Academic literature on the topic 'Genomics. Bioinformatics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Genomics. Bioinformatics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Genomics. Bioinformatics"

1

Meng, Da. "Bioinformatics tools for evaluating microbial relationships." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Dissertations/Spring2009/d_meng_042209.pdf.

Full text
Abstract:
Thesis (Ph. D.)--Washington State University, May 2009.<br>Title from PDF title page (viewed on June 8, 2009). "School of Electrical Engineering and Computer Science." Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
2

Hvidsten, Torgeir R. "Predicting Function of Genes and Proteins from Sequence, Structure and Expression Data." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Åkerborg, Örjan. "Taking advantage of phylogenetic trees in comparative genomics." Doctoral thesis, KTH, Beräkningsbiologi, CB, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4757.

Full text
Abstract:
Phylogenomics can be regarded as evolution and genomics in co-operation. Various kinds of evolutionary studies, gene family analysis among them, demand access to genome-scale datasets. But it is also clear that many genomics studies, such as assignment of gene function, are much improved by evolutionary analysis. The work leading to this thesis is a contribution to the phylogenomics field. We have used phylogenetic relationships between species in genome-scale searches for two intriguing genomic features, namely and A-to-I RNA editing. In the first case we used pairwise species comparisons, specifically human-mouse and human-chimpanzee, to infer existence of functional mammalian pseudogenes. In the second case we profited upon later years' rapid growth of the number of sequenced genomes, and used 17-species multiple sequence alignments. In both these studies we have used non-genomic data, gene expression data and synteny relations among these, to verify predictions. In the A-to-I editing project we used 454 sequencing for experimental verification. We have further contributed a maximum a posteriori (MAP) method for fast and accurate dating analysis of speciations and other evolutionary events. This work follows recent years' trend of leaving the strict molecular clock when performing phylogenetic inference. We discretised the time interval from the leaves to the root in the tree, and used a dynamic programming (DP) algorithm to optimally factorise branch lengths into substitution rates and divergence times. We analysed two biological datasets and compared our results with recent MCMC-based methodologies. The dating point estimates that our method delivers were found to be of high quality while the gain in speed was dramatic. Finally we applied the DP strategy in a new setting. This time we used a grid laid out on a species tree instead of on an interval. The discretisation gives together with speciation times a common timeframe for a gene tree and the corresponding species tree. This is the key to integration of the sequence evolution process and the gene evolution process. Out of several potential application areas we chose gene tree reconstruction. We performed genome-wide analysis of yeast gene families and found that our methodology performs very well.<br>QC 20100923
APA, Harvard, Vancouver, ISO, and other styles
4

Andrade, Jorge. "Grid and High-Performance Computing for Applied Bioinformatics." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hervás, Fernàndez Sergi. "Population genomics in Drosophila melanogaster: a bioinformatics approach." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665851.

Full text
Abstract:
High-throughput sequencing technologies are allowing the description of genome-wide variation patterns for an ever-growing number of organisms. However, we still lack a thorough comprehension of the relative amount of different types of genetic variation, their phenotypic effects, and the detection and quantification of distinct selection regimes acting on genomes. The recent compilation of more than one thousand of worldwide wild-derived Drosophila melanogaster genome sequences reassembled using a standardized pipeline (Drosophila Genome Nexus, DGN, Lack et al. 2015, 2016) provides a unique resource to test molecular population genetics hypotheses, and ultimately understand the evolutionary dynamics of genetic variation in the populations. Besides, the increasing amount of genomic data available requires the continuous development and optimization of bioinformatics tools able to handle and analyze such information. Thus, the development and implementation of new biologically-oriented software addressing several steps from data acquisition, filtering, processing, display or analysis to the final reporting step is a constantly growing need, especially in fields dealing with large data sets, such as population genomics. This thesis is conceived as a comprehensive bioinformatics and population genomics project. It is centered in the development and application of bioinformatics tools for the analysis and visualization of nucleotide variation patterns and the detection of selective events in the genome of D. melanogaster, using the DGN data. The main goal is accomplished in three sequential steps: (i) capture the evolutionary properties of the analyzed sequences (i.e., create a catalog of population genetics metrics) and implement a tool for the graphical display of such information; (ii) develop a statistical package for the computation of the diverse selection regimes acting on genomes (positive and purifying selection), and finally (iii) perform an initial population genomics analysis in D. melanogaster using the previously developed tools. The common approach applied to process the data, starting at the assembly of genome sequences and ending up at the estimates of population genetics metrics, allows performing, for the first time, a comprehensive comparison and interpretation of results using samples from five continents. Overall, this work provides a global overview of the nucleotide variation and adaptation patterns along the genome, and a general assessment of the relative impact of the major genomic determinants of genetic variation, in Drosophila meta-populations with different geographical origin.
APA, Harvard, Vancouver, ISO, and other styles
6

Kemmer, Danielle. "Genomics and bioinformatics approaches to functional gene annotation /." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-636-0/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johansson, Annelie. "Identifying gene regulatory interactions using functional genomics data." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-230285.

Full text
Abstract:
Previously studies used correlation of DNase I hypersensitivity sites sequencing (DNase-seq) experiments to predict interactions between enhancers and its target promoter gene. We investigate the correlation methods Pearson’s correlation and Mutual Information, using DNase-seq data for 100 cell-types in regions on chromosome one. To assess the performances, we compared our results of correlation scores to Hi-C data from Jin et al. 2013. We showed that the performances are low when comparing it to the Hi-C data, and there is a need of improved correlation metrics. We also demonstrate that the use of Hi-C data as a gold standard is limited, because of its low resolution, and we suggest using another gold standard in further studies.
APA, Harvard, Vancouver, ISO, and other styles
8

Novotny, Marian. "Applications of Structural Bioinformatics for the Structural Genomics Era." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Janvid, Vincent. "Building a genomic variant based prediction model for lung cancer toxicity." Thesis, KTH, Tillämpad fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297411.

Full text
Abstract:
Since the completion of the the Human genome project in 2003, the evident complexity of our genome and its regulation has only grown. The idea that having sequenced the human genome would solve this mystery was quickly discarded. With the decreasing costs of DNA sequencing, a plethora of new methods have evolved to further understand the role of non-coding regions of our genome, which makes up 98% its length. Genetic variations in these regions are therefore abundant in the human population, but their e ects are hard to characterize. Many non-coding variants have been linked to complex diseases such as cancer predisposition. This thesis aims to investigate the potential e ects of non-coding variants on drug toxicity, that is, how severe the adverse e ects of a drug are to the treated patients. More specifically it will study the effects of two cancer drugs, Gemcitabine and Carboplatin, on a set of 96 patients with lung cancer. To do this we use spatial data acquired by the promoter-targeting method HiCap as well as expression data obtained from blood cell lines. Using the variants obtained through whole genome sequencing of the patients, a supervised learning approach was attempted to predict the final toxicity experienced by the patients. The large number of variants present among the comparably few patients resulted in poor accuracy. The conclusion was drawn that the resolution of HiCap is too low compared to the density of variants in the non-coding regions. Additional data, such as transcription factor Chip-Seq data, and transcription factor motifs are needed to locate potentially contributing variants within the interactions.<br>Sedan den första sekvenseringen av det mänskliga genomet 2003 har vår bild av vårt genom och hur det regleras bara blivit mer komplex. Iden om att ha tillgång till ett helt genom skulle losa detta mysterium förkastades snabbt. Med de sjunkande kostnaderna for sekvensering har ett brett utbud av nya metoder utvecklats for att bättre förstå de icke-kodande regionernas roll i v art genom. Då dessa regioner utgör98% av vårt DNA ar innehåller de stor variation bland det mänskliga släktet, men att förutsaga deras effekt är mycket svårt. Många icke-kodande variationer har kopplats till komplexa sjukdomar så som ökad risk för cancer.Denna uppsats syftar till att undersoka de potentiella effekterna av icke-kodande varianter på hur allvarliga biverkningar en patient får av en cancerbehandling. Närmare undersöks två mediciners, Gemcitabins och Carboplatins effekt på 96 lungcancerpatienter. För detta används spatial data samt genuttrycksdata från blodcellinjer.Med utgångspunkt från genetiska varianter bland patienternas sekvenserade genom testades övervakad inlärning för att förutsäga graden av biverkningar hos patienterna. Den stora mängden varianter som bärs av de förhållandevis få patienterna resulterade i låg träffsäkerhet hos prediktorn. Slutsatsen drogs att upplösningen av HiCap är för låg i jämförelse med den höga densiteten av varianter i icke-kodanderegioner. Mer data, så som Chip-Seq data från transkriptionsfaktorer samt deras specifika bindningsekvenser behövs för att lokalisera varianter inom en interaktion, som potentiellt skulle kunna påverka biverkningarna.
APA, Harvard, Vancouver, ISO, and other styles
10

Cleary, Alan Michael. "Computational Pan-Genomics| Algorithms and Applications." Thesis, Montana State University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10792396.

Full text
Abstract:
<p> As the cost of sequencing DNA continues to drop, the number of sequenced genomes rapidly grows. In the recent past, the cost dropped so low that it is no longer prohibitively expensive to sequence multiple genomes for the same species. This has led to a shift from the single reference genome per species paradigm to the more comprehensive pan-genomics approach, where populations of genomes from one or more species are analyzed together. </p><p> The total genomic content of a population is vast, requiring algorithms for analysis that are more sophisticated and scalable than existing methods. In this dissertation, we explore new algorithms and their applications to pan-genome analysis, both at the nucleotide and genic resolutions. Specifically, we present the Approximate Frequent Subpaths and Frequented Regions problems as a means of mining syntenic blocks from pan-genomic de Bruijn graphs and provide efficient algorithms for mining these structures. We then explore a variety of analyses that mining synteny blocks from pan-genomic data enables, including meaningful visualization, genome classification, and multidimensional-scaling. We also present a novel interactive data mining tool for pan-genome analysis&mdash;the Genome Context Viewer&mdash;which allows users to explore pan-genomic data distributed across a heterogeneous set of data providers by using gene family annotations as a unit of search and comparison. Using this approach, the tool is able to perform traditionally cumbersome analyses on-demand in a federated manner.</p><p>
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography