Academic literature on the topic 'Geologie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geologie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geologie"

1

Momro, Jakub. "Geologie aktualności." Teksty Drugie 6 (2023): 81–99. http://dx.doi.org/10.18318/td.2023.6.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reineck, H. E. "Brinkmanns Abriβ der geologie, band 1, allgemeine geologie." Earth-Science Reviews 33, no. 1 (August 1992): 54–55. http://dx.doi.org/10.1016/0012-8252(92)90079-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thomas, P. G., and P. Masson. "Geologie de Mercure." Bulletin de la Société Géologique de France III, no. 1 (January 1, 1987): 87–94. http://dx.doi.org/10.2113/gssgfbull.iii.1.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masson, P. "La geologie de Mars." Bulletin de la Société Géologique de France III, no. 1 (January 1, 1987): 31–41. http://dx.doi.org/10.2113/gssgfbull.iii.1.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meyer, Frank. "Eine Geologie des Strafrechts." Zeitschrift für die gesamte Strafrechtswissenschaft 123, no. 1 (January 2011): 1–46. http://dx.doi.org/10.1515/zstw.2011.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mathé, Gerhard. "Agricola und die Geologie." NTM International Journal of History and Ethics of Natural Sciences, Technology and Medicine 2, no. 1 (December 1994): 13–26. http://dx.doi.org/10.1007/bf02914993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Büchner, Jörg, and Olaf Tietz. "Geologie des Zittauer Gebirges." Sächsische Heimatblätter 67, no. 2 (October 6, 2021): 136–41. http://dx.doi.org/10.52410/shb.bd.67.2021.h.2.s.136-141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hölder, Helmut. "Das Wasser in der Geologie." Zeitschrift der Deutschen Geologischen Gesellschaft 143, no. 2 (January 1, 1992): 169–83. http://dx.doi.org/10.1127/zdgg/143/1992/169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Forni, O., P. Thomas, and G. P. Masson. "Geologie et tectonique de Ganymede." Bulletin de la Société Géologique de France III, no. 1 (January 1, 1987): 95–106. http://dx.doi.org/10.2113/gssgfbull.iii.1.95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ebner, F., H. Mali, W. Prochaska, G. Rantitsch, and R. Sachsenhofer. "Lehrstuhl für Geologie und Lagerstättenlehre." BHM Berg- und Hüttenmännische Monatshefte 151, no. 7 (July 2006): 275–77. http://dx.doi.org/10.1007/bf03165439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Geologie"

1

Furger, Georg. "Von der Geologie zum Stofftransportmodell /." [S.l.] : [s.n.], 1990. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Biino, Giuseppe Giovanni. "The pre-Alpine evolution of the Aar-Tavetscher and Gotthard massifs /." [S.l : s.n.], 1992. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hiller, Axel, and Werner Schuppan. "Geologie und Uranbergbau im Revier Schlema-Alberoda." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-78919.

Full text
Abstract:
Die Uran-Ganglagerstätte Schlema-Alberoda wurde, abgesehen von mehreren Altbergbauaktivitäten auf ihrem Territorium und der Nutzung ihrer radioaktiven Wässer im früheren Radiumbad Oberschlema, de facto erst nach dem Zweiten Weltkrieg entdeckt. Sie hat sich im Verlaufe ihrer Erkundung und des Abbaus als eine der größten Lagerstätten ihres Typs auf der Erde erwiesen. Die Lagerstätte Schlema-Alberoda liegt regionalgeologisch gesehen in der erzgebirgisch streichenden Lößnitz-Zwönitzer Synklinale im Kreuzungsbereich mit der NW-SO gerichteten Gera-Jáchymov-Störungszone. Bedeutsamstes tektonisches Element dieser Störungszone ist der »Rote Kamm«, der die Uranlagerstätte Schlema-Alberoda von der sich südwestlich anschließenden Wismut-Kobalt-Nickel-Silber-Uran-Lagerstätte Schneeberg trennt. In der Lößnitz-Zwönitzer Synklinale sind vorwiegend oberordovizisch-silurisch-devonische Gesteine, die so genannte »produktive« Serie, in unterordovizische Schiefer der Erzgebirgs-Nordrandzone eingefaltet. Dabei sind die Erzgänge in den Bereichen ausgebildet, in denen die Gesteine der Lößnitz-Zwönitzer Synklinale im Exokontakt des varistisch-postorogenen Auer Granitmassivs liegen. Tektonische Störungen, Spalten und Gangstrukturen durchsetzen in einer außergewöhnlichen Vielzahl die Gesteine des Lagerstättengebietes. Sie wurden teilweise mehrfach aktiviert und dienten zirkulierenden hydrothermalen Lösungen als Bewegungsbahnen bzw. ermöglichten den Absatz ihres Mineralinhaltes. Die Mineralisation der Gänge der Lagerstätte Schlema-Alberoda ist insgesamt als eine komplizierte mehrphasige, überwiegend hydrothermal gebildete Folge von Gangformationen verschiedenen Alters anzusehen. Bergbaulich von wesentlicher Bedeutung waren insbesondere die uranführenden Karbonatgänge der spätvaristischen kku-Formation sowie der postvaristischen mgu- und biconi-Formation. Dabei stellen die Quarz-Calcit-Pechblende-Gänge der kku-Formation mit einem Pechblende-Alter von ca. 275 Mio. Jahren die primären Uranerzgänge der Lagerstätte dar. Die aus umfangreichen mineralogisch-geochemischen Untersuchungen in der Lagerstätte abgeleiteten minerogenetischen Aussagen lassen bezüglich der Herkunft des Urans mehrere mögliche Quellen bzw. Modellvorstellungen zu. Der Absatz erfolgte bei stetig abklingender Temperatur, wobei die Bildung der Uranparagenesen im Bereich von 200 - 100 °C und bei sehr variierenden Druckverhältnissen vor sich ging. Teufenbezogen lag die Hauptvererzung im Intervall von -390 m bis -1125 m. Darunter nahm die Uranvererzung, die in erster Linie lithologisch kontrolliert wird, mit zurückgehender Verbreitung der »produktiven« Gesteine der Lößnitz-Zwönitzer Synklinale ab, war allerdings auch noch auf der tiefsten aufgefahrenen Sohle der Grube (-1800-m-Sohle) vorhanden. Der Abbau auf den vererzten Gangflächen erfolgte in der Regel im Firstenstoßbau. Die vor allem auf den tagesnahen Sohlen des Zentralfeldes von Oberschlema betriebene rigorose Abbauführung auf allen Gängen mit nachgewiesener Uranvererzung hatte nicht nur gravierende bergtechnische Probleme untertage, sondern auch intensive Bruch- und Senkungserscheinungen an der Oberfläche zur Folge. Insgesamt sind von 1946 bis Anfang 1991 etwa 80.000 t Uran gewonnen worden. Dabei lassen die intensiven und umfassenden Untersuchungs- und Erkundungsarbeiten die Schlussfolgerung zu, dass die Lagerstätte bis auf geringe Restvorräte abgebaut ist. Seit 1991 erfolgen die Arbeiten zur Verwahrung und Sanierung der bergbaulichen Anlagen und Flächen. Auf Grund des enormen Umfangs, der Intensität und Komplexität des getätigten Bergbaus sind diese Arbeiten sehr umfangreich, kompliziert und vielschichtig; sie werden voraussichtlich etwa 2010 abgeschlossen sein.
APA, Harvard, Vancouver, ISO, and other styles
4

Häuser, Fritz [Verfasser]. "Die Geologie der südöstlichen Wetterau / Fritz Häuser." Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2013. http://d-nb.info/1121682626/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hiller, Axel, and Werner Schuppan. "Geologie und Uranbergbau im Revier Schlema-Alberoda." Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, 2008. https://slub.qucosa.de/id/qucosa%3A1646.

Full text
Abstract:
Die Uran-Ganglagerstätte Schlema-Alberoda wurde, abgesehen von mehreren Altbergbauaktivitäten auf ihrem Territorium und der Nutzung ihrer radioaktiven Wässer im früheren Radiumbad Oberschlema, de facto erst nach dem Zweiten Weltkrieg entdeckt. Sie hat sich im Verlaufe ihrer Erkundung und des Abbaus als eine der größten Lagerstätten ihres Typs auf der Erde erwiesen. Die Lagerstätte Schlema-Alberoda liegt regionalgeologisch gesehen in der erzgebirgisch streichenden Lößnitz-Zwönitzer Synklinale im Kreuzungsbereich mit der NW-SO gerichteten Gera-Jáchymov-Störungszone. Bedeutsamstes tektonisches Element dieser Störungszone ist der »Rote Kamm«, der die Uranlagerstätte Schlema-Alberoda von der sich südwestlich anschließenden Wismut-Kobalt-Nickel-Silber-Uran-Lagerstätte Schneeberg trennt. In der Lößnitz-Zwönitzer Synklinale sind vorwiegend oberordovizisch-silurisch-devonische Gesteine, die so genannte »produktive« Serie, in unterordovizische Schiefer der Erzgebirgs-Nordrandzone eingefaltet. Dabei sind die Erzgänge in den Bereichen ausgebildet, in denen die Gesteine der Lößnitz-Zwönitzer Synklinale im Exokontakt des varistisch-postorogenen Auer Granitmassivs liegen. Tektonische Störungen, Spalten und Gangstrukturen durchsetzen in einer außergewöhnlichen Vielzahl die Gesteine des Lagerstättengebietes. Sie wurden teilweise mehrfach aktiviert und dienten zirkulierenden hydrothermalen Lösungen als Bewegungsbahnen bzw. ermöglichten den Absatz ihres Mineralinhaltes. Die Mineralisation der Gänge der Lagerstätte Schlema-Alberoda ist insgesamt als eine komplizierte mehrphasige, überwiegend hydrothermal gebildete Folge von Gangformationen verschiedenen Alters anzusehen. Bergbaulich von wesentlicher Bedeutung waren insbesondere die uranführenden Karbonatgänge der spätvaristischen kku-Formation sowie der postvaristischen mgu- und biconi-Formation. Dabei stellen die Quarz-Calcit-Pechblende-Gänge der kku-Formation mit einem Pechblende-Alter von ca. 275 Mio. Jahren die primären Uranerzgänge der Lagerstätte dar. Die aus umfangreichen mineralogisch-geochemischen Untersuchungen in der Lagerstätte abgeleiteten minerogenetischen Aussagen lassen bezüglich der Herkunft des Urans mehrere mögliche Quellen bzw. Modellvorstellungen zu. Der Absatz erfolgte bei stetig abklingender Temperatur, wobei die Bildung der Uranparagenesen im Bereich von 200 - 100 °C und bei sehr variierenden Druckverhältnissen vor sich ging. Teufenbezogen lag die Hauptvererzung im Intervall von -390 m bis -1125 m. Darunter nahm die Uranvererzung, die in erster Linie lithologisch kontrolliert wird, mit zurückgehender Verbreitung der »produktiven« Gesteine der Lößnitz-Zwönitzer Synklinale ab, war allerdings auch noch auf der tiefsten aufgefahrenen Sohle der Grube (-1800-m-Sohle) vorhanden. Der Abbau auf den vererzten Gangflächen erfolgte in der Regel im Firstenstoßbau. Die vor allem auf den tagesnahen Sohlen des Zentralfeldes von Oberschlema betriebene rigorose Abbauführung auf allen Gängen mit nachgewiesener Uranvererzung hatte nicht nur gravierende bergtechnische Probleme untertage, sondern auch intensive Bruch- und Senkungserscheinungen an der Oberfläche zur Folge. Insgesamt sind von 1946 bis Anfang 1991 etwa 80.000 t Uran gewonnen worden. Dabei lassen die intensiven und umfassenden Untersuchungs- und Erkundungsarbeiten die Schlussfolgerung zu, dass die Lagerstätte bis auf geringe Restvorräte abgebaut ist. Seit 1991 erfolgen die Arbeiten zur Verwahrung und Sanierung der bergbaulichen Anlagen und Flächen. Auf Grund des enormen Umfangs, der Intensität und Komplexität des getätigten Bergbaus sind diese Arbeiten sehr umfangreich, kompliziert und vielschichtig; sie werden voraussichtlich etwa 2010 abgeschlossen sein.
APA, Harvard, Vancouver, ISO, and other styles
6

Mühlmann, Gerd. "Geologie und Geschichte des Steinkohlenbergbaus von Hainichen." Unbekannter Bergbau. Reihe 2: Kohle - Gewinnung und Verarbeitung in Sachsen, 2016. https://slub.qucosa.de/id/qucosa%3A7901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Felix, Manfred, and Hans-Jürgen Berger. "Geologie und Bergbaufolgen im Steinkohlerevier Lugau/Oelsnitz." Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, 2010. https://slub.qucosa.de/id/qucosa%3A72961.

Full text
Abstract:
Autoren des Landesamtes für Umwelt, Landwirtschaft und Geologie, des Oberbergamtes, beauftragter Firmen und Hochschulen stellen in 12 Fachbeiträgen die Ergebnisse der bergbaufolgebezogenen Untersuchungen im ehemaligen Steinkohlerevier Lugau/Oelsnitz vor. Redaktionsschluss: 30.06.2010
APA, Harvard, Vancouver, ISO, and other styles
8

CHEN, TING YU. "Geologie des granites de la chine du sud." Paris 6, 1989. http://www.theses.fr/1989PA066100.

Full text
Abstract:
Sont etudies un ensemble de granitoides d'ages varies (varisques ou indonesiens) d'un point de vue cadre geologique, mineralogique (mineraux cardinaux et accessoires), geochimie (elements majeurs et en traces), geochronologie et structure. Sont plus particulierement mis en evidence une evolution des caracteres petrographiques et chimiques (sio#2, na#2o, k#2o, cao, ree) en fonction de l'evolution structurale de la region, ainsi qu'une repartition des divers granitoides en plutonites orogeniques et plutonites anorogeniques
APA, Harvard, Vancouver, ISO, and other styles
9

Nullans, Stéphane. "Reconstruction geometrique de formes : application a la geologie." Nice, 1998. https://tel.archives-ouvertes.fr/tel-00832483.

Full text
Abstract:
Plusieurs methodes, basees sur les diagrammes de voronoi, sont proposees pour la reconstruction d'objets naturels. L'application principale est l'imagerie geologique. Une premiere methode permet la reconstruction de volumes et surfaces geologiques a partir de donnees incompletes et heterogenes : donnees ponctuelles sur des affleurements, portions de contours cartographiques, sondages, coupes incompletes ou interpretees, modeles numeriques de terrains l'idee majeure de la methode consiste a assembler les objets differents selon leurs proximites, en utilisant le diagramme de voronoi de ces objets. Les diagrammes de voronoi sont des structures geometriques permettant de partitionner l'espace en regions d'influence. En pratique toutes les donnees sont discretisees en un ensemble de points colores, les couleurs representant ici les caracteristiques geologiques ou geophysiques des donnees, que nous souhaitons imager. La partition coloree de ces points nous donne une premiere solution topologique au probleme de reconstruction. Elle nous fournit en outre, une representation du bord de l'objet geologique et de son interieur. L'utilisation de courbes et de surfaces deformables sous contraintes (tension, courbure et respect de la topologie initiale) permet ensuite d'obtenir des interfaces plus lisses et plus conformes. Une etape particuliere permet de prendre en compte des surfaces de discontinuite comme les failles. Afin de representer un objet s, non plus par des elements discrets (polyedres de voronoi), mais par les valeurs positives d'une fonction continue, nous avons introduit une nouvelle methode. L'objectif de la methode est de definir une fonction interpolante telle que l'ensemble des zeros de passe exactement par les donnees de depart et soit une approximation coherente et lisse de s par ailleurs. Dans un premier temps nous definissons, une fonction caracteristique locale en chaque donnee (point, contour) et l'objet volumique final resulte alors d'une interpolation de ces fonctions.
APA, Harvard, Vancouver, ISO, and other styles
10

Moser, Hans-Jörg. "Strukturgeologische Untersuchungen in der Rawil-Depression : helvetische Kalkalpen zwischen Berner Oberland und Wallis /." Bern : Universitätsdruckerei, 1985. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Geologie"

1

Meschede, Martin. Geologie Deutschlands. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56422-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meschede, Martin. Geologie Deutschlands. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45298-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kurt, Ruchholz, and Ernst-Moritz-Arndt-Universität Greifswald Fachrichtung Geologie, eds. Fortschritte der Geologie: Aktuogeologie, regionale Geologie, Lithologie, Stratigraphie. Greifswald: Ernst-Moritz-Arndt-Universität Greifswald, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Theron, J. N. Die geologie van die gebied Ladismith: Geologiese opname. Pretoria: Departement van Mineraal- en Energiesake, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

McLean, A. C. Geology for civil engineers. 2nd ed. London: Unwin Hyman, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Labhart, Toni P. Geologie der Schweiz. 5th ed. Thun: Ott, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Henningsen, Dierk. Geologie für Bauingenieure. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-97377-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Henningsen, Dierk. Geologie für Bauingenieure. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56159-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McCann, Tom, and Mario Valdivia Manchego. Geologie im Gelände. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-8274-2383-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bahlburg, Heinrich, and Christoph Breitkreuz. Grundlagen der Geologie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54931-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Geologie"

1

Heitfeld, Karl-Heinrich, Lutz Krapp, and Torsten Böcke. "Geologie." In Die Mechernicher Triasbucht, 48–84. Wiesbaden: VS Verlag für Sozialwissenschaften, 1987. http://dx.doi.org/10.1007/978-3-322-88142-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Westphal, Hildegard. "Geologie." In Heureka, 61–73. Heidelberg: Spektrum Akademischer Verlag, 2010. http://dx.doi.org/10.1007/978-3-8274-2657-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vogelsang, Dieter. "Geologie." In Grundwasser, 17–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-60304-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aust, Horst, and Gerhard Lange. "Geologie." In Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, 769–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55790-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt, Jörg, Jürgen Wunderlich, and Olaf Böhme. "Geologie." In Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, 547–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55790-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bitterli-Brunner, Peter. "Angewandte Geologie." In Geologischer Führer der Region Basel, 43–66. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7623-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bitterli-Brunner, Peter. "Angewandte Geologie." In Geologischer Führer der Region Basel, 43–66. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-7127-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schnyder, Peter. "Geologie und Mineralogie." In Stifter-Handbuch, 249–53. Stuttgart: J.B. Metzler, 2017. http://dx.doi.org/10.1007/978-3-476-05377-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boley, Conrad, Lisa Wilfing, and Philipp Siebert. "Grundlagen der Geologie." In Handbuch Geotechnik, 1–12. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-03055-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kricheldorf, Hans R. "Physik und Geologie." In Erkenntnisse und Irrtümer in Medizin und Naturwissenschaften, 207–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43363-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geologie"

1

Ballarin, Matteo, and Nadia D'Agnone. "Paesaggio, suolo, tempo: la rappresentazione dei tempi geologici nella citta' di Catania." In International Conference Virtual City and Territory. Roma: Centre de Política de Sòl i Valoracions, 2014. http://dx.doi.org/10.5821/ctv.8041.

Full text
Abstract:
Parlare di tempo geologico è un modo di contestualizzare i processi materiali della terra nella sua storia. La scala dei tempi geologici suddivide la lunga storia della terra in eoni, ere, periodi ed epoche, non omogenei tra loro, ma in relazione l'un l'altro a seconda di ciò che emerge dall'analisi dei dati stratigrafici o dallo studio della stratificazione dei diversi livelli della crosta terrestre. Recentemente negli studi relativi a territorio e paesaggio è stata introdotta l'idea che l'epoca dell'Olocene, iniziata circa 11.700 anni fa, sia terminata e che sia stata sostituita da una nuova epoca geologica chiamata Antropocene, ovvero, 'l'era della razza umana'. Per confermare o meno questa ipotesi, siamo partiti da due categorie concettuali di paesaggio: il paesaggio terrestre ed il paesaggio costruito. Il caso studio della città di Catania, in Sicilia, ben si applica a questa ricerca: il suolo della città si è costruito sia tramite l'intensa opera dell'uomo -negli ultimi 40 anni fino a risalire al XVII secolo ed al nucleo greco antico- sia tramite una non indifferente attività geologica, rappresentata dalle molteplici eruzioni vulcaniche e dai frequenti terremoti che hanno colpito la conurbazione nel corso dei secoli. L'analisi -tramite sezioni e carotaggi- della stratigrafia storica ha evidenziato come la forma non solo della città ma del paesaggio di Catania abbia risentito in maniera eccezionale delle mutazioni geologiche intercorse, più di ogni altra città europea, e la rende un oggetto di studio privilegiato per esaminare la correlazione tra paesaggio, tempo ed usi. Geologic time is a way of contextualizing the material processes of the Earth within its long history. The geologic time scale divides the long history of the earth in eons, eras, periods and epochs, not separately, but in relation to each other depending on what emerges from the analysis of stratigraphic data and the different levels of the crust of the earth.Recently, studies related to territory and landscape have introduced the idea that the current Holocene epoch that began 11,700 years ago has ended and has been replaced by a new geological epoch called the Anthropocene, or, 'the era of human race'. To confirm or reject this hypothesis, we started from two conceptual categories of landscape: the terrestrial landscape and the constructed landscape. We apply this research using the case study of Catania, Sicily. The soil of the city of Catania is built is through both the intense work of man – in the last 40 years going back to the seventeenth century and to antiquity with the ancient Greeks – and, through substantial geological activity – by the many volcanoes and frequent earthquakes over the centuries. The analysis is defined by a sectioning and dissection of the historical stratigraphy of the ground of Catania. It reveals how the form of the city and landscape of Catania has undergone exceptional change and mutation evolving slowly in geologic time, more so than any other European city. It is therefore an interesting object of study to examine the relationship between landscape, time and use.
APA, Harvard, Vancouver, ISO, and other styles
2

Allmendinger, Richard W., and Paul Karabinos. "IMPROVING GEOLOGIC MAPPING WITH COMPUTATIONAL FIELD GEOLOGY." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-334376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lindemann, John W. "THE GEOLOGIC MAPS OF WILLIAM MACLURE (1763-1840) - AMERICAN GEOLOGIST." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-278444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pitts, Alan, Giuseppina Kysar-Mattietti, Randolph A. McBride, Claudio Di Celma, and Emanuele Tondi. "GEOLOGY FIELD CAMP IN ITALY: A NEW INTERNATIONAL FIELD EXPERIENCE IN GEOLOGIC MAPPING AND GEOLOGIC HAZARDS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-308696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karpilo, Ronald D., Stephanie A. O'Meara, Trista L. Thornberry-Ehrlich, James R. H. Winter, Georgia A. Hybels, and James R. Chappell. "EXPLORING THE GEOLOGY OF ARIZONA NATIONAL PARKS WITH GEOLOGIC RESOURCES INVENTORY PRODUCTS." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-333156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Orndorff, Randall, Michael Knight, Joseph Krupansky, Khaled Al-Akhras, Robert Stamm, Umi Samad, and Elalim Ahmed. "Linking Geology and Geotechnical Engineering in Karst: The Qatar Geologic Mapping Project." In National Cave and Karst Research Institute Symposium 7. National Cave and Karst Research Institute, 2018. http://dx.doi.org/10.5038/9780991000982.1015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boonyasaknanon, Phathompat, Raymond Pols, Katja Schulze, and Robert Rundle. "Geologic Modelling Using Augmented Reality." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21300-ms.

Full text
Abstract:
Abstract An augmented reality (AR) system is presented which enhances the real-time collaboration of domain experts involved in the geologic modeling of complex reservoirs. An evaluation of traditional techniques is compared with this new approach. The objective of geologic modeling is to describe the subsurface as accurately and in as much detail as possible given the available data. This is necessarily an iterative process since as new wells are drilled more data becomes available which either validates current assumptions or forces a re-evaluation of the model. As the speed of reservoir development increases there is a need for expeditious updates of the subsurface model as working with an outdated model can lead to costly mistakes. Common practice is for a geologist to maintain the geologic model while working closely with other domain experts who are frequently not co-located with the geologist. Time-critical analysis can be hampered by the fact that reservoirs, which are inherently 3D objects, are traditionally viewed with 2D screens. The system presented here allows the geologic model to be rendered as a hologram in multiple locations to allow domain experts to collaborate and analyze the reservoir in real-time. Collaboration on 3D models has not changed significantly in a generation. For co-located personnel the approach is to gather around a 2D screen. For remote personnel the approach has been sharing a model through a 2D screen along with video chat. These approaches are not optimal for many reasons. Over the years various attempts have been tried to enhance the collaboration experience and have all fallen short. In particular virtual reality (VR) has been seen as a solution to this problem. However, we have found that augmented reality (AR) is a much better solution for many subtle reasons which are explored in the paper. AR has already acquired an impressive track record in various industries. AR will have applications in nearly all industries. For various historical reasons, the uptake for AR is much faster in some industries than others. It is too early to tell whether the use of augmented reality in geological applications will be transformative, however the results of this initial work are promising.
APA, Harvard, Vancouver, ISO, and other styles
8

Roemmele, Christopher. "GEOLOGIC TIME AND GEOLOGIC BLINDNESS: INFUSING INQUIRY AND A NARRATIVE OF THE NATURE OF SCIENCE INTO AN UNDERGRADUATE INTRODUCTORY GEOLOGY CLASS." In 53rd Annual GSA Northeastern Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018ne-310382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pearthree, Kristin S., and Ann M. Youberg. "SURFICIAL GEOLOGY AND GEOLOGIC HAZARDS OF BONITA AND RHYOLITE CANYONS, CHIRICAHUA NATIONAL MONUMENT, ARIZONA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-286540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zeigler, Kate E., Frank C. Ramos, and Matthew J. Zimmerer. "Geology of Northeastern New Mexico, union and Colfax Counties, New Mexico: A Geologic Summary." In 70th Annual Fall Field Conference. New Mexico Geological Society, 2019. http://dx.doi.org/10.56577/ffc-70.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geologie"

1

KellerLynn, Katie. Redwood National and State Parks: Geologic resources inventory report. National Park Service, October 2021. http://dx.doi.org/10.36967/nrr-2287676.

Full text
Abstract:
Comprehensive park management to fulfill the NPS mission requires an accurate inventory of the geologic features of a park unit, but Comprehensive park management to fulfill the NPS mission requires an accurate inventory of the geologic features of a park unit, but park managers may not have the needed information, geologic expertise, or means to complete such an undertaking; therefore, the Geologic Resources Inventory (GRI) provides information and resources to help park managers make decisions for visitor safety, planning and protection of infrastructure, and preservation of natural and cultural resources. Information in the GRI report may also be useful for interpretation. park managers may not have the needed information, geologic expertise, or means to complete such an undertaking; therefore, the Geologic Resources Inventory (GRI) provides information and resources to help park managers make decisions for visitor safety, planning and protection of infrastructure, and preservation of natural and cultural resources. Information in the GRI report may also be useful for interpretation. This report synthesizes discussions from a scoping meeting for Redwood National and State Parks (referred to as the “parks” throughout this report) held in 2004 and a follow-up conference call in 2019. Two GRI–compiled GIS data sets of the geology and geohazards of the parks are the principal deliverables of the GRI. The GRI GIS data are available on the GRI publications website http://go.nps.gov/gripubs and through the NPS Integrated Resource Management Applications (IRMA) portal https://irma.nps.gov/App/Portal/Home. Enter “GRI” as the search text and select a park from the unit list. Writing of this report was based on those data and the interpretations of the source map authors (see “GRI Products” and “Acknowledgements”). A geologic map poster illustrates the geology GRI GIS data set and serves as a primary figure for this GRI report. No poster was prepared for the geohazards GRI GIS data set. Additionally, figure 7 of this report illustrates the locations of the major geologic features in the parks. Unlike the poster, which is divided into a northern and southern portion to show detail while accommodating the parks’ length, figure 7 is a single-page, simplified map. The features labeled on figure 7 are discussed in the “Geologic History, Features, and Processes” chapter. To provide a context of geologic time, this report includes a geologic time scale (see "Geologic History, Features, and Processes"). The parks’ geologic story encompasses 200 million years, starting in the Jurassic Period. Following geologic practice, the time scale is set up like a stratigraphic column, with the oldest units at the bottom and the youngest units at the top. Organized in this manner, the geologic time scale table shows the relative ages of the rock units that underlie the parks and the unconsolidated deposits that lie at the surface. Reading the “Geologic Event” column in the table, from bottom to top, will provide a chronologic order of the parks’ geologic history. The time scale includes only the map units within the parks that also appear on the geologic map poster; that is, map units of the geohazards data are not included. Geology is a complex science with many specialized terms. This report provides definitions of geologic terms at first mention, typically in parentheses following the term. Geologic units in the GRI GIS data are referenced in this report using map unit symbols; for example, map unit KJfrc stands for the Cretaceous (K) and Jurassic (J) Franciscan Complex (f), Redwood Creek schist (rc), which underlies a portion of the Redwood Creek watershed (see “GRI Products”).
APA, Harvard, Vancouver, ISO, and other styles
2

Mosolf, J. G., and C. McDonald. Major oxide and trace element analyses of rock samples collected in the Dillon 30' x 60' quadrangle, southwest Montana, 2019–2020. Montana Bureau of Mines and Geology, February 2024. http://dx.doi.org/10.59691/oukw4846.

Full text
Abstract:
This file provides whole-rock chemical analyses for 26 igneous samples collected in the Dillon 30' x 60' quadrangle in southwest Montana. The samples were collected over one field season (2019) by personnel at the Montana Bureau of Mines and Geology (MBMG) supporting geologic mapping projects partially funded by the STATEMAP component of the National Cooperative Geologic Mapping Program. All geochemical analyses were conducted at the Peter Hooper GeoAnalytical Lab at Washington State University (WSU). Reported values are unnormalized. A brief summary of analytical methods is included in this file.
APA, Harvard, Vancouver, ISO, and other styles
3

McKean, Adam. Interim Geologic Map of the Midvale Quadrangle, Salt Lake County, Utah. Utah Geological Survey, May 2024. http://dx.doi.org/10.34191/ofr-761.

Full text
Abstract:
The Midvale 7.5' quadrangle is in the south-central part of Salt Lake Valley. The quadrangle contains parts of Midvale City, South Jordan City, West Jordan City, Riverton City, Sandy City, Draper City, Herriman City, and Bluffdale City and the southern part of South Valley Regional Airport. The Jordan River and Bingham, Midas, Barneys, Rose, Corner Canyon, Willow, and Dry Creeks flow through the quadrangle. A single outcrop of Pennsylvanian Oquirrh Group bedrock, likely Bingham Mine Formation, was previously exposed in the southeast corner of the quadrangle; however, recent development has destroyed and covered this outcrop. The surficial geology is composed of alluvial, deltaic, eolian, lacustrine, and massmovement deposits. The Midvale quadrangle was mapped to provide geologic data for a variety of derivative uses. The Utah Geological Survey (UGS) Geologic Hazards Mapping Initiative will use this map to identify and delimit potential geologic hazards for UGS geologic hazard maps of urban, high recreational use, and rapidly developing areas
APA, Harvard, Vancouver, ISO, and other styles
4

Slattery, S. R., P. J. Barnett, A. J. M. Pugin, D. R. Sharpe, D. Goodyear, R E Gerber, S. Holysh, and S. Davies. Tunnel-channel complexes in the Zephyr area, Ontario: potential high-yield aquifers. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331410.

Full text
Abstract:
In south-central Ontario, tunnel channels are primary targets for groundwater exploration due to their potential to contain confined, water-bearing, coarse-grained sediment fills. Despite extensive hydrogeologic and geologic exploration within these features, a comprehensive depositional model that illustrates the spatial distribution of coarse- and fine- grained sediment in tunnel-channel complexes is absent. Work in the Zephr area, north of ORM, presents new subsurface data to improve understanding of this geologic setting and to add to geologic models of these channel systems. Findings result from combined geology, sedimentology, geophysics (seismic profiling) and sediment drilling (mud rotary and continuous core) to better our understanding the shallow channel setting north of ORM, including: 1) spatial distribution of coarse- and fine-grained sediments in tunnel-channels; 2) the architecture of tunnel-channel sequences in confluence zones. Preferred aquifer targets aquifer units in the Zephyr area are identified in areas of channel confluence and channel bends. Channel aquifers are confined by 3.9 to 28.5 m thick deposits of rhythmically bedded silt and clay.
APA, Harvard, Vancouver, ISO, and other styles
5

Henderson, Tim, Mincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Chihuahuan Desert Inventory & Monitoring Network. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2285306.

Full text
Abstract:
A fundamental responsibility of the National Park Service is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities which may threaten or influence their stability. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) which represent a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies, bedding properties, thickness, geographic distribution, and other factors. If a new mappable geologic unit is identified, it may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2005). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section of the unit is designated as the type section or type locality (see Definitions). The type section is an important reference section for a named geologic unit which presents a relatively complete and representative profile for this unit. The type or reference section is important both historically and scientifically, and should be recorded such that other researchers may evaluate it in the future. Therefore, this inventory of geologic type sections in NPS areas is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The documentation of all geologic type sections throughout the 423 units of the NPS is an ambitious undertaking. The strategy for this project is to select a subset of parks to begin research for the occurrence of geologic type sections within particular parks. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (geology, hydrology, climate), biological resources (flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network level activities (inventory, monitoring, research, data management). Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The network approach is also being applied to the inventory for the geologic type sections in the NPS. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory and Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic type sections within the parks of the GRYN, methodologies for data mining and reporting on these resources was established. Methodologies and reporting adopted for the GRYN have been used in the development of this type section inventory for the Chihuahuan Desert Inventory & Monitoring Network. The goal of this project is to consolidate information pertaining to geologic type sections which occur within NPS-administered areas, in order that this information is available throughout the NPS...
APA, Harvard, Vancouver, ISO, and other styles
6

Henderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Northern Colorado Plateau Inventory & Monitoring Network. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2285337.

Full text
Abstract:
A fundamental responsibility of the National Park Service (NPS) is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities which may threaten or influence their stability. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) which represent a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies, bedding properties, thickness, geographic distribution, and other factors. If a new mappable geologic unit is identified, it may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2005). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section of the unit is designated as the type section or type locality (see Definitions). The type section is an important reference section for a named geologic unit which presents a relatively complete and representative profile. The type or reference section is important both historically and scientifically, and should be available for other researchers to evaluate in the future. Therefore, this inventory of geologic type sections in NPS areas is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The documentation of all geologic type sections throughout the 423 units of the NPS is an ambitious undertaking. The strategy for this project is to select a subset of parks to begin research for the occurrence of geologic type sections within particular parks. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (geology, hydrology, climate), biological resources (flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network level activities (inventory, monitoring, research, data management). Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The network approach is also being applied to the inventory for the geologic type sections in the NPS. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory and Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic type sections within the parks of the GRYN methodologies for data mining and reporting on these resources was established. Methodologies and reporting adopted for the GRYN have been used in the development of this type section inventory for the Northern Colorado Plateau Inventory & Monitoring Network. The goal of this project is to consolidate information pertaining to geologic type sections which occur within NPS-administered areas, in order that this information is available throughout the NPS...
APA, Harvard, Vancouver, ISO, and other styles
7

Henderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Klamath Inventory & Monitoring Network. National Park Service, July 2021. http://dx.doi.org/10.36967/nrr-2286915.

Full text
Abstract:
A fundamental responsibility of the National Park Service (NPS) is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities which may threaten or influence their stability. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) which represent a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies, bedding properties, thickness, geographic distribution, and other factors. If a new mappable geologic unit is identified, it may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2005). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section of the unit is designated as the type section or type locality (see Definitions). The type section is an important reference section for a named geologic unit which presents a relatively complete and representative profile. The type or reference section is important both historically and scientifically, and should be protected and conserved for researchers to study and evaluate in the future. Therefore, this inventory of geologic type sections in NPS areas is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The documentation of all geologic type sections throughout the 423 units of the NPS is an ambitious undertaking. The strategy for this project is to select a subset of parks to begin research for the occurrence of geologic type sections within particular parks. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (geology, hydrology, climate), biological resources (flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network level activities (inventory, monitoring, research, data management). Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The network approach is also being applied to the inventory for the geologic type sections in the NPS. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory and Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic type sections within the parks of the GRYN methodologies for data mining and reporting on these resources were established. Methodologies and reporting adopted for the GRYN have been used in the development of this type section inventory for the Klamath Inventory & Monitoring Network. The goal of this project is to consolidate information pertaining to geologic type sections which occur within NPS-administered areas, in order that this information is available throughout the NPS to inform park managers...
APA, Harvard, Vancouver, ISO, and other styles
8

Henderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Mojave Desert Inventory & Monitoring Network. National Park Service, December 2021. http://dx.doi.org/10.36967/nrr-2289952.

Full text
Abstract:
A fundamental responsibility of the National Park Service (NPS) is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities that may threaten or influence their stability and preservation. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) that represent a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies, bedding properties, thickness, geographic distribution, and other factors. Mappable geologic units may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2005). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section or exposure area of the unit is designated as the type section or other category of stratotype (see “Definitions” below). The type section is an important reference exposure for a named geologic unit which presents a relatively complete and representative example for this unit. Geologic stratotypes are important both historically and scientifically, and should be available for other researchers to evaluate in the future.. The inventory of all geologic stratotypes throughout the 423 units of the NPS is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (e.g., geology, hydrology, climate), biological resources (e.g., flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network-level activities such as inventory, monitoring, research, and data management. Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory & Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic stratotypes within the parks of the GRYN methodologies for data mining and reporting on these resources were established. Methodologies and reporting adopted for the GRYN have been used in the development of this report for the Mojave Desert Inventory & Monitoring Network (MOJN). The goal of this project is to consolidate information pertaining to geologic type sections that occur within NPS-administered areas, in order that this information is available throughout the NPS to inform park managers and to promote the preservation and protection of these important geologic landmarks and geologic heritage resources. The review of stratotype occurrences for the MOJN shows there are currently no designated stratotypes for Joshua Tree National Park (JOTR) or Manzanar National Historic Site (MANZ); Death Valley...
APA, Harvard, Vancouver, ISO, and other styles
9

Henderson, Tim, Vincet Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: North Coast and Cascades Inventory & Monitoring Network. National Park Service, March 2022. http://dx.doi.org/10.36967/nrr-2293013.

Full text
Abstract:
A fundamental responsibility of the National Park Service (NPS) is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities which may threaten or influence their stability and preservation. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) that form a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies (rock types), bedding properties, thickness, geographic distribution, and other factors. Mappable geologic units may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2021). In most instances, when a new geologic unit (such as a formation) is described and named in the scientific literature, a specific and well-exposed section or exposure area of the unit is designated as the stratotype (see “Definitions” below). The type section is an important reference exposure for a named geologic unit that presents a relatively complete and representative example for this unit. Geologic stratotypes are important both historically and scientifically, and should be available for other researchers to evaluate in the future. The inventory of all geologic stratotypes throughout the 423 units of the NPS is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The focus adopted for completing the baseline inventories throughout the NPS was centered on the 32 inventory and monitoring (I&M) networks established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (geology, hydrology, climate), biological resources (flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network-level activities (inventory, monitoring, research, and data management). Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory and Monitoring Network (GRYN) as the pilot network for initiating this project. Through the research undertaken to identify the geologic stratotypes within the parks of the GRYN methodologies for data mining and reporting on these resources were established. Methodologies and reporting adopted for the GRYN have been used in the development of this report for the North Coast and Cascades Inventory & Monitoring Network (NCCN). The goal of this project is to consolidate information pertaining to geologic type sections that occur within NPS-administered areas, in order that this information is available throughout the NPS to inform park managers and to promote the preservation and protection of these important geologic landmarks and geologic heritage resources. The review of stratotype occurrences for the NCCN shows there are currently no designated stratotypes for Fort Vancouver National Historic Site (FOVA), Lewis and Clark National Historical Park (LEWI), or San Juan...
APA, Harvard, Vancouver, ISO, and other styles
10

Henderson, Tim, Vincent Santucci, Tim Connors, and Justin Tweet. National Park Service geologic type section inventory: Central Alaska Inventory & Monitoring Network. National Park Service, May 2022. http://dx.doi.org/10.36967/nrr-2293381.

Full text
Abstract:
A fundamental responsibility of the National Park Service (NPS) is to ensure that park resources are preserved, protected, and managed in consideration of the resources themselves and for the benefit and enjoyment by the public. Through the inventory, monitoring, and study of park resources, we gain a greater understanding of the scope, significance, distribution, and management issues associated with these resources and their use. This baseline of natural resource information is available to inform park managers, scientists, stakeholders, and the public about the conditions of these resources and the factors or activities which may threaten or influence their stability and preservation. There are several different categories of geologic or stratigraphic units (supergroup, group, formation, member, bed) that form a hierarchical system of classification. The mapping of stratigraphic units involves the evaluation of lithologies (rock types), bedding properties, thickness, geographic distribution, and other factors. Mappable geologic units may be described and named through a rigorously defined process that is standardized and codified by the professional geologic community (North American Commission on Stratigraphic Nomenclature 2021). In most instances when a new geologic unit such as a formation is described and named in the scientific literature, a specific and well-exposed section or exposure area of the unit is designated as the stratotype (see “Definitions” below). The type section is an important reference exposure for a named geologic unit that presents a relatively complete and representative example for this unit. Geologic stratotypes are important both historically and scientifically, and should be available for other researchers to evaluate in the future. The inventory of all geologic stratotypes throughout the 423 units of the NPS is an important effort in documenting these locations in order that NPS staff recognize and protect these areas for future studies. The focus adopted for completing the baseline inventories throughout the NPS is centered on the 32 inventory and monitoring networks (I&M) established during the late 1990s. The I&M networks are clusters of parks within a defined geographic area based on the ecoregions of North America (Fenneman 1946; Bailey 1976; Omernik 1987). These networks share similar physical resources (geology, hydrology, climate), biological resources (flora, fauna), and ecological characteristics. Specialists familiar with the resources and ecological parameters of the network, and associated parks, work with park staff to support network level activities (inventory, monitoring, research, data management). Adopting a network-based approach to inventories worked well when the NPS undertook paleontological resource inventories for the 32 I&M networks. The planning team from the NPS Geologic Resources Division who proposed and designed this inventory selected the Greater Yellowstone Inventory and Monitoring Network (GRYN) as the pilot network for initiating this project (Henderson et al. 2020). Through the research undertaken to identify the geologic stratotypes within the parks of the GRYN methodologies for data mining and reporting on these resources were established. Methodologies and reporting adopted for the GRYN have been used in the development of this report for the Arctic Inventory & Monitoring Network (ARCN). The goal of this project is to consolidate information pertaining to geologic type sections that occur within NPS-administered areas, in order that this information is available throughout the NPS to inform park managers and to promote the preservation and protection of these important geologic landmarks and geologic heritage resources. The review of stratotype occurrences for the ARCN shows there are currently no designated stratotypes for Cape Krusenstern National Monument (CAKR) and Kobuk Valley National Park (KOVA)...
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography