Academic literature on the topic 'Genotype data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Genotype data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Genotype data"
Have, Christian Theil, Emil Vincent Appel, Niels Grarup, Torben Hansen, and Bork-Jensen Jette. "Identification of Mislabeled Samples and Sample Mix-ups in Genotype Data Using Barcode Genotypes." International Journal of Bioscience, Biochemistry and Bioinformatics 4, no. 5 (2014): 355–60. http://dx.doi.org/10.7763/ijbbb.2014.v4.370.
Full textYan, Weikai, and Duane E. Falk. "Biplot Analysis of Host-by-Pathogen Data." Plant Disease 86, no. 12 (December 2002): 1396–401. http://dx.doi.org/10.1094/pdis.2002.86.12.1396.
Full textWhalen, Andrew, Gregor Gorjanc, and John M. Hickey. "AlphaFamImpute: high-accuracy imputation in full-sib families from genotype-by-sequencing data." Bioinformatics 36, no. 15 (May 28, 2020): 4369–71. http://dx.doi.org/10.1093/bioinformatics/btaa499.
Full textLewis, R. M., B. Grundy, and L. A. Kuehn. "Predicting population gene frequency from sample data." Animal Science 78, no. 1 (February 2004): 03–11. http://dx.doi.org/10.1017/s1357729800053789.
Full textBroman, Karl W. "Cleaning genotype data." Genetic Epidemiology 17, S1 (1999): S79—S83. http://dx.doi.org/10.1002/gepi.1370170714.
Full textde Vries, F., H. Hamann, C. Drögemüller, M. Ganter, and O. Distl. "Analysis of associations between the prion protein genotype and reproduction traits in meat sheep breeds." Animal Science 79, no. 3 (December 2004): 397–404. http://dx.doi.org/10.1017/s1357729800090263.
Full textVelkov, Stoyan, Jördis Ott, Ulrike Protzer, and Thomas Michler. "The Global Hepatitis B Virus Genotype Distribution Approximated from Available Genotyping Data." Genes 9, no. 10 (October 15, 2018): 495. http://dx.doi.org/10.3390/genes9100495.
Full textGenç, Serpil, Mediha Uğur, Emel Uzunoğlu Karagöz, and Esin Avcı. "Giresun İli Hepatit C Hastalarında Genotip Dağılımının Araştırılması." Flora the Journal of Infectious Diseases and Clinical Microbiology 25, no. 4 (December 30, 2020): 549–54. http://dx.doi.org/10.5578/flora.69198.
Full textDu, F.-X., and I. Hoeschele. "A Note on Algorithms for Genotype and Allele Elimination in Complex Pedigrees With Incomplete Genotype Data." Genetics 156, no. 4 (December 1, 2000): 2051–62. http://dx.doi.org/10.1093/genetics/156.4.2051.
Full textIdris, Idris. "Analisis Data Hasil Pengujian Multilokasi Padi Sawah dengan Menggunakan Model AMMI." Informatika Pertanian 24, no. 1 (July 1, 2015): 17. http://dx.doi.org/10.21082/ip.v24n1.2015.p17-30.
Full textDissertations / Theses on the topic "Genotype data"
Brinza, Dumitru. "Discrete Algorithms for Analysis of Genotype Data." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/cs_diss/19.
Full textGroth, Philip. "Knowledge management and discovery for genotype/phenotype data." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2009. http://dx.doi.org/10.18452/16033.
Full textIn diseases with a genetic component, examination of the phenotype can aid understanding the underlying genetics. Technologies to generate high-throughput phenotypes, such as RNA interference (RNAi), have been developed to decipher functions for genes. This large-scale characterization of genes strongly increases phenotypic information. It is a challenge to interpret results of such functional screens, especially with heterogeneous data sets. Thus, there have been only few efforts to make use of phenotype data beyond the single genotype-phenotype relationship. Here, methods are presented for knowledge discovery in phenotypes across species and screening methods. The available databases and various approaches to analyzing their content are reviewed, including a discussion of hurdles to be overcome, e.g. lack of data integration, inadequate ontologies and shortage of analytical tools. PhenomicDB 2 is an approach to integrate genotype and phenotype data on a large scale, using orthologies for cross-species phenotypes. The focus lies on the uptake of quantitative and descriptive RNAi data and ontologies of phenotypes, assays and cell-lines. Then, the results of a study are presented in which the large set of phenotype data from PhenomicDB is taken to predict gene annotations. Text clustering is utilized to group genes based on their phenotype descriptions. It is shown that these clusters correlate well with indicators for biological coherence in gene groups, such as functional annotations from the Gene Ontology (GO) and protein-protein interactions. The clusters are then used to predict gene function by carrying over annotations from well-annotated genes to less well-characterized genes. Finally, the prototype PhenoMIX is presented, integrating genotype and phenotype data with clustered phenotypes, orthologies, interaction data and other similarity measures. Data grouped by these measures are evaluated for theirnpredictiveness in gene functions and phenotype terms.
Yang, Li. "A Goodness-of-fit Association Test for Whole Genome Sequencing Data." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/296.
Full textO'Connell, Jared Michael. "Statistical methods for genotype microarray data on large cohorts of individuals." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4e3328cf-0d8e-4587-b24d-9b59fa220f32.
Full textPestana, Valeria. "Modeling drug response in cancer cell linesusing genotype and high-throughput“omics” data." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166744.
Full textROSA, Rogério dos Santos. "Associating genotype sequence properties to haplotype inference errors." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/16011.
Full textMade available in DSpace on 2016-03-16T15:28:48Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) RogerioSantosRosa_Tese.pdf: 1740026 bytes, checksum: aa346f64c34419c4b83269ccb99ade6a (MD5) Previous issue date: 2015-03-12
Haplotype information has a central role in the understanding and diagnosis of certain illnesses, and also for evolution studies. Since that type of information is hard to obtain directly, computational methods to infer haplotype from genotype data have received great attention from the computational biology community. Unfortunately, haplotype inference is a very hard computational biology problem and the existing methods can only partially identify correct solutions. I present neural network models that use different properties of the data to predict when a method is more prone to make errors. I construct models for three different Haplotype Inference approaches and I show that our models are accurate and statistically relevant. The results of our experiments offer valuable insights on the performance of those methods, opening opportunity for a combination of strategies or improvement of individual approaches. I formally demonstrate that Linkage Disequilibrium (LD) and heterozygosity are very strong indicators of Switch Error tendency for four methods studied, and I delineate scenarios based on LD measures, that reveal a higher or smaller propension of the HI methods to present inference errors, so the correlation between LD and the occurrence of errors varies among regions along the genotypes. I present evidence that considering windows of length 10, immediately to the left of a SNP (upstream region), and eliminating the non-informative SNPs through Fisher’s Test leads to a more suitable correlation between LD and Inference Errors. I apply Multiple Linear Regression to explore the relevance of several biologically meaningful properties of the genotype sequences for the accuracy of the haplotype inference results, developing models for two databases (considering only Humans) and using two error metrics. The accuracy of our results and the stability of our proposed models are supported by statistical evidence.
Haplótipos têm um papel central na compreensão e diagnóstico de determinadas doenças e também para estudos de evolução. Este tipo de informação é difícil de obter diretamente, diante disto, métodos computacionais para inferir haplótipos a partir de dados genotípicos têm recebido grande atenção da comunidade de biologia computacional. Infelizmente, a Inferência de Halótipos é um problema difícil e os métodos existentes só podem predizer parcialmente soluções corretas. Foram desenvolvidos modelos de redes neurais que utilizam diferentes propriedades dos dados para prever quando um método é mais propenso a cometer erros. Foram calibrados modelos para três abordagens de Inferência de Haplótipos diferentes e os resultados validados estatisticamente. Os resultados dos experimentos oferecem informações valiosas sobre o desempenho e comportamento desses métodos, gerando condições para o desenvolvimento de estratégias de combinação de diferentes soluções ou melhoria das abordagens individuais. Foi demonstrado que Desequilíbrio de Ligação (LD) e heterozigosidade são fortes indicadores de tendência de erro, desta forma foram delineados cenários com base em medidas de LD, que revelam quando um método tem maior ou menor propensão de cometer erros. Foi identificado que utilizando janelas de 10 SNPs (polimorfismo de um único nucleotídeo), imediatamente a montante, e eliminando os SNPs não informativos pelo Teste de Fisher leva-se a uma correlação mais adequada entre LD e a ocorrência de erros. Por fim, foi aplicada análise de Regressão Linear para explorar a relevância de várias propriedades biologicamente significativas das sequências de genótipos para a precisão dos resultados de Inferência de Haplótipos, estimou-se modelos para duas bases de dados (considerando apenas humanos) utilizando duas métricas de erro. A precisão dos resultados e a estabilidade dos modelos propostos foram validadas por testes estatísticos.
Liu, Lian. "Topics in measurement error and missing data problems." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1627.
Full textRimal, Suraj. "POPULATION STRUCTURE INFERENCE USING PCA AND CLUSTERING ALGORITHMS." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/theses/2860.
Full textStrömstedt, Hallberg Simon, and Jonas Giek. "Simulerad effektivisering av genotypdataanalys genom poolade data." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296223.
Full textBosch, Puig Lluís. "Age-and genotype-related changes in intramuscular fat content and composition in pigs using longitudinal data." Doctoral thesis, Universitat de Lleida, 2011. http://hdl.handle.net/10803/77959.
Full textLa presente Tesis Doctoral se emmarca en una línea de investigación del Departamento de Producción Animal de la Universidad de Lleida dedicada a la mejora genética de la calidad de la carne en porcino, en particular del contenido y la composición de la grasa intramuscular. La Tesis se compone de cuatro estudios, centrándose el primero de ellos en el desarrollo de un método para determinar el contenido y la composición de la grasa intramuscular a partir de biopsias y muestras post-mortem pequeñas con las que luego poder realizar estudios mediante diseños longitudinales. La metodología propuesta ha resultado útil, demostrándose que, especialmente para el contenido de grasa intramuscular, los especímenes pequeños del músculo objetivo son tan informativos como muestras grandes de otros músculos. En el segundo estudio se ha investigado mediante un experimento con datos longitudinales, obtenidos según la metodología descrita anteriormente, el efecto de la edad sobre el contenido y la composición de la grasa intramuscular y subcutánea durante el engorde de cerdos Duroc. Se concluye que un retraso en la edad de sacrificio comporta un aumento del contenido de grasa intramuscular y de ácido oleico, aunque ello se consigue a costa de disminuir la velocidad de crecimiento magro. Por otra parte, se demuestra que la grasa intramuscular y la grasa subcutánea tienen patrones distintos de crecimiento y composición y que la cantidad de grasa por sí misma influye en su composición. El que un cerdo sea más graso de lo esperado a una edad determinada es debido, en el caso de la grasa intramuscular, a que ha aumentado el contenido de grasa monoinsaturada, en especial de oleico, mientras que, en el de la subcutánea, a que se ha incrementado el de la saturada. En los dos últimos estudios se examina si la variación alélica en los genes IGF-1 (insulin-like growth factor-1) y LEP (leptina), así como la concentración de IGF-1 y leptina en plasma, se asocian con el contenido y la composición de la grasa intramuscular y, en caso de que así fuera, si tal asociación es función de la edad. Se constata que los polimorfismos moleculares estudiados no son neutrales respecto al contenido de grasa intramuscular, pero, también, que sus efectos no son constantes a lo largo del crecimiento. En este sentido, tanto la edad como el estado de engrasamiento pueden modificarlos.
This PhD is part of a line of research conducted in the Department of Animal Production of the Universitat de Lleida dedicated to the genetic improvement of pig meat quality, with particular reference to intramuscular fat content and composition. The PhD comprises four studies, with the first one focusing on the development of a method to jointly determine the content and composition of intramuscular fat from biopsies and small post-mortem samples and, in this way, to carry out studies with longitudinal data. It has been found that this particular methodology is useful and, in for intramuscular fat, small specimens of the target muscle are as informative as large samples of other muscles. In the second study the effect of age on the content and composition of the intramuscular and subcutaneous fat in the fattening period in Duroc pigs was investigated by an experiment using longitudinal data obtained following the methodology described above. It was concluded that a delay in the age of slaughter of the pig leads to an increase in intramuscular fat and oleic acid, although this comes at the cost of reducing the rate of lean growth. Moreover, it was proved that intramuscular and subcutaneous fat behaved differently in terms of fat accretion and composition and that the amount of fat itself affected composition. Whereas, for the intramuscular fat, values above the expected at a given age were because of increased monounsaturated fatty acid content, especially oleic acid, for the subcutaneous fat, they were due to the increased saturated fatty acid content. The final two studies considered whether allelic variation at the IGF-1 (insuline-like growth factor-1) and LEP (leptin) genes, as well as the concentration of IGF-1 and leptin in plasma, are associated to intramuscular fat content and composition and, if so, whether this is a function of age. It can be seen that the molecular polymorphisms studied are not neutral with regard to the content of intramuscular fat, but that their effects are not constant throughout the growing period. In this sense, both age and fatness can modify them.
Books on the topic "Genotype data"
Subedi, K. D. Effect of low temperature, genotype and planting date on the time of anthesis and sterility in wheat in the hills of Nepal. Pokhara: Lumle Regional Agricultural Research Centre, 1997.
Find full textWalsh, Bruce, and Michael Lynch. Short-term Changes in the Variance: 2. Changes in the Environmental Variance. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830870.003.0017.
Full textGeracioti, Thomas D., Jeffrey R. Strawn, and Matthew D. Wortman. Mechanisms of Action in the Pharmacology of PTSD. Edited by Israel Liberzon and Kerry J. Ressler. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190215422.003.0020.
Full textBecker, Richard C., and Frederick A. Spencer. Fibrinolytic and Antithrombotic Therapy. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195155648.001.0001.
Full textSkiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.
Full textBook chapters on the topic "Genotype data"
Goldstein, Jacqueline I., and Benjamin M. Neale. "Calling Rare Variants from Genotype Data." In Assessing Rare Variation in Complex Traits, 1–13. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2824-8_1.
Full textMihajlovic, Aleksandar R. "Machine Learning-Based Imputation of Missing SNP Genotypes in SNP Genotype Arrays." In Computational Medicine in Data Mining and Modeling, 193–231. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8785-2_6.
Full textRomagosa, Ignacio, Fred A. van Eeuwijk, and William T. B. Thomas. "Statistical Analyses of Genotype by Environment Data." In Cereals, 291–331. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-72297-9_10.
Full textChlebiej, Michał, Piotr Habela, Andrzej Rutkowski, Iwona Szulc, Piotr Wiśniewski, and Krzysztof Stencel. "Architectural Challenges of Genotype-Phenotype Data Management." In Communications in Computer and Information Science, 475–84. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34099-9_36.
Full textYotsukura, Sohiya, Masayuki Karasuyama, Ichigaku Takigawa, and Hiroshi Mamitsuka. "A Bioinformatics Approach for Understanding Genotype–Phenotype Correlation in Breast Cancer." In Big Data Analytics in Genomics, 397–428. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41279-5_13.
Full textBrinza, Dumitru, Jingwu He, and Alexander Zelikovsky. "Optimization Methods for Genotype Data Analysis in Epidemiological Studies." In Bioinformatics Algorithms, 395–415. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470253441.ch18.
Full textZhi, Degui, and Kui Zhang. "Genotype Calling and Haplotype Phasing from Next Generation Sequencing Data." In Statistical Analysis of Next Generation Sequencing Data, 315–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07212-8_16.
Full textRibeiro, Adèle H., Júlia M. P. Soler, Elias Chaibub Neto, and André Fujita. "Causal Inference and Structure Learning of Genotype–Phenotype Networks Using Genetic Variation." In Big Data Analytics in Genomics, 89–143. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41279-5_3.
Full textGeorgi, Benjamin, M. Anne Spence, Pamela Flodman, and Alexander Schliep. "Mixture Model Based Group Inference in Fused Genotype and Phenotype Data." In Data Analysis, Machine Learning and Applications, 119–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78246-9_15.
Full textHe, Dan, Zhanyong Wang, Buhm Han, Laxmi Parida, and Eleazar Eskin. "IPED: Inheritance Path Based Pedigree Reconstruction Algorithm Using Genotype Data." In Lecture Notes in Computer Science, 75–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37195-0_7.
Full textConference papers on the topic "Genotype data"
Kennedy, Jessie, Martin Graham, Trevor Paterson, and Andy Law. "Visual cleaning of genotype data." In 2013 IEEE Symposium on Biological Data Visualization (BioVis). IEEE, 2013. http://dx.doi.org/10.1109/biovis.2013.6664353.
Full textLLERENA, S. E., and C. D. MACIEL. "MAPPING GENOTYPE DATA WITH MULTIDIMENSIONAL SCALING ALGORITHMS." In BIOMAT 2010 - International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343435_0020.
Full textKarp, Richard M. "Large scale reconstruction of haplotypes from genotype data." In the seventh annual international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/640075.640088.
Full textRakshmy, C. S., K. A. Abdul Nazeer, and S. S. Vinod Chandra. "Bio-M: Data mining on HCV genotype 1 core sequences." In 2012 International Conference on Data Science & Engineering (ICDSE). IEEE, 2012. http://dx.doi.org/10.1109/icdse.2012.6282307.
Full textONUKI, RITSUKO, TETSUO SHIBUYA, and MINORU KANEHISA. "NEW KERNEL METHODS FOR PHENOTYPE PREDICTION FROM GENOTYPE DATA." In Proceedings of the 9th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2009). IMPERIAL COLLEGE PRESS, 2010. http://dx.doi.org/10.1142/9781848165786_0011.
Full textLi, Xing, Xuezhong Zhou, Yonghong Peng, Runshun Zhang, Jingqing Hu, Jian Yu, and Baoyan Liu. "Integrating phenotype-genotype data for prioritization of candidate symptom genes." In 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2013. http://dx.doi.org/10.1109/bibm.2013.6732693.
Full textHe, Dan, and Eleazar Eskin. "IPEDX: An exact algorithm for pedigree reconstruction using genotype data." In 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2013. http://dx.doi.org/10.1109/bibm.2013.6732549.
Full textJiayu Chen, V. D. Calhoun, and Jingyu Liu. "ICA order selection based on consistency: Application to genotype data." In 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6345943.
Full textFridley, Brooke L., Greg Jenkins, Matthew Deyo-Svendsen, Scott Hebbring, and Robert Freimuth. "Abstract 4738: Utilizing genotype imputation for the augmentation of sequence data." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4738.
Full textTSALENKO, ANYA, AMIR BEN-DOR, NANCY COX, and ZOHAR YAKHINI. "METHODS FOR ANALYSIS AND VISUALIZATION OF SNP GENOTYPE DATA FOR COMPLEX DISEASES." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776303_0051.
Full textReports on the topic "Genotype data"
Garrity, George, and Charles Parker. The NamesforLife Semantic Index of Phenotypic and Genotypic Data. NamesforLife, LLC, May 2012. http://dx.doi.org/10.1601/report.sc0006191p1.
Full text