticides." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353, no. 1376 (1998): 1713–22. http://dx.doi.org/10.1098/rstb.1998.0323.
Full textZurek, Paul R., Christopher N. Topp, and Philip N. Benfey. "Quantitative Trait Locus Mapping Reveals Regions of the Maize Genome Controlling Root System Architecture." Plant Physiology 167, no. 4 (2015): 1487–96. http://dx.doi.org/10.1104/pp.114.251751.
Full textTian, Feng, Peter J. Bradbury, Patrick J. Brown, et al. "Genome-wide association study of leaf architecture in the maize nested association mapping population." Nature Genetics 43, no. 2 (2011): 159–62. http://dx.doi.org/10.1038/ng.746.
Full textYang, Fangping, Jindong Liu, Ying Guo, et al. "Genome-Wide Association Mapping of Adult-Plant Resistance to Stripe Rust in Common Wheat (Triticum aestivum)." Plant Disease 104, no. 8 (2020): 2174–80. http://dx.doi.org/10.1094/pdis-10-19-2116-re.
Full textMa, Yu, Afef Marzougui, Clarice J. Coyne, et al. "Dissecting the Genetic Architecture of Aphanomyces Root Rot Resistance in Lentil by QTL Mapping and Genome-Wide Association Study." International Journal of Molecular Sciences 21, no. 6 (2020): 2129. http://dx.doi.org/10.3390/ijms21062129.
Full textLee, Tong Geon, Samuel F. Hutton, and Reza Shekasteband. "Fine Mapping of the brachytic Locus on the Tomato Genome." Journal of the American Society for Horticultural Science 143, no. 4 (2018): 239–47. http://dx.doi.org/10.21273/jashs04423-18.
Full textMukuze, Clever, Ulemu M. Msiska, Afang Badji, et al. "Genome-wide association mapping of bruchid resistance loci in soybean." PLOS ONE 20, no. 1 (2025): e0292481. https://doi.org/10.1371/journal.pone.0292481.
Full textJowhar, Ziad, Sigal Shachar, Prabhakar R. Gudla, et al. "Effects of human sex chromosome dosage on spatial chromosome organization." Molecular Biology of the Cell 29, no. 20 (2018): 2458–69. http://dx.doi.org/10.1091/mbc.e18-06-0359.
Full textZhang, Ning, and Xueqing Huang. "Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize." PLOS ONE 16, no. 1 (2021): e0245129. http://dx.doi.org/10.1371/journal.pone.0245129.
Full textKitony, Justine K., Hidehiko Sunohara, Mikako Tasaki, et al. "Development of an Aus-Derived Nested Association Mapping (Aus-NAM) Population in Rice." Plants 10, no. 6 (2021): 1255. http://dx.doi.org/10.3390/plants10061255.
Full textZhang, Wenmin, Hamed Najafabadi, and Yue Li. "SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations." PLOS Genetics 19, no. 12 (2023): e1011104. http://dx.doi.org/10.1371/journal.pgen.1011104.
Full textDemetci, Pinar, Wei Cheng, Gregory Darnell, Xiang Zhou, Sohini Ramachandran, and Lorin Crawford. "Multi-scale inference of genetic trait architecture using biologically annotated neural networks." PLOS Genetics 17, no. 8 (2021): e1009754. http://dx.doi.org/10.1371/journal.pgen.1009754.
Full textWu, Zhiqiang, Jocelyn M. Cuthbert, Douglas R. Taylor, and Daniel B. Sloan. "The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes." Proceedings of the National Academy of Sciences 112, no. 33 (2015): 10185–91. http://dx.doi.org/10.1073/pnas.1421397112.
Full textMartin, Anke, Paula Moolhuijzen, Yongfu Tao, et al. "Genomic Regions Associated with Virulence in Pyrenophora teres f. teres Identified by Genome-Wide Association Analysis and Biparental Mapping." Phytopathology® 110, no. 4 (2020): 881–91. http://dx.doi.org/10.1094/phyto-10-19-0372-r.
Full textLuo, Z. W., Chung-I. Wu, and M. J. Kearsey. "Precision and High-Resolution Mapping of Quantitative Trait Loci by Use of Recurrent Selection, Backcross or Intercross Schemes." Genetics 161, no. 2 (2002): 915–29. http://dx.doi.org/10.1093/genetics/161.2.915.
Full textMarkowski, Julia, Rieke Kempfer, Alexander Kukalev, et al. "GAMIBHEAR: whole-genome haplotype reconstruction from Genome Architecture Mapping data." Bioinformatics, April 8, 2021. http://dx.doi.org/10.1093/bioinformatics/btab238.
Full textBelokopytova, Polina, and Veniamin Fishman. "Predicting Genome Architecture: Challenges and Solutions." Frontiers in Genetics 11 (January 22, 2021). http://dx.doi.org/10.3389/fgene.2020.617202.
Full textLiu, Lei, Xinmeng Cao, Bokai Zhang, and Changbong Hyeon. "Dissecting the co-segregation probability from genome architecture mapping." Biophysical Journal, September 2022. http://dx.doi.org/10.1016/j.bpj.2022.09.018.
Full textGao, Xin D., Xin D. Gao, Li-Chun Tu, et al. "Mapping subnuclear proteomes onto genome architecture via C-BERST." Protocol Exchange, May 8, 2018. http://dx.doi.org/10.1038/protex.2018.036.
Full text"Genome architecture mapping detects transcriptionally active, multiway chromatin contacts." Nature Methods, June 19, 2023. http://dx.doi.org/10.1038/s41592-023-01905-z.
Full textZhu, Kaiyuan, Matthew Gregory Jones, Jens Luebeck, et al. "CoRAL accurately resolves extrachromosomal DNA genome structures with long-read sequencing." Genome Research, July 9, 2024, gr.279131.124. http://dx.doi.org/10.1101/gr.279131.124.
Full textPombo, Ana, Robert A. Beagrie, Antonio Scialdone, et al. "Complex Multi‐Enhancer Contacts Captured By Genome Architecture Mapping, A Novel Ligation‐Free Approach." FASEB Journal 30, S1 (2016). http://dx.doi.org/10.1096/fasebj.30.1_supplement.99.3.
Full textLow, Eng-Ti Leslie, Kuang-Lim Chan, Noorhariza Mohd Zaki, et al. "Chromosome-scale Elaeis guineensis and E. oleifera assemblies: Comparative genomics of oil palm and other Arecaceae." G3: Genes, Genomes, Genetics, June 26, 2024. http://dx.doi.org/10.1093/g3journal/jkae135.
Full textBeagrie, Robert A., Christoph J. Thieme, Carlo Annunziatella, et al. "Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C." Nature Methods, June 19, 2023. http://dx.doi.org/10.1038/s41592-023-01903-1.
Full textPinglay, Sudarshan, Jean-Benoît Lalanne, Riza M. Daza, et al. "Multiplex generation and single-cell analysis of structural variants in mammalian genomes." Science 387, no. 6733 (2025). https://doi.org/10.1126/science.ado5978.
Full textMurphy, William J., and Andrew J. Harris. "Toward telomere-to-telomere cat genomes for precision medicine and conservation biology." Genome Research, June 7, 2024. http://dx.doi.org/10.1101/gr.278546.123.
Full text