Academic literature on the topic 'Geogebra'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geogebra.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geogebra"

1

Cruz, Marcos Paulo Mesquita da, Everton Nogueira Silva, Ivan de Oliveira Holanda Filho, and Lorena Maria Gomes Bastos. "GeoGebra." Revista do Instituto GeoGebra Internacional de São Paulo 11, no. 1 (June 7, 2022): 022–36. http://dx.doi.org/10.23925/2237-9657.2022.v11i1p022-036.

Full text
Abstract:
A cada dia as técnicas de ensino e pesquisa avançam para ampliação do ensino da matemática. Para a efetiva aplicabilidade dos novos conceitos da matemática a aplicabilidade do GeoGebra torna-se mais requerida no sentido de se propor novas técnicas de pesquisa e ensino. Nesse sentido, este trabalho tem por objetivo evidenciar através de um estudo bibliométrico a temática GeoGebra para a promoção do ensino e pesquisa na ciência matemática para que a sociedade como um todo possa ter um documento que amplie as discussões relacionadas a ampliação do conhecimento tão necessário a cada dia nas vertentes da educação. A plataforma computacional de coleta dos dados utilizada para este estudo bibliométrico foi a Web of Science (WoS), possibilitando a constatação de trabalhos com relevância assim como a propagação de trabalhos científicos internacionalmente dando ao mesmo uma maior visibilidade e a importância de pesquisa. Para tanto, foi percebido que para o tema GeoGebra foi maior o número de publicações de trabalhos mais técnicos sob o formato de artigos científicos, havendo assim uma limitação de outras fontes de acesso para a ampla discussão da inserção da aplicabilidade da técnica matemática do GeoGebra.
APA, Harvard, Vancouver, ISO, and other styles
2

Cahyono, Budi, and Eva Khoirun Nisa. "PEMANFAATAN SOFTWARE GEOGEBRA UNTUK MENUNJANG PENCAPAIAN STANDAR KOMPETENSI GURU MATEMATIKA MTS DI KOTA SEMARANG." At-Taqaddum 11, no. 1 (August 8, 2019): 95. http://dx.doi.org/10.21580/at.v11i1.3802.

Full text
Abstract:
<p><em>Information and communication technology (ICT) cannot be separated from education. For professional competence, junior high school/ MTs mathematics teachers must be able to use ICT to communicate and develop themselves. At present, there are many uses of mathematical application programs in mathematics learning, one of which is Geogebra software. Geogebra can be used as a demonstration and visualization media, construction aids and the process of discovering mathematical concepts. To help MTs math teachers in the Semarang in teaching geometry that is indeed felt abstract and difficult for most students, Geogebra software training is given. With the training, MTs mathematics teachers in Semarang were able to utilize Geogebra's software in achieving competency standards by making a project correctly in the form of visualizing a learning material that could be implemented in the classroom.</em></p><p>====================================================</p><p>Teknologi informasi dan komunikasi (TIK) tidak dapat lepas dari dunia pendidikan. Untuk kompetensi profesional, guru mata pelajaran matematika SMP/MTs harus mampu memanfaatkan TIK untuk berkomunikasi dan mengembangkan diri. Saat ini, telah banyak penggunaan program aplikasi matematika dalam pembelajaran matematika salah satunya adalah software <em>Geogebra. Geogebra</em> dapat dijadikan sebagai media demonstrasi dan visualisasi, alat bantu konstruksi dan proses penemuan konsep matematika. Untuk membantu guru-guru matematika MTs di Kota Semarang dalam mengajarkan materi geometri yang memang dirasakan abstrak dan sulit bagi sebagian besar siswa maka diberikan pelatihan software <em>Geogebra</em>. Dengan adanya pelatihan tersebut, guru-guru matematika MTs di Kota Semarang mampu memanfaatkan software <em>Geogebra </em>dalam pencapaian standar kompetensi dengan membuat sebuah proyek dengan benar berupa visualisasi suatu materi pembelajaran yang dapat diimplementasikan di kelas.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Philemon, Nxumalo Mfanasibili, Admire Chibisa, and Maria Siwela Mabusela. "Acceptance of the GeoGebra Application in Learning Circle Theorems." International Journal of Learning, Teaching and Educational Research 21, no. 12 (December 30, 2022): 1–20. http://dx.doi.org/10.26803/ijlter.21.12.1.

Full text
Abstract:
The learning area of circle theorems is one of the most difficult topics in geometry, resulting in low student performance. GeoGebra has been shown in studies to enhance learners' proficiency in circle theorems. However, pre-service teachers' use of GeoGebra is not at the expected level in Eswathini. The adoption of an information system is reliant on its acceptance by individuals. However, little is known regarding pre-service teachers' use of GeoGebra to understand circle theorems. The goal of this study was to investigate pre-service teachers' perceptions of GeoGebra's suitability for learning circle theorems. A cross-sectional survey design was used in this investigation, with a total of 187 pre-service instructors as participants. The model explained 74.9% of the variance in the acceptability of GeoGebra for learning circle theorems by Eswatini pre-service teachers. According to the findings, task-technology fit, system quality, system compatibility, perceived ease of use, perceived usefulness, perceived attitude toward, and user satisfaction account for 74.9% of the variance in actual use. The study's findings revealed that rural Eswatini pre-service teachers' reported attitude toward using the mathematics software application GeoGebra for learning circle theorems was the strongest direct predictor of actual use. This research shows that pre-service teachers' views toward technology integration in education should be positive for educational learning applications to be successfully adopted in Eswatini teacher training institutes.
APA, Harvard, Vancouver, ISO, and other styles
4

Losi, Nanda Tia, Mukhtar Mukhtar, and Waminton Rajagukguk. "Perbedaan Kemampuan Komunikasi Matematis Siswa yang diajar Menggunakan Model Problem Based Learning dan Guided Discovery Learning Berbantuan Geogebra ditinjau dari Gender." Paradikma:Jurnal Pendidikan Matematika 14, no. 1 (July 31, 2021): 88–95. http://dx.doi.org/10.24114/paradikma.v14i1.27136.

Full text
Abstract:
Penelitian ini bertujuan untuk mengetahui: (1) perbedaan kemampuan komunikasi matematis antara siswa yang diajar menggunakan model problem based learning dengan siswa yang diajar menggunakan model guided discovery learning berbantuan GeoGebra; (2) perbedaan kemampuan komunikasi matematis antara siswa laki-laki dan perempuan; (3) interaksi antara model pembelajaran (PBL dan GDL) berbantuan GeoGebra dengan gender terhadap kemampuan komunikasi matematis siswa. Penelitian ini merupakan penelitian quasi eksperimen. Populasi dalam penelitian ini terdiri dari seluruh siswa kelas VIII MTs PAB 1 Helvetia yang berjumlah 190 siswa Tahun Pelajaran 2020/2021, dengan mengambil sampel dua kelas berjumlah 64 siswa. Analisis data dilakukan dengan analisis varians (ANAVA) dua jalur. Hasil penelitian ini menunjukkan bahwa: (1) nilai Fhitung(A) lebih besar daripada nilai Ftabel pada a = 0,05 yaitu 5,249 > 4,001 maka H0 ditolak, artinya terdapat perbedaaan kemampuan komunikasi matematis siswa yang diajar mengggunakan model pembelajaran problem based learning berbantuan GeoGebra dengan siswa yang diajar menggunakan model pembelajaran guided discovery learning berbantuan GeoGebr; (2) nilai Fhitung(B) sebesar 4,750 lebih besar daripada nilai Ftabel pada a = 0,05 yaitu 4,750> 4,001 maka H0 ditolak, artinya terdapat perbedaaan kemampuan komunikasi matematis antara siswa laki-laki dan perempuan; (3) nilai Fhitung(AB) sebesar 2,277 lebih kecil daripada nilai Ftabel pada a = 0,05 yaitu 2,277 < 4,001, maka H0 diterima yang artinya tidak terdapat interaksi antara model pembelajaran (PBL dan GDL) berbantuan GeoGebra dengan gender terhadap kemampuan komunikasi matematis siswa.
APA, Harvard, Vancouver, ISO, and other styles
5

Purwasih, Ratni, Ratna Sariningsih, and Indah Puspita Sari. "SELF EFFICACY TERHADAP KEMAMPUAN HIGH ORDER THINKING MATHEMATICS SISWA MELALUI PEMBELAJARAN BERBANTUAN SOFTWERE GEOGEBRA." AKSIOMA: Jurnal Program Studi Pendidikan Matematika 9, no. 1 (March 31, 2020): 166. http://dx.doi.org/10.24127/ajpm.v9i1.2663.

Full text
Abstract:
Artikel ini merupakan hasil penelitian terkait kemampuan self efficacy matematis siswa SMP pada dua kelas.  Penelitian ini bertujuan untuk mengetahui interaksi antara penerapan pembelajaran worksheet berbasis softwere Geogebra terhadap kemampuan self efficacy matematis siswa ditinjau kemampuan awal matematis (KAM) siswa. Melalui metode quasi eksperimen dengan desain pre test-post test, penelitian ini melibatkan 72 siswa SMP. Hasil penelitian menunjukkan adanya perbedaan peningkatan rata-rata kemampuan self efficacy matematis ditinjau dari kemampuan awal matematis (KAM). Hasil penelitian juga menunjukkan adanya peranan kemampuan self efficacy matematis antara kelas konvensional dan kelas eksperimen dari kemampuan awal siswa. Hal ini menunjukan bahwa peranan pembelajaran matematika berbasis softwere Geogebra mampu meningkatkan self efficacy siswa dibandingkan pembelajaran tanpa menggunakan softwere Geogebra. AbstractThis article is the result of research related to the mathematical self efficacy of junior high school students in two classes. This study aims to determine the interaction between the application of Geogebra softwares-based worksheet learning on students 'mathematical self efficacy abilities in terms of students' initial mathematical abilities. Through the quasi-experimental method with the pre-post-test design, this study involved 72 middle school students. The results showed a difference in the average increase in mathematical self efficacy abilities in terms of initial mathematical abilities (KAM). The results of the study also showed the role of mathematical self efficacy abilities between conventional classes and experimental classes from students' initial abilities. This shows that the role of Geogebra software-based mathematics learning can improve students' self-efficacy compared to learning without using Geogebra software.
APA, Harvard, Vancouver, ISO, and other styles
6

Nasution, Syaiful Hamzah, Susy Kuspambudi Andaini, Rini Nurhakiki, Hendro Permadi, and Slamet Slamet. "WORKSHOP MEDIA PEMBELAJARAN MATEMATIKA BERBASIS ICT MGMP MATEMATIKA SMA KABUPATEN TRENGGALEK." PEDULI: Jurnal Ilmiah Pengabdian Pada Masyarakat 3, no. 2 (October 19, 2019): 21–27. http://dx.doi.org/10.37303/peduli.v3i2.123.

Full text
Abstract:
Saat ini ICT banyak digunakan dalam pembelajaran. Beragam software matematika seringkali digunakan sebagai media pembelajaran untuk membantu siswa dalam memahami konsep matematika. Salah satu software yang banyak digunakan dalam pembelajaran adalah GeoGebra. Berdasarkan hasil wawancara dengan ketua MGMP Matematika SMA Kabupaten Trenggalek diperoleh informasi bahwa sebagian besar guru matematika SMA di Kabupaten Trenggalek belum banyak memanfaatkan GeoGebra dalam pembelajaran. Hal tersebut menjadikan alasan dilaksanakannya pengabdian kepada masyarakat (PkM) ini. Kegiatan PkM ini bertujuan untuk memberikan dasar pembuatan media pembelajaran matematika menggunakan software GeoGebra. Kegiatan ini dilakukan dalam tiga tahap: (1) analisis kebutuhan, (2) pelaksanaan workshop secara tatap muka, dan (3) pendampingan pembuatan media pembelajaran matematika menggunakan GeoGebra secara online. Materi workshop yang disampaikan meliputi: (1) instalasi software GeoGebra, (2) mengenal area kerja GeoGebra, (3) tools pada GeoGebra, (4) membuat objek menggunakan GeoGebra, (5) pengenalan slider, dan (6) dasar animasi pada GeoGebra. Hasil dari pelaksanaan PkM ini adalah: (1) guru matematika SMA Kabupaten Trenggalek mengenal software GeoGebra dan dapat melakukan instalasi GeoGebra, (2) guru matematika SMA Kabupaten Trenggalek dapat menggunakan GeoGebra, dan (3) guru matematika SMA Kabupaten Trenggalek dapat membuat media pembelajaran matematika menggunakan GeoGebra.
APA, Harvard, Vancouver, ISO, and other styles
7

JANCHESKI, Metodija, and Sofija JANCHESKA. "Multidisciplinary, Multilingual, Multilevel and Multipurpose Usage of GeoGebra Software in Education." Olympiads in Informatics 13 (July 13, 2019): 41–56. http://dx.doi.org/10.15388/ioi.2019.04.

Full text
Abstract:
The technical characteristics of GeoGebra have been examined, its various views and tools have been described, with special emphasis on interactive tools. The use of GeoGebra in education has been depicted, mainly in mathematics. We emphasized the importance of sharing GeoGebra digital learning materials within the GeoGebra community, which is present and active in more than 190 countries now and is growing astonishingly fast. In this context, various forms of organizing GeoGebra digital learning materials are reviewed: GeoGebra Materials, GeoGebra Wiki, GeoGebra Tube, GeoGebra Books and GeoGebra Exercises. The author demonstrates the universal and effective application of the GeoGebra software in four dimensions. First, GeoGebra can be applied in a variety of disciplines, primarily in mathematics and computer science, and in subjects in the field of natural and technical sciences. Second, the use of GeoGebra also covers a wide range of applications, from primary education to higher education. Third, GeoGebra enables the creation of multilingual digital learning content. Finally, various variations of animations and simulations with different weights can be made in GeoGebra, which can enhance the individualization of teaching within multiple levels of education and enable conditions for programmed instruction. A detailed overview of three conducted researches and the obtained results are provided. The researches include filling in questionnaires by teachers and students, as well as performing teaching lessons in Mathematics and Physics in two secondary schools with students divided into experimental groups (where GeoGebra animations and simulations were applied) and control groups where the classes were held in classical, traditional way, without the use of educational software). According to our researches and observations, free and open-source software like GeoGebra is a great opportunity that should be used to the fullest extent in our education especially in the conditions of obvious need for educational software and digital educational materials, corresponding to our education curricula. In the concluding observations, we give concrete conclusions, suggestions and recommendations for implementing GeoGebra in the educational system.
APA, Harvard, Vancouver, ISO, and other styles
8

ÖÇAL, MEHMET FATIH, TUĞRUL KAR, GÜRSEL GÜLER, and ALI SABRI İPEK. "Comparison of prospective mathematics teachers’ problem posing abilities in paper-pencil test and on dynamic geometry environment in terms of creativity." Journal of Research in Mathematics Education 9, no. 3 (October 24, 2020): 243. http://dx.doi.org/10.17583/redimat.2020.3879.

Full text
Abstract:
This study aims to investigate the similarities and differences between prospective mathematics teachers’ creative thinking skills in paper-pencil test and on a Geogebra-supported environment in terms of problem-posing. This case study used purposive sampling method for determining the participants. Findings revealed that the activities carried out in the GeoGebra-supported environment were insufficient to produce creative problems, and GeoGebra’s main utility to prospective teachers was in identifying their mistakes related to mathematical concepts and discrepancies among numerical values of the problems posed. The reasons for the low achievement in posing problem were discussed: These were; (i) lack of problem-posing experience, (ii) the structure of problem-posing activity, and (iii) prospective teachers’ mathematical content knowledge.
APA, Harvard, Vancouver, ISO, and other styles
9

Telaumbanua, Yakin Niat. "ANALISIS PEMBELAJARAN DENGAN MENGGUNAKAN SOFTWARE GEOGEBRA DALAM PEMBELAJARAN MATEMATIKA." J-PiMat : Jurnal Pendidikan Matematika 2, no. 1 (May 6, 2020): 131–38. http://dx.doi.org/10.31932/j-pimat.v2i1.683.

Full text
Abstract:
Abstract. Researchers conduct research on the use of Geogebra Software in Mathematics Learning ". This study aims to analyze the learning process by using geogebra software in mathematics learning. This research method is to use a qualitative description approach. Based on the research conducted, several research results are obtained, namely: 1) Geogebra software can be easily owned by students, 2) Geogebra software is easy to learn by students, 3) Learning by using geogebra software is fun and interesting, 4) students become motivated to learn , 5) mathematical problems can be easily and quickly resolved, and can draw graphs faster, interesting and variedKeyword: Mathematics Learning Process, Geogebra SoftwareAbstrak. Peneliti melakukan penelitian tentang penggunaan Software Geogebra dalam Pembelajaran Matematika”. Penelitian ini bertujuan untuk menganalisis proses pembelajaran dengan penggunaan software geogebra dalam pembelajaran matematika. Metode Penelitian ini adalah dengan menggunakan pendekatan kualitatif deskripsi. Berdasarkan penelitian yang dilakukan maka diperoleh beberapa hasil penelitian, yaitu: 1) Software geogebra dapat dengan mudah dimiliki oleh mahasiswa, 2) Software geogebra mudah dipelajari oleh mahasiswa, 3) Pembelajaran dengan menggunakan, software geogebra menyenangkan dan menarik, 4) mahasiswa menjadi termotivasi untuk belajar, 5) soal matematika dapat dengan mudah dan cepat diselesaikan, serta dapat menggambar grafik dengan lebih cepat, menarik dan bervariasi. Kata Kunci: Proses Pembelajaran Matematika, Software Geogebra
APA, Harvard, Vancouver, ISO, and other styles
10

Moncada Andino, Clara Regina. "Construcción de superficies no convencionales con GeoGebra 3D." Revista do Instituto GeoGebra Internacional de São Paulo. ISSN 2237-9657 9, no. 1 (April 19, 2020): 90–100. http://dx.doi.org/10.23925/2237-9657.2020.v9i1p90-100.

Full text
Abstract:
RESUMENEste trabajo aborda algunas experiencias que el Instituto GeoGebra de Zacatepec (IGZ) cuenta desde su inicio, comenzando por su ubicación, convocatoria del Día de GeoGebra, cursos-talleres de GeoGebra impartidos, hasta la exploración del contenido de superficies no convencionales, utilizando para su construcción comandos y herramientas de GeoGebra, desde un enfoque pedagógico-didáctico de aprender pensando de manera significativa, partiendo desde superficies ya definidas por el software de GeoGebra, hasta llegar a la visualización inteligente de construcciones no convencionales y dinámicas en el espacio tridimensional, logrando un mejor aprendizaje de los estudiantes.Palabras claves: Curvas_3D; Superficies_funcional; Superficies_comandos. RESUMOEste trabalho aborda algumas experiências que o Instituto GeoGebra de Zacatepec (IGZ) tem desde o seu início, começando com a sua localização, convocando o Dia do GeoGebra, ministrando cursos-oficinas de GeoGebra, até a exploração do conteúdo de superfícies não convencionais, usando para sua construção comandos e ferramentas do GeoGebra, a partir de uma abordagem pedagógico-didática para aprender a pensar de maneira significativa, partindo de superfícies já definidas pelo software GeoGebra, até alcançar a visualização inteligente de construções não convencionais e dinâmicas no espaço tridimensional, alcançando um melhor aprendizado dos alunos.Palavras-chave: Curvas_3D; Superfícies funcionais; Superfícies _ comandos. ABSTRACTThis work addresses some of the experiences that the Institute GeoGebra of Zacatepec (IGZ) has since its inception, beginning with its location, call the Day of GeoGebra, courses-workshops on GeoGebra given, to the exploration of the content areas that are no-conventional, using for its construction, commands and tools of GeoGebra, from a pedagogical approach-learning to learn thinking in a significant way, starting from surfaces already defined by the software of GeoGebra, until you reach the intelligent display of construction is no-conventional and dynamic in the three-dimensional space achieving a better students learning,Keywords: Curves_3D; Surfaces_functional; Surfaces_commands.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Geogebra"

1

Larsson, Catarina. "IKT-vertyget GeoGebra. : Hur GeoGebra utvecklar elevers förståelse för andragradsfunktioner." Thesis, Linnéuniversitetet, Institutionen för matematikdidaktik (MD), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-30142.

Full text
Abstract:
Studiens syfte var att undersöka om elever utvecklar en förståelse för andragradsfunktioner genom att använda IKT-verktyget GeoGebra. Undersökningen gjordes i form av en fallstudie av sex stycken gymnasieelever som läste kurs 2c. Eleverna arbetade två och två med en uppgift som gick ut på att se vad som händer med grafen när man byter värde och tecken på variablerna i uttrycket y = - a(x + b)2- c. Elevmaterielet analyserades med en kombination av Ainsworths (2006) teoretiska ramverk, som har fokus på den matematiska processens förmåga att stödja lärandet, och Duvals (2006) ramverk om transformationer och representationer inom och mellan register. Studien kom fram till att det finns både nack- och fördelar att använda GeoGebra. Nackdelar, för att programmet inbjuder till att pröva sig fram, medan fördelarna är att eleverna analyserar och reflekterar under aktivitetens gång i GeoGebra. Eleverna gjorde både konventeringar och behandlingar med hjälp av GeoGebra.
The purpose of this study was to examine whether students develop an understanding of quadratic functions using ICT tool GeoGebra. The study was conducted as a singular case study of six high school students who studying course 2c. The students worked in pairs on a task to see what happens to the graph when changing value and sign of the variables in the expression y = - a (x + b)2 – c. Method used in the analysis of material was a combination of Ainsworths (2006) theoretical framework viewing function of the mathematical process ability to support learning and Duval (2006 ) framework of transformations and representations within and between registers. The study concluded that there are both advantages and disadvantages of using GeoGebra. The disadvantage is that the program invites you to trial and error, while the benefits are that students analyse and reflect during the activity in GeoGebra. The students did both conventions and treatments with help from GeoGebra.
APA, Harvard, Vancouver, ISO, and other styles
2

Mäkiö, H. (Hannu). "Geogebra derivaattakurssin työvälineenä." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201506061824.

Full text
Abstract:
Lukion matematiikan ylioppilaskokeessa sallittiin symbolisten laskinten käyttö vuonna 2012. Ylioppilaskokeet muuttuvat sähköisiksi ja vuonna 2019 matematiikan kokeessa on sallittuna välineenä myös dynaamisen geometrian ohjelma Geogebra, Jo 1980-luvulta lähtien on toivottu, että tietokoneet ja symbolinen laskenta helpottaisivat ja monipuolistaisivat matematiikan oppimisessa. Käsin tehty algebrallinen manipulointi on menettänyt keskeisen roolinsa teknistyneessä maailmassa. Symbolisen manipuloinnin tilalle on tullut symbolinen päättely. Tiedon esittäminen eri muodoissa, taulukkoina, kaavioina ja kuvaajina tai symbolisina sääntöinen on tullut tärkeäksi informaatioyhteiskunnassa. Käytössä olevat välineet muokkaavat opiskelua ja oppimista. Jotta välineestä tulisi opiskelijan työkalu, sitä pitää käyttää pitkäjänteisesti ja monipuolisesti. Tässä työssä tutkitaan millainen oppimisen väline Geogebra on. 1) Miten Geogebraa voidaan käyttää pitkän matematiikan derivaattakurssilla MAA7 ja 2) miten opiskelijat kokevat Geogebran käytön. Tutkittavana oli peräkkäisinä vuosina opettamani derivaattakurssit. Jälkimmäisen ryhmän kanssa opetusta painotettiin tutkivan oppimisen mukaisesti. Tutkimus koski molempina vuosina koko kurssin opetusta. Tietokoneen avulla pystytään havainnollistamaan analyysin käsitteitä. Työssä on esitetty geogebrahavainnollistukset lähes jokaiseen MAA7 kurssin aiheeseen. Havainnollistuksissa on pyritty pois opettajajohtoisuudesta kohti oppilaskeskeistä työskentelyä. Analyysin peruskäsitteitä, raja-arvoa, jatkuvuutta ja derivaattaa on perinteisestikin opetettu käsitteiden visuaalisten esitysten avulla. Intuitio ja asian tarkka todistaminen eivät ole ristiriidassa keskenään. Opiskelijoiden heikot taidot visualisoida käsitteitä aiheuttaa vaikeuksia formaaleissa laskuissa, kun käsitettä ei ymmärretä. Tutkittavana olleilla ikäluokilla ei ole Geogebra käytössä ylioppilaskokeessa. Tämä vaikutti sekä opiskelijoiden asenteeseen Geogebraa kohtaan että opetukseen. Opiskelijoilla ei ollut halua tai valmiuksia käyttää Geogebraa itsenäisesti kotona, vaan he tarvitsevat tukea ja ohjausta ohjelman käytössä. Ensimmäistä tutkimusryhmää varten tein blogin, jossa oli tehtäviä opiskelijoille sekä pari opetusvideota Geogebran käytöstä. Kurssin jälkeen javassa ilmeni turvallisuusriskejä, jonka seurauksena blogiin upotetut Geogebrasovellukset eivät enää toimineet. Jälkimmäisen ryhmän kanssa en enää blogia käyttänyt. Jälkimmäisen ryhmän kanssa matematiikan luokassa oli opiskelijakäytössä viisi kannettavaa tietokonetta, kun ensimmäisen ryhmän kanssa piti mennä erikseen tietokoneluokkaan, jos halusi koulussa käyttää Geogebraa. Opiskelijoita Geogebran käyttäjinä tutkittiin kyselylomakkeilla ja nauhoittamalla heidän Geogebratyöskentelyään. Samalla opiskelijat kertoivat, mitä olivat tekemässä. Nauhoituksista näki, miten monenlaisiin ongelmatilanteisiin opiskelijat joutuivat Geogebraa käyttäessään. Kun opiskelijoilla on kokemusta ohjelman käytöstä, he pystyvät selviytymään ongelmatilanteista. Tutkittavat opiskelijat eivät olleet aikaisemmin paljoakaan käyttäneet tietokonetta matematiikan opiskelussa. Myös symbolisen laskennan käyttäminen opiskelussa oli suhteellisen uutta. Tukimuksen perusteella Geogebra soveltuu hyvin derivaattakurssin opiskeluun. Opettajalle uuden tyyppisten tehtävien ja Geogebrasovellusten tekeminen on työlästä. Jotta opiskelijoiden Geogebrankäyttö olisi mahdollista tarpeen vaatiessa, tulisi opiskelijoilla olla henkilökohtaiset päätelaitteet. Kokeessa erityisesti heikommat opiskelijat hyötyivät Geogebran käytöstä. Toisaalta, on liian myöhäistä aloittaa Geogebran käyttö lukion toisella luokalla. Tietokoneen käyttö matematiikassa vaatii pitkäjänteisyyttä.
APA, Harvard, Vancouver, ISO, and other styles
3

Bastos, Leonardo de Mattos [UNESP]. "Números complexos e geogebra." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/92411.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:26:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-08-26Bitstream added on 2014-06-13T18:53:56Z : No. of bitstreams: 1 bastos_lm_me_rcla.pdf: 2205107 bytes, checksum: 3125c204eaaaa156161720ac915a9695 (MD5)
Este trabalho está inserido no contexto do Programa de Mestrado Pro ssional de Matemática em Rede Nacional - PROFMAT e traz uma resenha de uma teoria a ser ensinada no Ensino Básico, geralmente na terceira série do Ensino Médio, a saber, a teoria dos números complexos. Além disso, enfoca a necessidade de diversi cadas abordagens didáticas, especialmente com uso de novas Tecnologias de Informação e Comunicação, para superar algumas di culdades com o ensino que, muitas vezes, decorrem de uma apresentação excessivamente formal do tema. A proposta de algumas atividades em ambiente computacional elaboradas com suporte do software livre (GUI) Geogebra está inclusa
This work is in the context of Professional Program Master of Mathematics in National Network - PROFMAT and brings an overview of the theory to be taught in Primary School, usually in the third grade of High School. It also focuses on the need for diverse didactic approaches, especially with the use of new Information and Communication Technologies, to overcome some di culties with the teaching of complex numbers, which arise many times stem from an overly formal presentation of the topic. The proposal of activities in some computing environment developed with support of free software (GUI) Geogebra is included
APA, Harvard, Vancouver, ISO, and other styles
4

Bastos, Leonardo de Mattos. "Números complexos e geogebra /." Rio Claro, 2013. http://hdl.handle.net/11449/92411.

Full text
Abstract:
Orientador: Suzete Maria Silva Afonso
Banca: Marta Cilene Gadotti
Banca: Ligia Lais Fêmina
O PROFMAT - Programa de Mestrado Profissional em Matemática em Rede Nacional é coordenado pela Sociedade Brasileira de Matemática e realizado por uma rede de Instituições de Ensino Superior.
Resumo: Este trabalho está inserido no contexto do Programa de Mestrado Pro ssional de Matemática em Rede Nacional - PROFMAT e traz uma resenha de uma teoria a ser ensinada no Ensino Básico, geralmente na terceira série do Ensino Médio, a saber, a teoria dos números complexos. Além disso, enfoca a necessidade de diversi cadas abordagens didáticas, especialmente com uso de novas Tecnologias de Informação e Comunicação, para superar algumas di culdades com o ensino que, muitas vezes, decorrem de uma apresentação excessivamente formal do tema. A proposta de algumas atividades em ambiente computacional elaboradas com suporte do software livre (GUI) Geogebra está inclusa
Abstract: This work is in the context of Professional Program Master of Mathematics in National Network - PROFMAT and brings an overview of the theory to be taught in Primary School, usually in the third grade of High School. It also focuses on the need for diverse didactic approaches, especially with the use of new Information and Communication Technologies, to overcome some di culties with the teaching of complex numbers, which arise many times stem from an overly formal presentation of the topic. The proposal of activities in some computing environment developed with support of free software (GUI) Geogebra is included
Mestre
APA, Harvard, Vancouver, ISO, and other styles
5

Olsson, Jan. "GeoGebra, Enhancing Creative Mathematical Reasoning." Doctoral thesis, Umeå universitet, Institutionen för tillämpad utbildningsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-133050.

Full text
Abstract:
The thesis consists of four articles and this summarizing part. All parts have focused on bringing some insights into how to design a didactical situation including dynamic software (GeoGebra) to support students’ mathematical problem solving and creative reasoning as means for learning. The four included articles are: I. Granberg, C., & Olsson, J. (2015). ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software. The Journal of Mathematical Behavior, 37, 48-62. II. Olsson, J. (2017). The Contribution of Reasoning to the Utilization of Feedback from Software When Solving Mathematical Problems. International Journal of Science and Mathematics Education, 1-21. III. Olsson, J. Relations between task design and students’ utilization of GeoGebra. Mathematical Thinking and Learning. (Under review) IV. Olsson, J., & Granberg, C. Dynamic software, problem solving with or without guidelines, and learning outcome. Technology, Knowledge and Learning. (Under review) Background A common way of teaching mathematics is to provide students with solution methods, for example strategies and algorithms that, if followed correctly, will solve specific tasks. However, questions have been raised whether these teaching methods will support students to develop general mathematical competencies, such as problem solving skills, ability to reason and acquire mathematical knowledge. To merely follow provided methods students might develop strategies of memorizing procedures usable to solve specific tasks rather than drawing general conclusions. If students instead of being provided with algorithms, are given the responsibility to construct solution methods, they may produce arguments for why the method will solve the task. There is research suggesting that if those arguments are based on mathematics they are more likely to develop problem solving and reasoning-skill, and learn the included mathematics better. In such didactic situations, where students construct solutions, it is important that students have instructions and tasks that frame the activity and clarify goals without revealing solution methods. Furthermore, the environment must be responsive. That is, students need to receive responses on their actions. If students have an idea on how to solve (parts of) the given problem they need to test their method and receive feedback to verify or falsify ideas and/or hypotheses. Such activities could be supported by dynamic software. Dynamic software such as GeoGebra provides features that support students to quickly and easily create mathematical objects that GeoGebra will display as visual representations like algebraic expressions and corresponding graphs. These representations are dynamically linked, if anything is changed in one representation the other representations will be altered accordingly, circumstances that could be used to explore and investigate different aspects and relations of these objects. The first three studies included in the thesis investigate in what way GeoGebra supports creative reasoning and collaboration. These studies focus questions about how students apply feedback from GeoGebra to support their reasoning and how students utilize the potentials of GeoGebra to construct solutions during problem solving. The fourth study examine students’ learning outcome from solving tasks by constructing their methods. Methods A didactical situation was designed to engage students in problem solving and reasoning supported by GeoGebra. That is, the given problems were not accompanied with any guidelines how to solve the task and the students were supposed to construct their own methods supported by GeoGebra. The students were working in pairs and their activities and dialogues were recorded and used as data to analyse their engagement in reasoning and problem solving together with their use of GeoGebra. This design was used in all four studies. A second didactical situation, differing only with respect of providing students with guidelines how to solve the task was designed. These didactical situations were used to compare students’ use of GeoGebra, their engagement in problem solving and reasoning (study III) and students’ learning outcome (study IV) whether the students solved the task with or without guidelines. In the fourth study a quantitative method was applied. The data from study IV consisted of students’ results during training (whether they managed to solve the task or not), their results on the post-test, and their grades. Statistical analysis where applied. Results The results of the first three studies show qualitative aspects of students solving of task with assistance of GeoGebra. GeoGebra was shown to support collaboration, creative mathematical reasoning, and problem solving by providing students with a shared working space and feedback on their actions. Students used GeoGebra to test their ideas by formulating and submitting input according to their questions and hypotheses. GeoGebra’ s output was then used as feedback to answer questions and verify/falsify hypotheses. These interactions with GeoGebra were used to move the constructing of solutions forward. However, the way students engage in problem solving and reasoning, and using GeoGebra to do so, is dependent on whether they were provided with guidelines or not. Study III and IV showed that merely the students who solved unguided tasks utilized the potential of GeoGebra to explore and investigate the given task. Furthermore, the unguided students engaged to a larger extent in problem solving and creative reasoning and they expressed a greater understanding of their solutions. Finally study IV showed that the students who managed to solve the unguided task outperformed, on posttest the students who successfully solved the guided task. Conclusions The aim of this thesis was to bring some insights into how to design a didactical situation, including dynamic software (GeoGebra), to support students' mathematical problem solving and creative reasoning as means for learning. Taking the results of the four studies included in this thesis as a starting point, one conclusion is that a didactical design that engage students to construct solutions by creative reasoning supported by GeoGebra may enhance their learning of mathematics. Furthermore, the mere presence of GeoGebra will not ensure that students will utilize its potential for exploration and analysis of mathematical concepts and relations during problem solving. The design of the given tasks will affect if this will happen or not. The instructions of the task should include clear goals and frames for the activity, but no guidelines for how to construct the solution. It was also found that when students reasoning included predictive argumentation for the outcomes of operations carried out by the software, they could better utilize the potential of GeoGebra than if they just, for example, submitted an algebraic representation of a linear function and then focused on interpreting the graphical output.
Det övergripande syftet med avhandlingen har varit att nå insikter i hur man kan designa en didaktisk situation inklusive en dynamisk programvara (GeoGebra) för att stödja elevernas lärande genom matematisk problemlösning och kreativt resonemang. En bärande idé har varit att elever som själva konstruerar lösningsmetoder till problembaserade uppgifter lär sig matematik bättre än elever som får en metod att följa. Resultaten visar att GeoGebra är ett stöd vid konstruerandet av lösningsmetoder och att elever då också resonerar kreativt. Det vill säga, de skapar en för dem en ny resonemangssekvens som innehåller en lösningsmetod som stöds av argument förankrade i matematik. Idén med att elever på egen hand konstruerar lösningen på uppgifter har även belysts genom att jämföra med elever som löser uppgifter där de får vägledning till lösningsmetoden. Resultaten visar att elever som får en lösningsmetod inte resonerar kreativt, de utnyttjar inte GeoGebras potential att stödja ett undersökande arbetssätt, och de lär sig mindre av den matematik som ingår i uppgifterna. Denna avhandling består av 4 artiklar och en kappa. De fyra artiklarna är: I. Granberg, C., & Olsson, J. (2015). ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software. The Journal of Mathematical Behavior, 37, 48-62. II. Olsson, J. (2017). The Contribution of Reasoning to the Utilization of Feedback from Software When Solving Mathematical Problems. International Journal of Science and Mathematics Education, 1-21. III. Olsson, J. Relations between task design and students’ utilization of GeoGebra. Mathematical Thinking and Learning. (Under review) IV. Olsson, J., & Granberg, C. Dynamic software, problem solving with or without guidelines, and learning outcome. Technology, Knowledge and Learning. (Under review) Artikel 2 och 3 är jag ensam författare till. Det innebär att jag designat studien, planerat och genomfört datainsamling, analyserat data och formulerat slutsatser, samt skrivit texten och korresponderat med tidskrifter. Artikel 1 och 4 har jag skrivit i samarbete med Carina Granberg. Vi bedömer att arbetet med artikel 1 fördelats lika. Allt skrivarbete har fortgått genom åtskilliga granskningar av varandras utkast och diskussioner om slutgiltiga formuleringar. I arbetet med artikel 4 har jag haft huvudansvaret för designen av studien och planering för datainsamlingen. Skrivarbetet har genomförts på samma sätt som i arbetet med artikel 1.
APA, Harvard, Vancouver, ISO, and other styles
6

Motta, Ulisses Fernandes. "Geometria plana - um curso no GeoGebra." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4838.

Full text
Abstract:
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T11:30:54Z No. of bitstreams: 2 Dissertação - Ulisses Fernandes Motta - 2015.pdf: 4145018 bytes, checksum: 5f3e3b801fb14d3f7d6deb192d982ac8 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T11:33:57Z (GMT) No. of bitstreams: 2 Dissertação - Ulisses Fernandes Motta - 2015.pdf: 4145018 bytes, checksum: 5f3e3b801fb14d3f7d6deb192d982ac8 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-11-03T11:33:57Z (GMT). No. of bitstreams: 2 Dissertação - Ulisses Fernandes Motta - 2015.pdf: 4145018 bytes, checksum: 5f3e3b801fb14d3f7d6deb192d982ac8 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-08-07
This study is about a proposal of using the GeoGebra software in the geometry course to rst year high school students. The reason for the choice of this software is due to its didactic characteristics which make the studied concepts more accessible to the students. The software was applied, as a suggestion, in the study of angles, triangles, polygons and circumferences mentioning some historical facts and relating the subjects, as far as possible, to other knowledge areas. Parallel to the writing of this work, many of the suggested proposals were worked in class and the nal results were satisfactory. We hope that the reading of this material produces among teachers the will to create new ideas for the use of this and other softwares in class as well as placing the math teaching in a more current perspective through the use of technological tools which are familiar to the students everyday activities.
Este trabalho é uma proposta de uso do software GeoGebra no curso de geometria plana para alunos de 1o ano do ensino médio. A escolha deste software se deu pelas suas características didáticas, que tornam a compreensão dos conceitos trabalhados mais acessíveis aos alunos. O software foi aplicado, como sugestão, no estudo dos ângulos, triângulos, polígonos e circunferência, citando alguns fatos históricos e relacionando os assuntos, quando possível, com outras áreas do conhecimento. Paralelamente à escrita deste trabalho, muitas das propostas sugeridas foram trabalhadas em sala de aula, e os resultados obtidos foram satisfatórios. Espero que a leitura deste material suscite nos professores o desejo de criação de novas ideias para uso deste software e de outros em suas aulas, inserindo o ensino da matemática em uma perspectiva mais atual, utilizando ferramentas tecnológicas que são comuns ao cotidiano dos alunos.
APA, Harvard, Vancouver, ISO, and other styles
7

Xavier, Rafael Gomes. "Geometria espacial – um curso com Geogebra." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6696.

Full text
Abstract:
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-01-06T17:48:50Z No. of bitstreams: 2 Dissertação - Rafael Gomes Xavier - 2016.pdf: 5196212 bytes, checksum: 1ae5bf24612209594acc82f17775666c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-09T09:33:26Z (GMT) No. of bitstreams: 2 Dissertação - Rafael Gomes Xavier - 2016.pdf: 5196212 bytes, checksum: 1ae5bf24612209594acc82f17775666c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-01-09T09:33:26Z (GMT). No. of bitstreams: 2 Dissertação - Rafael Gomes Xavier - 2016.pdf: 5196212 bytes, checksum: 1ae5bf24612209594acc82f17775666c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-12-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This paper is a proposal for use of GeoGebra software in geometry course Space for second year high school students. The choice of this software was given by their didactic characteristics that make the understanding of the concepts developed more accessible to students. The software was applied, as suggested in the study of polyhedra, prisms, pyramids, cylinders, cones and spheres. I hope that reading this raise in teachers stuff the desire to create new ideas for using this software and others in their classes, entering the teaching of mathematics in a more current perspective, using technological tools They are common to the daily lives of students.
Este trabalho é uma proposta de uso do software GeoGebra no curso de geometria espacial para alunos de 2º ano do ensino médio. A escolha deste software se deu pelas suas características didáticas, que tornam a compreensão dos conceitos trabalhados mais acessíveis aos alunos. O software foi aplicado, como sugestão, no estudo de poliedros, prismas, pirâmides, cilindros, cones e esferas. Espero que a leitura deste material suscite nos professores o desejo de criação de novas ideias para uso deste software e de outros em suas aulas, inserindo o ensino da matemática em uma perspectiva mais atual, utilizando ferramentas tecnológicas que são comuns ao cotidiano dos alunos.
APA, Harvard, Vancouver, ISO, and other styles
8

Marcondes, Talita Melsone. "Geometrias hiperbólicas com uso do geogebra." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/852.

Full text
Abstract:
CAPES
Este trabalho possui o objetivo de trazer para o contexto do ensino regular (Ensino Médio) as geometrias não-euclidianas que, apesar de estarem contempladas nas Diretrizes Curriculares da Educação Básica, ainda são deixadas de lado pela maioria dos professores. Foram realizadas duas abordagens. Inicialmente é proposta uma abordagem histórica para fornecer a motivação ao estudo das geometrias não-euclidianas. Por fim é proposta uma abordagem utilizando o GeoGebra, um software educacional de geometria, para estudar conceitos básicos da geometria hiperbólica, tais como reta, segmento, ângulo e polígonos.
This work has the purpose of bringing to the context of regular education (Secondary) non- Euclidean geometries, despite being covered in the Basic Education Curriculum Guidelines, are still left aside by most teachers. Two approaches were performed. Initially a historical approach is proposed to provide motivation to the study of non-Euclidean geometries. Finally an approach is proposed using GeoGebra, an educational geometry software to study basic concepts of hyperbolic geometry, such as a line, segment, angle and polygons.
APA, Harvard, Vancouver, ISO, and other styles
9

La, Monaca Liliana. "Calcolo numerico ed esplorazioni con geogebra." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8771/.

Full text
Abstract:
Il lavoro di tesi svolto propone diversi argomenti di geometria la cui costruzione è stata fatta con il software GeoGebra. Propone anche alcuni metodi di integrazione numerica realizzati con esso e anche un modo di approssimare la superficie di rotazione di una funzione sfruttando tali metodi. Gli argomenti trattati spaziano da quelli classici della geometria euclidea a temi affrontati più recentemente esaminando sia oggetti rappresentabili sul piano sia nello spazio tridimensionale.
APA, Harvard, Vancouver, ISO, and other styles
10

Böhm, Josef. "Linking Geometry, Algebra and Calculus with GeoGebra." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-79488.

Full text
Abstract:
GeoGebra is a free, open-source, and multi-platform software that combines dynamic geometry, algebra and calculus in one easy-to-use package. Students from middle-school to university can use it in classrooms and at home. In this workshop, we will introduce the features of GeoGebra with a special focus on not very common applications of a dynamic geometry program. We will inform about plans for developing training and research networks connected to GeoGebra. We can expect that at the time of the conference a spreadsheet will be integrated into GeoGebra which offers new ways teaching mathematics using the interplay between the features of a spreadsheet and the objects of dynamic geometry.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Geogebra"

1

Kaenders, Rainer, and Reinhard Schmidt, eds. Mit GeoGebra mehr Mathematik verstehen. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-04222-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaenders, Rainer, and Reinhard Schmidt, eds. Mit GeoGebra mehr Mathematik verstehen. Wiesbaden: Vieweg+Teubner, 2011. http://dx.doi.org/10.1007/978-3-8348-8340-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Venema, Gerard. Exploring advanced euclidean geometry with GeoGebra. United States]: Mathematical Association of America, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Model-centered learning: Pathways to mathematical understanding using GeoGebra. Rotterdam: Sense Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reinhard, Schmidt, ed. Mit GeoGebra mehr Mathematik verstehen: Beispiele fu r die Fo rderung eines tieferen Mathematikversta ndnisses aus dem GeoGebra Institut Ko ln/Bonn. Wiesbaden: Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH, Wiesbaden, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Erb, Roger. Optik Mit GeoGebra. de Gruyter GmbH, Walter, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Erb, Roger. Optik Mit GeoGebra. de Gruyter GmbH, Walter, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Erb, Roger. Optik Mit GeoGebra. de Gruyter GmbH, Walter, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

College Geometry with GeoGebra. Wiley & Sons, Limited, John, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Costa, Viviana Angélica, ed. Memorias del IV Día GeoGebra Argentina y IX Día GeoGebra Iberoamericano. Facultad de Ingeniería (UNLP), 2021. http://dx.doi.org/10.35537/10915/121426.

Full text
Abstract:
Resúmenes de las actividades llevadas a cabo en el marco del IV Día GeoGebra Argentina y IX Día GeoGebra Iberoamericano, organizado por la Facultad de Ingeniería de la Universidad Nacional de La Plata y el Instituto GeoGebra de La Plata.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Geogebra"

1

Ruppert, Markus, Andreas Bauer, Markus Hohenwarter, and Karsten Meyer. "GeoGebra." In Technologien im Mathematikunterricht, 1–37. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. http://dx.doi.org/10.1007/978-3-658-03008-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burke, Maurice, and Paul Kennedy. "Geogebra." In Model-Centered Learning, 57–72. Rotterdam: SensePublishers, 2011. http://dx.doi.org/10.1007/978-94-6091-618-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Helmberg, Gilbert. "GeoGebra." In 77-mal Mathematik für zwischendurch, 295–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61766-3_75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Erb, Roger. "Relativitätstheorie mit GeoGebra." In Für alles eine App, 303–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-63901-6_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saliklis, Edmond. "GeoGebra for Arches." In Architectural Structures, 143–57. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003180913-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saliklis, Edmond. "GeoGebra for Trusses." In Architectural Structures, 77–95. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003180913-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saliklis, Edmond. "GeoGebra for Beams." In Architectural Structures, 40–55. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003180913-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barot, Michael. "Beispiel eines CGS: GeoGebra." In Einführung in die hyperbolische Geometrie, 13–15. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-25813-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Novak, Dani, Linda Fahlberg-Stojanovska, and Anthony Di Renzo. "Building Simulators with Geogebra." In Model-Centered Learning, 73–89. Rotterdam: SensePublishers, 2011. http://dx.doi.org/10.1007/978-94-6091-618-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Allen, Diem M. "Geogebra in the Classroom." In Pedagogy and Content in Middle and High School Mathematics, 47–48. Rotterdam: SensePublishers, 2017. http://dx.doi.org/10.1007/978-94-6351-137-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geogebra"

1

Iwama, Fumiya, Yuji Shinoda, and Tadashi Takahashi. "Mathematical Proving Using GeoGebra." In ICIET 2020: 2020 8th International Conference on Information and Education Technology. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3395245.3396450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caligaris, Marta Graciela, María Elena Schivo, María Rosa Romiti, and Matías Sebastián Menchise. "ANALYTIC GEOMETRY WITH GEOGEBRA." In International Conference on Education and New Learning Technologies. IATED, 2016. http://dx.doi.org/10.21125/edulearn.2016.1606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Solvang, Lorena, and Jesper Haglund. "GEOGEBRA IN PHYSICS EDUCATION." In 10th International Conference on Education and New Learning Technologies. IATED, 2018. http://dx.doi.org/10.21125/edulearn.2018.2315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lepellere, Maria Antonietta. "Teach Multivariable Functions Through Applications and GeoGebra." In Seventh International Conference on Higher Education Advances. Valencia: Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/head21.2021.13116.

Full text
Abstract:
In this paper some representative examples of a project proposed to second year environment and civil engineering students are presented. The project aim was to deepen the understanding of multivariable functions, stimulating students' creativity and connecting concepts to the content of other disciplines and to the real-world situations through examples that the students themselves have found as applications to engineering. To visualize the problems, students had often utilized GeoGebra, tool widely used during lectures to visualize theoretical aspects and to better explain the exercises. The appreciation of students involved in this activity and their relationship with GeoGebra is also presented. Students appreciated very much this approach as highlighted analyzing their written reports about the activity and GeoGebra use.
APA, Harvard, Vancouver, ISO, and other styles
5

Kostić, Valentina, and Tanja Sekulić. "Teaching Quadratic Functions in Classroom and Online Using Mathematical Software Tools." In 9th International Scientific Conference Technics and Informatics in Education. University of Kragujevac, Faculty of Technical Sciences Čačak, 2022. http://dx.doi.org/10.46793/tie22.315k.

Full text
Abstract:
In this paper, we present our experience and the materials used for teaching quadratic functions in the classroom and online. For the purpose of the research, we developed dynamical teaching materials prepared using mathematical software GeoGebra. The GeoGebra material for the quadratic function is discussed and described in detail. The experiences of the students and teachers concerning the used GeoGebra material are also presented in the paper. The results and impressions during the application of this material, in the classroom and online, were positive with the implications for further improvement and future applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Oliveira, Margarida, Suzana Nápoles, and José Soeiro. "FORMS AND FORMULAS WITH GEOGEBRA." In 10th annual International Conference of Education, Research and Innovation. IATED, 2017. http://dx.doi.org/10.21125/iceri.2017.0646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Voštinár, Patrik. "GEOGEBRA APPLETS FOR GRAPH THEORY." In International Conference on Education and New Learning Technologies. IATED, 2017. http://dx.doi.org/10.21125/edulearn.2017.0918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Drábeková, Janka. "Several GeoGebra Solutions for Microeconomics." In International Scientific Days 2018. Wolters Kluwer ČR, Prague, 2018. http://dx.doi.org/10.15414/isd2018.s9.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suweken, Gede. "STEM Oriented Mathematics Learning with GeoGebra." In Proceedings of the 3rd International Conference on Innovative Research Across Disciplines (ICIRAD 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200115.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kontrová, Lýdia, and Daniela Šusteková. "TEACHING WITH GEOGEBRA VERSUS TRADITIONAL METHOD." In 12th International Conference on Education and New Learning Technologies. IATED, 2020. http://dx.doi.org/10.21125/edulearn.2020.1432.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geogebra"

1

Pylypenko, Olha S., Tetiana H. Kramarenko, and Ivan O. Muzyka. Application of GeoGebra in Stereometry teaching. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3898.

Full text
Abstract:
The purpose of the paper is to improve methodology of teaching Mathematics via the use of cloud technology. The task of the paper is to identify the issues that require a theoretical and experimental solution. The objective of the paper is the educational process in the higher education institution, the subject of the paper is modern ICT. The result of the study is the learning tools of pedagogically considered and adequate bending of conventional and modern learning environment implemented into the educational process. The possibilities of using cloud technologies and Dynamic Mathematics system GeoGebra in the educational process through Stereometry specialized training have been revealed. The use of GeoGebra Dynamic Mathematics in Stereometry teaching will favourably influence the formation of students’ STEM competencies. In order to encourage Mathematics and Computer Science teachers to implement effectively the elements of STEM education, it is suggested that cloud-based learning tools such as GeoGebra be used in the teaching process.
APA, Harvard, Vancouver, ISO, and other styles
2

Дереза, Ірина Сергіївна, and Олена Анатоліївна Іванова. Використання GeoGebra у процесі навчання теми «Похідна та її застосування». Видавничий центр ДВНЗ «Криворізький національний університет», May 2018. http://dx.doi.org/10.31812/0564/2221.

Full text
Abstract:
Метою дослідження є демонстрація можливостей та доцільності використання GeoGebra при дослідженні функцій та побудови їх графіків у рамках вивчення теми «Похідна та її застосування» у класах з поглибленим вивченням математики. Задачами дослідження є вивчення та аналіз можливостей GeoGebra; виділення етапів вивчення теми «Похідна та її застосування», на яких доцільним є використання GeoGebra. Об’єктом дослідження є процес використання ІКТ при поглибленому вивченні математики учнями старшої школи. Предметом дослідження є використання GeoGebra у навчальній діяльності учнів під час вивчення теми «Похідна та її застосування». Методи дослідження: аналіз, узагальнення, систематизація наукових публікацій та емпіричних даних; спостереження за навчальним процесом. У роботі виокремлено етапи вивчення теми «Похідна та її застосування», на яких доцільно використовувати GeoGebra. Наведено приклад використання GeoGebra до дослідження і побудови графіка функції. Результати дослідження планується узагальнити у методичних рекомендаціях для студентів-практикантів, вчителів математики щодо використання GeoGebra при навчанні учнів теми «Похідна та її застосування» на поглибленому рівні. Висновки та рекомендації: GeoGebra має широкі дидактичні можливості для використання при поглибленому вивченні математики.
APA, Harvard, Vancouver, ISO, and other styles
3

Крамаренко, Т. Г., and О. С. Банада. Використання системи динамічної математики GeoGebra в розробці STEM-проектів. [б. в.], May 2018. http://dx.doi.org/10.31812/0564/2302.

Full text
Abstract:
Актуальним напрямом інноваційного розвитку природничо-математичної освіти є система навчання STEM / STEAM (Science Technology Engineering Art Math), яка має на меті розвивати дослідницьку діяльність учнів, підвищувати їх розумову активність, спонукати до творчості. STEM-компетентності майбутніх фахівців потрібно розвивати і під час вивчення шкільного курсу математики через розв’язування дослідницьких та прикладних задач, запровадження проектної та дослідницької діяльності. Одним із шляхів для вирішення цієї проблеми є підготовка майбутніх учителів математики до використання у навчанні системи динамічної математики GeoGebra.
APA, Harvard, Vancouver, ISO, and other styles
4

Пилипенко, О. С., and Т. Г. Крамаренко. GeoGebra як засіб розвитку STEM-компетентностей учнів у навчанні математики. КДПУ, 2020. http://dx.doi.org/10.31812/123456789/4542.

Full text
Abstract:
Розглянуто можливості використання сервісу GeoGebra для формування STEM-компетентностей учнів під час навчання математики. Виокремлено такі переваги програми GeoGebra, як вільнопоширювальність, легкий для використання інтерфейс з урахуванням потужного функціоналу, доступність на багатьох мовах, безліч готових безкоштовних розробок, моделей, вправ, уроків та ігор для математики, а також відео-уроки та курси, які допоможуть у користуванні додатками GeoGebra.
APA, Harvard, Vancouver, ISO, and other styles
5

Рашевська, Наталя Василівна, Сергій Олексійович Семеріков, and Катерина Іванівна Словак. Інтеграція системи динамічної геометрії GeoGebra в систему дистанційного навчання Moodle. КНУБА, 2013. http://dx.doi.org/10.31812/0564/978.

Full text
Abstract:
На теперішній час в системі вищої освіти накопичено значний досвід використання системи дистанційного навчання Moodle та систем комп’ютерної математики й динамічної геометрії, але в час стрімкого розвитку мобільних технологій постає задача інтеграції різноманітних програмних мобільних засобів в систему Moodle, що сприятиме переходу до більш якісного навчання, коли студенти зможуть вибудовувати власне навчальне середовище.
APA, Harvard, Vancouver, ISO, and other styles
6

Kramarenko, T. H., O. S. Pylypenko, and O. Yu Serdiuk. Digital technologies in specialized mathematics education: application of GeoGebra in Stereometry teaching. [б. в.], 2021. http://dx.doi.org/10.31812/123456789/4534.

Full text
Abstract:
The purpose of the paper is to improve methodology of teaching Mathematics via the use of digital technologies. The task of the paper is to identify the issues that require a theoretical and experimental solution. The objective of the paper is the educational process in the higher education institution, the subject of the paper is modern ICT. The result of the study is the learning tools of pedagogically considered and adequate bending of conventional and modern learning environment implemented into the educational process. The possibilities of using cloud technologies and Dynamic Mathematics system GeoGebra in the educational process through Stereometry specialized training have been revealed. The use of GeoGebra Dynamic Mathematics in Stereometry teaching will favourably influence the formation of students’ STEM competencies. In order to encourage Mathematics and Computer Science teachers to implement effectively the elements of STEM education, it is suggested that cloud-based learning tools such as GeoGebra be used in the teaching process.
APA, Harvard, Vancouver, ISO, and other styles
7

Пилипенко, О. С. Використання мобільного додатку 3D calculator GeoGebra з доповненою реальністю у навчанні математики. КЗВО «ДАНО» ДОР», 2020. http://dx.doi.org/10.31812/123456789/4543.

Full text
Abstract:
Проаналізовано особливості запровадження інноваційної технології, а саме доповненої реальності, в освітній процес. Приділено увагу вивченню особливостей адаптації технології AR у навчанні математичних дисциплін. Зроблено огляд мобільного додатку 3D Calculator GeoGebra з Доповненою реальністю та практик його застосування.
APA, Harvard, Vancouver, ISO, and other styles
8

Osypova, Nataliia V., and Volodimir I. Tatochenko. Improving the learning environment for future mathematics teachers with the use application of the dynamic mathematics system GeoGebra AR. [б. в.], July 2021. http://dx.doi.org/10.31812/123456789/4628.

Full text
Abstract:
Immersive technologies and, in particular, augmented reality (AR) are rapidly changing the sphere of education, especially in the field of science, technology, engineering, arts and mathematics. High- quality professional training of a future mathematics teacher who is able to meet the challenges that permeate all sides, the realities of the globalizing information society, presupposes reliance on a highly effective learning environment. The purpose of the research is to transform the traditional educational environment for training future mathematics teachers with the use of the GeoGebra AR dynamic mathematics system, the introduction of cloud technologies into the educational process. The educational potential of GeoGebra AR in the system of professional training of future mathematics teachers is analyzed in the paper. Effective and practical tools for teaching mathematics based on GeoGebra AR using interactive models and videos for mixed and distance learning of students are provided. The advantages of the GeoGebra AR dynamic mathematics system are highlighted. The use of new technologies for the creation of didactic innovative resources that improve the process of teaching and learning mathematics is presented on the example of an educational and methodological task, the purpose of which is to create didactic material on the topic “Sections of polyhedra”. While solving it, future teachers of mathematics should develop the following constituent elements: video materials; test tasks for self-control; dynamic models of sections of polyhedra; video instructions for constructing sections of polyhedra and for solving basic problems in the GeoGebra AR system. The article highlights the main characteristics of the proposed educational environment for training future mathematics teachers using the GeoGebra AR dynamic mathematics system: interdisciplinarity, polyprofessionalism, dynamism, multicomponent.
APA, Harvard, Vancouver, ISO, and other styles
9

Drushlyak, Marina G., Olena V. Semenikhina, Volodymyr V. Proshkin, Serhii Ya Kharchenko, and Tetyana D. Lukashova. Methodology of formation of modeling skills based on a constructive approach (on the example of GeoGebra). [б. в.], June 2021. http://dx.doi.org/10.31812/123456789/4450.

Full text
Abstract:
Author’s methodology of forming modeling skills involves 4 steps: Step 1 – the teacher step by step constructs the curve by means of cloud based service GeoGebra; Step 2 – the teacher offers a description- definition of the curve and provides a ready-made algorithm by which students model the curve inde- pendently in GeoGebra; Step 3 – the teacher offers an algorithm for constructing a curve model, and students need to characterize the properties of the curve or give its definition based on the results, Step 4 – students are offered definitions of curves that they have to model in GeoGebra). An example of realization of the author’s methodology is given, the pedagogical experiment on proof of its effectiveness is described.
APA, Harvard, Vancouver, ISO, and other styles
10

Крамаренко, Т. Г. Використання мультимедійної дошки у процесі навчання геометричним перетворенням на площині. Математика в сучасній школі, 2013. http://dx.doi.org/10.31812/0564/577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography