Academic literature on the topic 'Genome-wide analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Genome-wide analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Genome-wide analysis"
Wu, Weihuai, Kexian Yi, Xing Huang, Thomas Gbokie Jr, and Baohui Liu. "Genome-wide analysis of defensin-like genes in Coffea arabica." SDRP Journal of Plant Science 3, no. 1 (2019): 1–6. http://dx.doi.org/10.25177/jps.3.1.ra.499.
Full textWeerasekara, Vajira Samanthi. "Genome-wide haplotype analysis." Sri Lanka Journal of Bio-Medical Informatics 3, no. 1 (January 8, 2013): 20. http://dx.doi.org/10.4038/sljbmi.v3i1.2564.
Full textZhang, Jianzhi. "Epistasis Analysis Goes Genome-Wide." PLOS Genetics 13, no. 2 (February 16, 2017): e1006558. http://dx.doi.org/10.1371/journal.pgen.1006558.
Full textKrapohl, E., J. Euesden, D. Zabaneh, J.-B. Pingault, K. Rimfeld, S. von Stumm, P. S. Dale, G. Breen, P. F. O'Reilly, and R. Plomin. "Phenome-wide analysis of genome-wide polygenic scores." Molecular Psychiatry 21, no. 9 (August 25, 2015): 1188–93. http://dx.doi.org/10.1038/mp.2015.126.
Full textLee, Young Ho, and Gwan Gyu Song. "Genome-wide pathway analysis of a genome-wide association study on Alzheimer’s disease." Neurological Sciences 36, no. 1 (July 19, 2014): 53–59. http://dx.doi.org/10.1007/s10072-014-1885-3.
Full textSong, Gwan Gyu, Sung Jae Choi, Jong Dae Ji, and Young Ho Lee. "Genome-wide pathway analysis of a genome-wide association study on multiple sclerosis." Molecular Biology Reports 40, no. 3 (December 14, 2012): 2557–64. http://dx.doi.org/10.1007/s11033-012-2341-1.
Full textZhu, Lei, Yanman Li, Jintao Li, Yong Wang, Zhenli Zhang, Yanjiao Wang, Zanlin Wang, Jianbin Hu, Luming Yang, and Shouru Sun. "Genome-wide identification and analysis of the MLO gene families in three Cucurbita species." Czech Journal of Genetics and Plant Breeding 57, No. 3 (July 14, 2021): 119–23. http://dx.doi.org/10.17221/99/2020-cjgpb.
Full textAnusha.B.N, Anusha B. N., Shambu M. G. Shambu.M.G, and Kusum Paul. "Genome Wide Transcriptional Analysis of Gene Expression Signatures and Pathways on Neoplastic Pancreatic Cancer." International Journal of Scientific Research 2, no. 8 (June 1, 2012): 43–44. http://dx.doi.org/10.15373/22778179/aug2013/15.
Full textTang, Lin. "Genome-wide analysis of structural variation." Nature Methods 18, no. 5 (May 2021): 448. http://dx.doi.org/10.1038/s41592-021-01161-z.
Full textSonoyama, M. "Genome-wide analysis of membrane proteins." Seibutsu Butsuri 41, supplement (2001): S9. http://dx.doi.org/10.2142/biophys.41.s9_1.
Full textDissertations / Theses on the topic "Genome-wide analysis"
Jordan, Barbara M. (Barbara Marie) 1975. "Genome complexity reduction for genome-wide single nucleotide polymorphism analysis." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8319.
Full textVita.
Includes bibliographical references.
Millions of single nucleotide polymorphisms (SNPs) have been identified in the human genome, and more are cataloged every day. The challenge now is to use these SNPs to discover the genetic risk factors underlying common and complex diseases. Efficient, large-scale genotyping methods are one necessary component of this endeavor. Current SNP genotyping techniques all rely on an initial PCR amplification of each SNP locus. Individual or low-level multiplexed PCR reactions are sufficient for genotyping a few to a few hundred different SNPs, but genome-wide linkage and association studies in humans will require thousands to tens of thousands of different SNPs, each typed on a few thousand individuals. To efficiently reach this goal, PCR techniques capable of amplifying a few hundred loci per reaction are needed. To meet this need we investigated the use of PCR-based genome complexity reduction methods for SNP genotyping. We discovered that degenerate oligonucleotide primed PCR (DOP-PCR) is capable of amplifying a specific fraction of a genome in a highly reproducible manner. The genomic sequences amplified are determined by the oligonucleotide primer's nondegenerate, 8-12 nucleotide, 3' end sequence. The amplified complexity can be varied from one to over 10,000 loci by changing the DOP-PCR primer's length and specific sequence. We collected SNPs from a human DOP-PCR that amplifies roughly 600 loci, and demonstrated that about half of the SNPs tested could be genotyped directly from the DOP-PCR product mixture, using the allele specific oligonucleotide hybridization genotyping technique.
(cont.) We investigated using the human genome sequence to electronically predict, based on DOP-PCR primer 3' end sequence, the products of DOP-PCRs. We successfully demonstrated that approximately 80% of such predicted products were in fact amplified in DOP-PCRs done with human genomic DNA. Electronic prediction of DOP-PCR products, and the SNPs contained in them from SNP databases, could provide a method to compile a set of DOP-PCRs that amplify tens of thousands of SNP loci for genome-wide scans. We also tested SNP genotyping from a mouse DOP-PCR amplifying about 200 loci, and from several Arabidopsis thaliana DOP-PCRs that amplify about 100 loci each. Half of the SNPs collected in these DOP-PCRs were also amenable to genotyping, directly from the DOP-PCR product mixtures. We identified SNPs in these DOP-PCRs by resequencing, but as more species' genomes are sequenced and more SNPs are contributed to public databases, DOP-PCR will become easier to implement in these and other model organisms. Currently, we are developing a genome-wide set of SNPs amplified in 32 DOP-PCRs for the mouse.
by Barbara M. Jordan.
Ph.D.
Simonson, Matthew A. "Polygenic analysis of genome-wide SNP data." Thesis, University of Colorado at Boulder, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3562047.
Full textOne of the central motivators behind genetic research is to understand how genetic variation relates to human health and disease. Recently, there has been a large-scale effort to find common genetic variants associated with many forms of disease and disorder using single nucleotide polymorphisms (SNPs). Several genome-wide association (GWAS) studies have successfully identified SNPs associated with phenotypes. However, the effect sizes attributed to individual variants is generally small, explaining only a very small amount of the genetic risk and heritability expected based on the estimates of family and twin studies. Several explanations exist for the inability of GWAS to find the "missing heritability."
The results of recent research appear to confirm the prediction made by population genetics theory that most complex phenotypes are highly polygenic, occasionally influenced by a few alleles of relatively large effect, and usually by several of small effect. Studies have also confirmed that common variants are only part of what contributes to the total genetic variance for most traits, indicating rare-variants may play a significant role.
This research addresses some of the most glaring weaknesses of the traditional GWAS approach through the application of methods of polygenic analysis. We apply several methods, including those that investigate the net effects of large sets of SNPs, more sophisticated approaches informed by biology rather than the purely statistical approach of GWAS, as well as methods that infer the effects of recessive rare variants.
Our results indicate that traditional GWAS is well complemented and improved upon by methods of polygenic analysis. We demonstrate that polygenic approaches can be used to significantly predict individual risk for disease, provide an unbiased estimate of a substantial proportion of the heritability for multiple phenotypes, identify sets of genes grouped into biological pathways that are enriched for associations, and finally, detect the significant influence of recessive rare variants.
Kung, Johnny Tsun-Yi. "Genome-wide Analysis of Ctcf-RNA Interactions." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11618.
Full textChen, Stacy Yen-chun. "Genome-wide analysis of yeast meiotic recombination landscape." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390037.
Full textBarrera, Leah Ortiz-Luis. "Genome-wide mapping and analysis of mammalian promoters." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3258393.
Full textTitle from first page of PDF file (viewed June 1, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 151-169).
Barrett, Jeffrey C. "Design and analysis of genome-wide association studies." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:45790b5c-e50c-406a-bb3c-a96868b11a28.
Full textNilsson, Emil. "Genome wide methylation analysis and obesity related traits." Doctoral thesis, Uppsala universitet, Institutionen för neurovetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-248685.
Full textLin, Yu-fei. "Genome-wide analysis of Propionibacterium acnes gene regulation." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/15231/.
Full textYazdani, Akram. "Statistical Approaches in Genome-Wide Association Studies." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423743.
Full textLo Studio di Associazione Genome-Wide, GWAS, tipicamente comprende centinaia di migliaia di polimorfismi a singolo nucleotide, SNPs, genotipizzati per pochi campioni. L'obiettivo di tale studio consiste nell'individuare le regioni cruciali SNPs e prevedere gli esiti di una variabile risposta. Dal momento che il numero di predittori è di gran lunga superiore al numero di campioni, non è possibile condurre l'analisi dei dati con metodi statistici classici. GWAS attuali, i metodi negli maggiormente utilizzati si basano sull'analisi a marcatore unico, che valuta indipendentemente l'associazione di ogni SNP con i tratti complessi. A causa della bassa potenza dell'analisi a marcatore unico nel rilevamento delle associazioni reali, l'analisi simultanea ha recentemente ottenuto più attenzione. I recenti metodi per l'analisi simultanea nel multidimensionale hanno una limitazione sulla disparità tra il numero di predittori e il numero di campioni. Pertanto, è necessario ridurre la dimensionalità dell'insieme di SNPs. Questa tesi fornisce una panoramica dell'analisi a marcatore singolo e dell'analisi simultanea, focalizzandosi su metodi Bayesiani. Vengono discussi i limiti di tali approcci in relazione ai GWAS, con riferimento alla letteratura recente e utilizzando studi di simulazione. Per superare tali problemi, si è cercato di ridurre la dimensione dell'insieme di SNPs con una tecnica a proiezione casuale. Poiché questo approccio non comporta miglioramenti nella accuratezza predittiva del modello, viene quindi proposto un approccio in due fasi, che risulta essere un metodo ibrido di analisi singola e simultanea. Tale approccio, completamente Bayesiano, seleziona gli SNPs più promettenti nella prima fase valutando l'impatto di ogni marcatore indipendentemente. Nella seconda fase, viene sviluppato un modello gerarchico Bayesiano per analizzare contemporaneamente l'impatto degli indicatori selezionati. Il modello che considera i campioni correlati pone una priori locale-globale ristretta sugli effetti dei marcatori. Tale prior riduce a zero gli effetti piccoli, mentre mantiene gli effetti più grandi relativamente grandi. Le priori specificate sugli effetti dei marcatori sono rappresentazioni gerarchiche della distribuzione Pareto doppia; queste a priori migliorano le prestazioni predittive del modello. Infine, nella tesi vengono riportati i risultati dell'analisi su dati reali di SNP basate sullo studio a marcatore singolo e sul nuovo approccio a due stadi.
Schleiermacher, Chris. "Algorithmic support for PCR and genome wide repeat analysis." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963799495.
Full textBooks on the topic "Genome-wide analysis"
Stram, Daniel O. Design, Analysis, and Interpretation of Genome-Wide Association Scans. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9443-0.
Full textMuley, Vijaykumar Yogesh, and Vishal Acharya. Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4705-4.
Full textBioinformatics: The impact of accurate quantification on proteomic and genetic analysis and research. Toronto: Apple Academic Press, 2014.
Find full textStram, Daniel O. Design, Analysis, and Interpretation of Genome-Wide Association Scans. Springer, 2016.
Find full textStram, Daniel O. Design, Analysis, and Interpretation of Genome-Wide Association Scans. Springer, 2013.
Find full textStram, Daniel O. Design, Analysis, and Interpretation of Genome-Wide Association Scans. Springer London, Limited, 2013.
Find full textStram, Daniel O. Design, Analysis, and Interpretation of Genome-Wide Association Scans. Springer, 2013.
Find full textYang, Sheng, Shiquan Sun, Xiang Zhou, and Yang Zhao, eds. Integrative Analysis of Genome-Wide Association Studies and Single-Cell Sequencing Studies. Frontier Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-467-4.
Full textBook chapters on the topic "Genome-wide analysis"
Unterberger, Alexander, Adrian M. Dubuc, and Michael D. Taylor. "Genome-Wide Methylation Analysis." In Methods in Molecular Biology, 303–17. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-612-8_19.
Full textLysenko, Artem, Keith A. Boroevich, and Tatsuhiko Tsunoda. "Genotyping and Statistical Analysis." In Genome-Wide Association Studies, 1–20. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8177-5_1.
Full textZheng, Gang, Yaning Yang, Xiaofeng Zhu, and Robert C. Elston. "Genome-Wide Association Studies." In Analysis of Genetic Association Studies, 337–49. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2245-7_12.
Full textSutphin, George L., Brady A. Olsen, Brian K. Kennedy, and Matt Kaeberlein. "Genome-Wide Analysis of Yeast Aging." In Aging Research in Yeast, 251–89. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2561-4_12.
Full textLarsson, Ola, and Peter B. Bitterman. "Genome-Wide Analysis of Translational Control." In mTOR Pathway and mTOR Inhibitors in Cancer Therapy, 217–36. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-271-1_11.
Full textPelizzola, Mattia, and Annette Molinaro. "Methylated DNA Immunoprecipitation Genome-Wide Analysis." In Methods in Molecular Biology, 113–23. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-316-5_9.
Full textMcRae, Allan F. "Analysis of Genome-Wide Association Data." In Methods in Molecular Biology, 161–73. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6613-4_9.
Full textIsidro-Sánchez, Julio, Deniz Akdemir, and Gracia Montilla-Bascón. "Genome-Wide Association Analysis Using R." In Methods in Molecular Biology, 189–207. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6682-0_14.
Full textGuruceaga, Elizabeth, Victor Segura, Fernando J. Corrales, and Angel Rubio. "Genome-Wide Proximal Promoter Analysis and Interpretation." In Methods in Molecular Biology, 157–74. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-194-3_8.
Full textKim, Kyu-Tae, and Woong-Yang Park. "Genome-Wide Analysis of THz-Bio Interaction." In Convergence of Terahertz Sciences in Biomedical Systems, 257–79. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3965-9_15.
Full textConference papers on the topic "Genome-wide analysis"
DUBCHAK, INNA, LIOR PACHTER, and LIPING WEI. "GENOME-WIDE ANALYSIS AND COMPARATIVE GENOMICS." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799623_0011.
Full textWang, Zhaoxi, Yang Zhao, Lin Li, Li Su, Xihong Lin, Mark M. Wurfel, and David C. Christiani. "Genome-Wide Association Analysis Of Sepsis." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6817.
Full textXuan Si, Quhuan Li, Jianwei Wang, and Zhenyang Li. "A platform for genome-wide analysis." In 2011 International Symposium on Information Technology in Medicine and Education (ITME 2011). IEEE, 2011. http://dx.doi.org/10.1109/itime.2011.6130917.
Full textChen, Kuanchung, and Yuh-Jyh Hu. "Bicluster Analysis of Genome-Wide Gene Expression." In 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology. IEEE, 2006. http://dx.doi.org/10.1109/cibcb.2006.330994.
Full textESKIN, ELEAZAR, URI KEICH, MIKHAIL S. GELFAND, and PAVEL A. PEVZNER. "GENOME-WIDE ANALYSIS OF BACTERIAL PROMOTER REGIONS." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776303_0004.
Full textLiu, Yang, Jin Zhou, Zhiping Liu, Luonan Chen, and Michael K. Ng. "Construction and analysis of genome-wide SNP networks." In 2012 IEEE 6th International Conference on Systems Biology (ISB). IEEE, 2012. http://dx.doi.org/10.1109/isb.2012.6314158.
Full textBhattacharya, Soumyaroop, Jody L. Gascon, Heidi L. Huyck, Sorachai Srisuma, Leon A. Metlay, Sivakumar Solleti, Thomas J. Mariani, and Gloria S. Pryhuber. "Genome-Wide Expression Analysis Of Human Bronchopulmonary Dysplasia." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1859.
Full textHuo, Jinlong, Wenmin Chen, Xiaowei Wu, Kuan Yang, Weirong Pan, Liqing Zhang, and Yangzhi Zeng. "Analysis of whole genome sequence and genome-wide SNPs in highly inbred pigs." In 2017 IEEE 7th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2017. http://dx.doi.org/10.1109/iccabs.2017.8114286.
Full textBeretta, Stefano, Lucia Morganti, Elena Corni, Andrea Ferraro, Daniele Cesini, Daniele D'Agostino, Luciano Milanesi, and Ivan Merelli. "Low-Power Architectures for miRNA-Target Genome Wide Analysis." In 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). IEEE, 2017. http://dx.doi.org/10.1109/pdp.2017.88.
Full textEppstein, Margaret J., and Paul Haake. "Very large scale ReliefF for genome-wide association analysis." In 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2008). IEEE, 2008. http://dx.doi.org/10.1109/cibcb.2008.4675767.
Full textReports on the topic "Genome-wide analysis"
Baumbach, Lisa B. Genome Wide Expression Analysis of Breast Cancer in African Americans. Fort Belvoir, VA: Defense Technical Information Center, October 2004. http://dx.doi.org/10.21236/ada430386.
Full textQian, Shu-Bing. Genome-Wide Analysis of Translational Control in Tuberous Sclerosis Complex. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada576362.
Full textQian, Shu-Bing. Genome-Wide Analysis of Translational Control in Tuberous Sclerosis Complex. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada584195.
Full textXu, Jianfeng, Siqun L. Zheng, Bao-Li Chang, Wennuan Liu, and Jielin Sun. Genome-Wide Analysis of Germline Cnps and Snps in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada492476.
Full textXu, Jianfeng. Genome-wide Analysis of Germline CNPs and SNPs in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada534038.
Full textXu, Jianfeng, Siqun L. Zheng, Wennuan Liu, and Jielin Sun. Genome-Wide Analysis of Germline CNPs and SNPs in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada505051.
Full textAhn, Jiyoung. Integrative Analysis of Genome-wide Gene Expression for Prostate Cancer Prognosis. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada552228.
Full textGreen, Pamela J. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1209217.
Full textElbeltagy, Ahmed R., Eui-Soo Kim, Barbara Rischkowsky, Adel M. Aboul-naga, Joram M. Mwacharo, and Max F. Rothschild. Genome-wide Analysis of Small Ruminant Tolerance to Grazing Stress Under Arid Desert. Ames (Iowa): Iowa State University, January 2016. http://dx.doi.org/10.31274/ans_air-180814-236.
Full textMitchell, S. C., D. Bocskai, and Y. Cao. Construction of genome-wide physical BAC contigs using mapped cDNA as probes: Toward an integrated BAC library resource for genome sequencing and analysis. Annual report, July 1995--January 1997. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/639708.
Full text