Academic literature on the topic 'Geoeffectiveness'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geoeffectiveness.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geoeffectiveness"

1

Benacquista, Remi, Sandrine Rochel, and Guy Rolland. "Understanding the variability of magnetic storms caused by ICMEs." Annales Geophysicae 35, no. 1 (2017): 147–59. http://dx.doi.org/10.5194/angeo-35-147-2017.

Full text
Abstract:
Abstract. In this paper, we study the dynamics of magnetic storms due to interplanetary coronal mass ejections (ICMEs). We used multi-epoch superposed epoch analyses (SEAs) with a choice of epoch times based on the structure of the events. By sorting the events with respect to simple large-scale features (presence of a shock, magnetic structure, polarity of magnetic clouds), this method provides an original insight into understanding the variability of magnetic storm dynamics. Our results show the necessity of seeing ICMEs and their preceding sheaths as a whole since each substructure impacts the other and has an effect on its geoeffectiveness. It is shown that the presence of a shock drives the geoeffectiveness of the sheaths, while both the shock and the magnetic structure impact the geoeffectiveness of the ICMEs. In addition, we showed that the ambient solar wind characteristics are not the same for ejecta and magnetic clouds (MCs). The ambient solar wind upstream magnetic clouds are quieter than upstream ejecta and particularly slower. We also focused on the polarity of magnetic clouds since it drives not only their geoeffectiveness but also their temporal dynamics. South–north magnetic clouds (SN-MCs) and north–south magnetic clouds (NS-MCs) show no difference in geoeffectiveness for our sample of events. Lastly, since it is well-known that sequences of events can possibly induce strong magnetic storms, such sequences have been studied using superposed epoch analysis (SEA) for the first time. We found that these sequences of ICMEs are very usual and concern about 40 % of the ICMEs. Furthermore, they cause much more intense magnetic storms than isolated events do.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Gui-Ang, Ming-Xian Zhao, Gui-Ming Le, and Tian Mao. "What Can We Learn from the Geoeffectiveness of the Magnetic Cloud on 2012 July 15–17?" Research in Astronomy and Astrophysics 22, no. 1 (2022): 015002. http://dx.doi.org/10.1088/1674-4527/ac3126.

Full text
Abstract:
Abstract An interplanetary shock and a magnetic cloud (MC) reached the Earth on 2012 July 14 and 15 one after another. The shock sheath and the MC triggered an intense geomagnetic storm. We find that only small part of the MC from 06:45 UT to 10:05 UT on 2012 July 15 made contribution to the intense geomagnetic storm, while the rest part of the MC made no contribution to the intense geomagnetic storm. The averaged southward component of interplanetary magnetic field (B s ) and duskward-electric fields (E y ) within the MC from 10:05 UT, 2012 July 15 to 09:08 UT, 2012 July 16 (hereafter MC_2), are 15.11 nT and 8.01 mV m−1, respectively. According to the empirical formula established by Burton et al. (hereafter Burton equation), the geoeffectiveness of MC_2 should be −655.42 nT, while the geoeffectiveness of MC_2 is −324.68 nT according to the empirical formula established by O’Brien & McPherron (hereafter OM equation). However, the real geoeffectiveness of MC_2 is 39.74 nT. The results indicate that the Burton equation and the OM equation cannot work effectively. The geoeffectiveness of MC_2 shows that large and long duration of B s or E y cannot guarantee the occurrence of an intense geomagnetic storm if the solar wind dynamic pressure is very low. If we use 0.52 as γ, the geoeffectiveness of MC_2 is 40.36 nT according to the empirical formula established by Wang et al., which is very close to the observed value, indicating that the empirical formula established by Wang et al. is much better than the Burton equation and the OM equation.
APA, Harvard, Vancouver, ISO, and other styles
3

Fu, Huiyuan, Yuchao Zheng, Yudong Ye, Xueshang Feng, Chaoxu Liu, and Huadong Ma. "Joint Geoeffectiveness and Arrival Time Prediction of CMEs by a Unified Deep Learning Framework." Remote Sensing 13, no. 9 (2021): 1738. http://dx.doi.org/10.3390/rs13091738.

Full text
Abstract:
Fast and accurate prediction of the geoeffectiveness of coronal mass ejections (CMEs) and the arrival time of the geoeffective CMEs is urgent, to reduce the harm caused by CMEs. In this paper, we present a new deep learning framework based on time series of satellites’ optical observations that can give both the geoeffectiveness and the arrival time prediction of the CME events. It is the first time combining these two demands in a unified deep learning framework with no requirement of manually feature selection and get results immediately. The only input of the deep learning framework is the time series images from synchronized solar white-light and EUV observations. Our framework first uses the deep residual network embedded with the attention mechanism to extract feature maps for each observation image, then fuses the feature map of each image by the feature map fusion module and determines the geoeffectiveness of CME events. For the geoeffective CME events, we further predict its arrival time by the deep residual regression network based on group convolution. In order to train and evaluate our proposed framework, we collect 2400 partial-/full-halo CME events and its corresponding images from 1996 to 2018. The F1 score and Accuracy of the geoeffectiveness prediction can reach 0.270% and 75.1%, respectively, and the mean absolute error of the arrival time prediction is only 5.8 h, which are both significantly better than well-known deep learning methods and can be comparable to, or even better than, the best performance of traditional methods.
APA, Harvard, Vancouver, ISO, and other styles
4

Mendoza, Blanca, and Román Pérez Enríquez. "Geoeffectiveness of the heliospheric current sheet." Journal of Geophysical Research 100, A5 (1995): 7877. http://dx.doi.org/10.1029/94ja02867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gopalswamy, N., S. Yashiro, and S. Akiyama. "Geoeffectiveness of halo coronal mass ejections." Journal of Geophysical Research: Space Physics 112, A6 (2007): n/a. http://dx.doi.org/10.1029/2006ja012149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mundra, Kashvi, V. Aparna, and Petrus Martens. "Using CME Progenitors to Assess CME Geoeffectiveness." Astrophysical Journal Supplement Series 257, no. 2 (2021): 33. http://dx.doi.org/10.3847/1538-4365/ac3136.

Full text
Abstract:
Abstract There have been a few previous studies claiming that the effects of geomagnetic storms strongly depend on the orientation of the magnetic cloud portion of coronal mass ejections (CMEs). Aparna & Martens, using halo-CME data from 2007 to 2017, showed that the magnetic field orientation of filaments at the location where CMEs originate on the Sun can be used to credibly predict the geoeffectiveness of the CMEs being studied. The purpose of this study is to extend their survey by analyzing the halo-CME data for 1996–2006. The correlation of filament axial direction on the solar surface and the corresponding Bz signatures at L1 are used to form a more extensive analysis for the results previously presented by Aparna & Martens. This study utilizes Solar and Heliospheric Observatory Extreme-ultraviolet Imaging Telescope 195 Å, Michelson Doppler Imager magnetogram images, and Kanzelhöhe Solar Observatory and Big Bear Solar Observatory Hα images for each particular time period, along with ACE data for interplanetary magnetic field signatures. Utilizing all these, we have found that the trend in Aparna & Martens’ study of a high likelihood of correlation between the axial field direction on the solar surface and Bz orientation persists for the data between 1996 and 2006, for which we find a match percentage of 65%.
APA, Harvard, Vancouver, ISO, and other styles
7

Plunkett, S. P., and S. T. Wu. "Coronal mass ejections (CMEs) and their geoeffectiveness." IEEE Transactions on Plasma Science 28, no. 6 (2000): 1807–17. http://dx.doi.org/10.1109/27.902210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, James, Peter J. Cargill, and Peter J. Palmadesso. "Predicting solar wind structures and their geoeffectiveness." Journal of Geophysical Research: Space Physics 102, A7 (1997): 14701–20. http://dx.doi.org/10.1029/97ja00936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huttunen, E. "Geoeffectiveness of CMEs in the Solar Wind." Proceedings of the International Astronomical Union 2004, IAUS226 (2004): 455–56. http://dx.doi.org/10.1017/s1743921305001031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alves, M. V., E. Echer, and W. D. Gonzalez. "Geoeffectiveness of solar wind interplanetary magnetic structures." Journal of Atmospheric and Solar-Terrestrial Physics 73, no. 11-12 (2011): 1380–84. http://dx.doi.org/10.1016/j.jastp.2010.07.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography