To see the other types of publications on this topic, follow the link: Geology Gravity anomalies Magnetic anomalies Geology.

Dissertations / Theses on the topic 'Geology Gravity anomalies Magnetic anomalies Geology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 21 dissertations / theses for your research on the topic 'Geology Gravity anomalies Magnetic anomalies Geology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hussein, Musa Jad. "Integrated and comparative geophysical studies of crustal structure of pull-apart basins the Salton Trough and Death Valley, California regions /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chan, Mei-ki. "Gravity and aeromagnetic modelling of the Longmenshan Fold-and-Thrust Belt, SW China." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/b4020330x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, Mei-ki, and 陳美琪. "Gravity and aeromagnetic modelling of the Longmenshan Fold-and-Thrust Belt, SW China." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B4020330X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hernandez, Orlando. "Tectonic analysis of northwestern South America from integrated satellite, airborne and surface potential field anomalies." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1158512351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Bin. "An integrated geophysical investigation of the Tamworth Belt and its bounding faults." Phd thesis, Australia : Macquarie University, 2005. http://hdl.handle.net/1959.14/13240.

Full text
Abstract:
Thesis (PhD)--Macquarie University, Division of Environmental & Life Sciences, Department of Earth and Planetary Sciences, 2005.
Bibliography: leaves 202-224.
Introduction -- Geological setting of the New England Fold Belt -- Regional geophysical investigation -- Data acquisition and reduction -- Modelling and interpretation of magnetic data over the Peel Fault -- Modelling and interpretation of magnetic data over the Mooki Fault -- Gravity modelling of the Tamworth Belt and Gunnedah Basin -- Interpretation and discussion -- Conclusions.
This thesis presents new magnetic and gravity data for the Southern New England Fold Belt (SNEFB) and the Gunnedah Basin that adjoins to the west along the Mooki Fault in New South Wales. The SNEFB consists of the Tamworth Belt and Tablelands Complex that are separated by the Peel Fault. The Tablelands Complex to the east of the Peel Fault represents an accretionary wedge, and the Tamworth Belt to the west corresponds to the forearc basin. A total of five east-north-east trending gravity profiles with around 450 readings were conducted across the Tamworth Belt and Gunnedah Basin. Seven ground magnetic traverses of a total length of 60 km were surveyed across the bounding faults of the Tamworth belt, of which five were across the Peel Fault and two were across the Mooki Fault. The gravity data shows two distinct large positive anomalies, one over the Tamworth Belt, known as the Namoi Gravity High and another within the Gunnedah Basin, known as the Meandarra Gravity Ridge. All gravity profiles show similarity to each other. The magnetic data displays one distinct anomaly associated with the Peel Fault and an anomaly immediately east of the Mooki Fault. These new potential field data are used to better constrain the orientation of the Peel and Mooki Faults as well as the subsurface geometry of the Tamworth Belt and Gunnedah Basin, integrating with the published seismic data, geologic observations and new physical properties data. --Magnetic anomalies produced by the serpentinite associated with the Peel Fault were used to determine the orientation of the Peel fault. Five ground magnetic traverses were modelled to get the subsurface geometry of the serpentinite body. Modelling results of the magnetic anomalies across the Peel Fault indicate that the serpentinite body can be mostly modelled as subvertical to steeply eastward dipping tabular bodies with a minimum depth extent of 1-3 km, although the modelling does not constrain the vertical extent. This is consistent with the modelling of the magnetic traverses extracted from aeromagnetic data. Sensitivity analysis of a tabular magnetic body reveals that a minimum susceptibility of 4000x10⁻⁶cgs is needed to generate the observed high amplitude anomalies of around 2000 nT, which is consistent with the susceptibility measurements of serpentinite samples along the Peel Fault ranging from 2000 to 9000 x 10⁻⁶ cgs. Rock magnetic study indicates that the serpentinite retains a strong remanence at some locations. This remanence is a viscous remanent magnetisation (VRM) which is parallel to the present Earth's magnetic field, and explains the large anomaly amplitude over the Peel fault at these locations. The remanence of serpentinite at other localities is not consistent enough to contribute to the observed magnetic anomalies. A much greater depth extent of the Peel Fault was inferred from gravity models. It is proposed that the serpentinite along the Peel Fault was emplaced as a slice of oceanic floor that has been accreted to the front of the arc, or as diapirs rising off the serpentinised part of the mantle wedge above the supra subduction zone.
Magnetic anomalies immediately east of the Mooki Fault once suggested to be produced by a dyke-like body emplaced along the fault were modelled along two ground magnetic traverses and three extracted aeromagnetic lines. Modelling results indicate that the anomalies can be modelled as an east-dipping overturned western limb of an anticline formed as a result of a fault-propagation fold with a shallow thrust step-up angle from the décollement. Interpretation of aeromagnetic data and modelling of the magnetic traverses indicate that the anomalies along the Mooki Fault are produced by the susceptibility contrast between the high magnetic Late Carboniferous Currabubula Formation and/or Early Permian volcanic rocks of the Tamworth Belt and the less magnetic Late Permian-Triassic Sydney-Gunnedah Basin rocks. Gravity modelling indicates that the Mooki Fault has a shallow dip ( ̃25°) to the east. Modelling of the five gravity profiles shows that the Tamworth Belt is thrust westward over the Sydney-Gunnedah Basin for 15-30 km. --The Meandarra Gravity Ridge within the Gunnedah Basin was modelled as a high density volcanic rock unit with a density contrast of 0.25 tm⁻³, compared to the rocks of the Lachlan Fold Belt in all profiles. The volcanic rock unit has a steep western margin and a gently dipping eastern margin with a thickness ranging from 4.5-6 km, and has been generally agreed to have formed within an extensional basin. --The Tamworth Belt, being mainly the product of volcanism of mafic character and thus has high density units, together with the high density Woolomin Association, which is composed chiefly of chert/jasper, basalt, dolerite and metabasalt, produces the Namoi Gravity High. Gravity modelling results indicate that the anomaly over the Tamworth Belt can be modelled as either a configuration where the Tablelands Complex extends westward underthrusting the Tamworth Belt, or a configuration where the Tablelands Complex has been thrust over the Tamworth Belt. When the gravity profiles were modelled with the first configuration, the Peel Fault with a depth extent of around 1 km can only be modelled for the Manilla and Quirindi profiles, modelling of the rest of the gravity profiles indicates that the Tablelands Complex underthrust beneath the Tamworth belt at a much deeper location.
Mode of access: World Wide Web.
xi, 242 leaves ill., maps
APA, Harvard, Vancouver, ISO, and other styles
6

Ussami, Naomi. "Interpretation of the gravity anomalies of Bahia state Brazil." Thesis, Durham University, 1986. http://etheses.dur.ac.uk/6828/.

Full text
Abstract:
This thesis describes the gravity interpretation of Bahia State, Brazil, which comprises the northern Sao Francisco craton, the Upper Proterozoic fold belts and the basins adjacent to the continental margin. The study centres on the isostatic analysis of the region and on the interpretation of large and high amplitude negative anomalies which occur over the Precambrian and the sedimentary basins. The isostatic analysis of the northern Sao Francisco craton was carried out using the isostatic response function technique. Taking into account subsurface loads, an elastic plate with a minimum effective thickness of 20-40 km explains the observed isostatic response function. The subsurface loads are (l) a slight thickening of the crust under the Espinhaco Fold System and (2) five to ten kilometres of low density rocks in the upper crust. A large and high amplitude ( - 50 mGal ) negative anomaly of shallow origin, centred near the western border of the Paramirim complex and parallel to the Espinhaco fold belt, is interpreted as caused by a large and mainly unexposed granite batholith. The granite substantially underlies the fold belt and extends towards the centre of the Paramirim complex. The minimum density contrast between the granite and the country rocks is estimated to be -0.06 g cm(^-3). The thickness of the granite is 8 to 13 km for density contrasts of -0.15 g cm(^-3) to -0.10 g cm(^-3). A series of high amplitude negative anomalies (50 to 100 rrGal), without flanking positive anomalies, characterizes the onshore Reconcavo, Tucano and Jatoba basins, which were ail formed in connection with the South Atlantic opening. The gravity interpretation indicates up to 7 km of sediments infilling these basins and no significant Mo ho upwarp beneath. In contrast, the gravity anomalies over the offshore Jacuipe and Sergipe-Alagoas basins are explained by a thick accumulation of sediments on a strongly attenuated crust. The onshore basins show short-lived subsidence ( < 25 Ma) with little, if any thermal subsidence. Syn-rift and post-rift (thermal) sedimentation is observed only in the continental margin basins. A mechanism in which upper crustal extension in one region (onshore basins) is compensated and balanced against lower extension in another region (offshore basins), through a detachment fault, may explain the way these basins formed.
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Hyung Rae. "Antarctic lithospheric anomalies from Ørsted Satellite and near-surface magnetic observations /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486457871784852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wyer, Paul Patrick Andrew. "Gravity anomalies and segmentation of the Eastern USA passive continental margin." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:cefa0dff-a009-4511-a530-c3e3d3b2da1e.

Full text
Abstract:
A compilation of high quality post-rift sediment isopach data has been used in conjunction with the observed free-air gravity anomaly to determine segmentation of the long term mechanical properties of the lithosphere at the Eastern USA passive margin. This segmentation is represented by a process-oriented analysis in which the flexural response of the margin to post-rift sediment loading is controlled by spatial variations in effective elastic thickness (Te) of the underlying lithosphere. Existing Eastern USA margin Te estimates range from less than 10km to more than 30km. In this study it is shown that high strengths of 10 - 40km Te are confined to structural arches dividing the broadest marginal basins, while low strengths of less than 10km Te are typically found in structural embayments and beneath the deep basins. The hinge zone, across which the degree of continental thinning increases rapidly, marks the transition between high and low strength. Yield strength envelope models support an argument that regions of low strength were created by lithospheric thinning during rifting, and sustained by thermal insulation and flexural curvature associated with voluminous post-rift sediment deposition. Along-strike Te variations - reflected in the alternation of basement platforms and embayments - are attributed to inheritance of lithospheric segmentation from earlier tectonic events. Along-strike segmentation of the margin has previously been observed as a 300 - 500km wavelength spectral energy peak in the shelf break Airy isostatic gravity anomaly (IGA) high. That this segmentation is explained by variations in the underlying lithospheric strength is demonstrated by a flexural IGA high in which the equivalent spectral peak is absent. The spectral energy of the along-strike Te distribution peaks in the same waveband. Removal of process-oriented components from the observed free-air gravity anomaly reveals other contributions that were not resolved in earlier studies. In particular, the (previously unknown) Carolina Trough Isostatic Gravity Anomaly, has been identified and attributed to an extrusive (syn-rift) volcanic source. Detailed study of this anomaly suggests that the margin is segmented in terms of its volcanic character, and argues against recent estimates of the volume of new igneous material emplaced during rifting.
APA, Harvard, Vancouver, ISO, and other styles
9

Fagbola, Olamide Olawumi. "Integrated study of basins in the Four Corners Region." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jones, Michael Bryan. "Correlative Analysis of the Gravity and Megnetic Anomalies of Ohio and their Geologic Significance." The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392823447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Richmond, N. C., L. L. Hood, and A. B. Binder. "Correlations between magnetic anomalies and surface geology antipodal to lunar impact basins." AMER GEOPHYSICAL UNION, 2005. http://hdl.handle.net/10150/623350.

Full text
Abstract:
Previous work has shown that the strongest concentrations of lunar crustal magnetic anomalies are located antipodal to four large, similarly aged impact basins (Orientale, Serenitatis, Imbrium, and Crisium). Here, we report results of a correlation study between magnetic anomaly clusters and geology in areas antipodal to Imbrium, Orientale, and Crisium. Unusual geologic terranes, interpreted to be of seismic or ejecta origin associated with the antipodal basins, have been mapped antipodal to both Orientale and Imbrium. All three antipode regions have many high-albedo swirl markings. Results indicate that both of the unusual antipode terranes and Mare Ingenii (antipodal to Imbrium) show a correlation with high-magnitude crustal magnetic anomalies. A statistical correlation between all geologic units and regions of medium to high magnetization when high-albedo features are present (antipodal to Orientale) may suggest a deep, possibly seismic origin to the anomalies. However, previous studies have provided strong evidence that basin ejecta units are the most likely sources of lunar crustal anomalies, and there is currently insufficient evidence to differentiate between an ejecta or seismic origin for the antipodal anomalies. Results indicate a strong correlation between the high-albedo markings and regions of high magnetization for the Imbrium, Orientale, and Crisium antipodes. Combined with growing evidence for an Imbrian age to the magnetic anomalies, this supports a solar wind deflection origin for the lunar swirls.
APA, Harvard, Vancouver, ISO, and other styles
12

Eskamani, Philip K. "Seafloor spreading in the eastern Gulf of Mexico| New evidence for marine magnetic anomalies." Thesis, Colorado State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1564450.

Full text
Abstract:

Possible sea-floor spreading anomalies are indentified in marine magnetic surveys conducted in the eastern Gulf of Mexico. A symmetric pattern of lineated anomalies can be correlated with the geomagnetic time scale using previously proposed opening histories for the Gulf of Mexico basin. Lineated magnetic anomalies are characterized by amplitudes of up to 30 nT and wavelengths of 45-55 km, and are correlatable across 12 different ship tracks spanning a combined distance of 6,712 km. The magnetic lineations are orientated in a NW-SE direction with 3 distinct positive lineations on either side of the inferred spreading ridge anomalies. The magnetic anomalies were forward modeled with a 2 km thick magnetic crust composed of vertically bounded blocks of normal and reverse polarity at a model source depth of 10 km. Remnant magnetization intensity and inclination are 1.6 A m-1 and 0.2° respectively, chosen to best fit the magnetic observed amplitudes and, for inclination, in accord with the nearly equatorial position of the Gulf of Mexico during Jurassic seafloor spreading. The current magnetic field is modeled with declination and inclination of and 0.65° and 20° respectively. Using a full seafloor spreading rate of 1.7 cm/yr, the anomalies correlate with magnetic chrons M21 to M10. The inferred spreading direction is consistent with previous suggestions of a North-East to South-West direction of sea-floor spreading off the west coast of Florida beginning 149 Ma (M21) and ending 134 Ma (M10). The opening direction is also consistent with the counter-clockwise rotation of Yucatan proposed in past models.

APA, Harvard, Vancouver, ISO, and other styles
13

Jordan, Tom A. R. M. "Gravity anomalies, flexure, and the long-term rigidity of the continental lithosphere." Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:9f803b42-522e-442b-9849-bb8e6c2a5494.

Full text
Abstract:
The cause and distribution of spatial variations in the mechanical properties of the continental lithosphere are fundamental questions for modern geology. In this study variations in long-term lithospheric rigidity have been investigated. These investigations used profile- and grid-based flexural models of the lithosphere’s response to geologically imposed topographic, or buried, loads. These models were constrained by topographic and gravity data allowing recovery of best fitting rigidity values. In Oman a Cretaceous ophiolite acts as a significant load on the continental crust. Flexural models along profiles orthogonal to the ophiolite strike show that the observed gravity data can be best modelled by an elastic beam with standard thickness (Te) of 30 km. Along strike there is shown to be significant variation in the foreland shape and the observed gravity signal. This, it is proposed, relates to the complex tectonic processes which occurred as the ophiolite was obducted. The Himalayan foreland has been the focus of controversy over the recovered long-term rigidity of the continents, with recovered Te values ranging from 40 to over 90 km. Both profile- and grid-based techniques show that Te is high (>70 km) in the foreland region. Across the India-Eurasia collisional system as a whole Te values are variable. Beneath the Tibetan plateau recovered values are generally low (<10 km), while the plateau margins are marked by regions of higher rigidity. Recovered Te values across the Arabia-Eurasia collisional system range from over 60 km in the foreland region to close to zero beneath the high Zagros mountains. In the eastern part of the foreland, flexural models match the gravity data; however, they disagree with sediment thickness data for the material infilling the foreland. This discrepancy is interpreted in terms of de-coupling of the flexural lithosphere from the shallower crustal levels, caused by the presence of significant salt deposits in this region. Application of grid-based techniques to South America, North America and Europe recover a broad range of Te values from ∼0 to over 90 km. The low Te values are explained in active orogenic belts in terms of current processes acting to weaken the lithosphere, and in the continental interiors as the relics of past orogenic events. High Te values in the continental interiors correlate with ancient cratonic cores which have undergone little deformation since their formation in the Archean. This study shows that Te variations have a critical influence on the development of large compressional orogenic belts. In the Himalayan and Andean orogens there is a correlation between the over-thrusting of the orogenic belt and high Te foreland regions. Where lower Te regions are seen, less over thrusting is apparent, and in the case of the India-Eurasia collisional system out-flow of lower crustal material may be occurring.
APA, Harvard, Vancouver, ISO, and other styles
14

Munschy, Marc. "Etude geophysique detaillee du point triple de rodriguez et de la zone axiale des trois dorsales associees (ocean indien)." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13057.

Full text
Abstract:
L'etude geophysique detaillee (bathymetrie seabeam, gravimetrie, magnetisme) du point triple rodriguez et d'un segment de la zone axiale des trois dorsales oceaniques associees situe a environ 400 km du point triple, a permis de realiser des cartes bathymetriques, gravimetriques et magnetiques de ces quatre zones qui representent des surfaces d'environ 8500 km**(2)
APA, Harvard, Vancouver, ISO, and other styles
15

Peavy, Samuel Thomas. "A gravity and magnetic interpretation of the Bay St. George carboniferous subbasin in western Newfoundland /." 1985. http://collections.mun.ca/u?/theses,122576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Soofi, Muhammad Asif. "Crustal structure of the northwestern continental margin of the Indian subcontinent from gravity and magnetic data." Thesis, 1991. http://hdl.handle.net/1957/29074.

Full text
Abstract:
The continental margin off the coast of Pakistan between the Murray ridge and the Gulf of Cambay has been studied in this work using gravity, magnetic and bathymetric data. Two dimensional gravity and magnetic models based on free-air gravity and residual magnetic data are developed along a north-south profile off the coast of Karachi. The purpose was to interpret the gross crustal structure of the region. A magnetic map has also been developed for the region between latitudes 20°N and 27°N and between longitude 60°E and 70°E. The gravity model extends to a distance of about 1200 km seaward south of Karachi. The seaward end of the gravity model is constrained by seismic refraction data which suggest the presence of typical oceanic crust. The Moho depth at this end of the profile is about 12 km. At the landward end of the profile A-A' the Moho depth is not constrained by seismic data. The gravity model suggests 27 to 17 km as the possible range of the depth of the Moho and a gradual thinning of the crust from land to sea. In addition, the gravity models as interpreted in this study show grabens at the distances of 350 and 450 km along the profile. If the graben-like structures are rift grabens formed during the rifting of India from Africa then transitional crust can be expected to extend to the 500 km mark along the profile A-A'. Two dimensional models for the magnetic data along the profile were also developed. These anomalies can be interpreted as due to oceanic crust or magnetic bodies embedded in transitional crust. The possibility that the observed magnetic anomalies are due to oceanic crust has been studied in detail in this work. The location of the observed magnetic anomalies with respect to marine magnetic anomaly (28) observed earlier on the Indian Ocean floor, were compared to a marine magnetic time scale. To get a reasonable correlation between the observed and theoretical anomalies requires a considerable amount of adjustment in the spreading rate of individual magnetic blocks. Also on the magnetic map the trend of the lineation of these anomalies is perpendicular to the continental margin instead of being parallel to the continental margin as expected for a rifted continental margin. The presence of horst-and-graben structures in the inland region suggests the rifted nature for the continental margin off Karachi than the sheared nature. This indicates that the lineations should be parallel to the margin. But the magnetic lineations are perpendicular to the continental margin and if they are from oceanic crust then they would suggest that the margin is a sheared margin, which contradicts the extensional structures observed inland. This makes it very unlikely that the source of these anomalies is oceanic crust. However, it is quite possible that the magnetic lineations observed in the map were parallel to the continental margin initially but later on the continent rotated clockwise along a fault landward of the magnetic lineation. This rotation is perhaps responsible for making the lineation perpendicular to the continental margin. One objective of this study was to locate the continent-ocean boundary, but with the available amount of data it is not possible to decide on the most appropriate source for the observed magnetic anomalies. Hence it was not possible to decide exactly on the location of continent-ocean boundary. However, on the basis of gravity and magnetic data it can be said that the continent-ocean boundary lies at a distance of 500 km or greater along the profile.
Graduation date: 1992
APA, Harvard, Vancouver, ISO, and other styles
17

Wiseman, Ronald. "Potential field modelling and interpretation along the Lithoprobe East onshore seismic reflection transects across the Newfoundland Appalachians /." 1994. http://collections.mun.ca/u?/theses,41270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Khurshid, Akbar. "Crustal structure of the Sulaiman Range, Pakistan, from gravity data /." 1991. http://hdl.handle.net/1957/9234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Diehl, Theresa Marie 1981. "Gravity analyses for the crustal structure and subglacial geology of West Antarctica, particularly beneath Thwaites Glacier." 2008. http://hdl.handle.net/2152/18359.

Full text
Abstract:
The West Antarctic Ice Sheet (WAIS) is mostly grounded in broad, deep basins (down to 2.5 km below sea level) that are stretched between five crustal blocks. The geometry of the bedrock, being mostly below sea level, induces a fundamental instability in the WAIS through the possibility of runaway grounding line retreat. The crustal environment of the WAIS further influences the ice sheet’s fast flow through conditions at the ice-bedrock boundary. This study focuses on understanding the WAIS by examining the subglacial geology (such as volcanoes and sedimentary basins) at the icebedrock boundary and the continent’s deeper crustal structure- primarily using airborne gravity anomalies. The keystone of this study is a 2004-2005 aerogeophysical survey over one of the most negative mass balance glaciers on the continent: Thwaites Glacier (TG). The gravity anomalies derived from this dataset- as well as gravity-based modeling and spectral crustal boundary depth estimates- reveal a heterogeneous crustal environment beneath the glacier. The widespread Mesozoic rifting observed in the Ross Sea Embayment (RSE) of West Antarctica extends beneath TG, where the crust is ~27 km thick and cool. Adjacent to TG, spectrally-derived shallow Moho depths for the Marie Byrd Land (MBL) crustal block can be explained by thermal support from warm mantle. I assemble here new compilations of free-air and Bouguer gravity anomalies across West Antarctica (from both airborne and satellite datasets) and re-interpret the extents of West Antarctic crustal block and their boundaries with the rift system. Airy isostatic gravity anomalies reveal that TG is relatively sediment starved, in contrast to the sediment-rich RSE. TG’s fast flow velocities could be sustained in this sediment poor environment if higher heat flux in MBL was providing an ample source of subglacial melt water to the glacier. The isostatic anomalies also indicate that TG’s outlet rests on a bedrock sill that will impede future grounding line retreat (up to ~100 km) and temporarily stabilize the glacier.
text
APA, Harvard, Vancouver, ISO, and other styles
20

Scheidhauer, Maren. "Crustal structure of the Queen Charlotte Transform Fault Zone from multichannel seismic reflection and gravity data." Thesis, 1997. http://hdl.handle.net/1957/37218.

Full text
Abstract:
The Queen Charlotte Fault system is a segment of the North America - Pacific plate boundary. From 45 Ma - 5 Ma, plate motion has been primarily translational. Since 5 Ma, transpression has been the dominant mode of interaction. The plate boundary west of the Queen Charlotte Islands is characterized by an approximately 30- km wide terrace, flanked to the west by a topographic trough and to the east by the seismically active Queen Charlotte Fault. At 53.4°N the fault bends eastward and the terrace becomes wider and discontinuous, forming triangular shaped highs and intervening lows. Approximately 300 km of multichannel seismic reflection and gravity data along and across the Queen Charlotte Fault off Dixon Entrance were collected as part of the ACCRETE experiment in 1994. Structural interpretation of the five new profiles reveals the presence of faults and folds within the terrace, which form an angle of 20° to the strike of the Queen Charlotte Fault. The direction of these structures corresponds to the trend of the plate boundary south of the bend and west of the Queen Charlotte Islands, implying that through complex compression and shear, material must have been carried from south to north along the margin during oblique plate motion. Based on this observation and on forward gravity modeling, which places limits on the possible plate configuration at depth, a four-dimensional model has been developed to explain the temporal and spatial evolution of structural styles in this region. Considering the amount of shortening that must be accommodated within the past 5 Ma (a maximum of 100 km), a model of an underthrusting Pacific plate is preferred over one of pure upthrusting. About 5-6 Ma ago, when transpression began, oceanic crust was flexed and thrust upward at the plate boundary to eventually reach a steady-state configuration of a subducting slab. Fractured basement rock and consolidated, deformed sediments underlie the terrace and form its foundation. As a result of strain partitioning, the terrace is now decoupled and moves both parallel to the continent and perpendicular to the underthrusting Pacific plate. North of the bend in the Queen Charlotte Fault, underthrusting north of it occurs obliquely along preexisting fractures at the base of the terrace. The repetitive pattern of triangular terrace slivers is the result of continuing uplift and shear along these trends. Active tectonism influences sediment dispersal and creates traps. A N-S trending fault was also identified in the trough segment and possibly involves oceanic basement. Its origin is thought to be due to distributed shear that was transmitted across the plate boundary. Sea-floor spreading magnetic anomalies trend north-south as well. Along these zones of weakness, synthetic strike-slip faults of a transpressional strain ellipse could has been initiated during early stages of subduction. Reactivation of such faults may occur when oceanic crust approaches the outer terrace boundary, as is the case in the study region. Gravity modeling confirmed the existence of thin (24 km) continental crust and an increase in oceanic Moho dip beneath the terrace, which is topped by unconsolidated sediments and underlain by material of near-basement densities. It could not be determined using gravity modeling whether oceanic crust exists beneath the continent, but if it does, it must be welded to the North American plate in shallow subduction.
Graduation date: 1998
APA, Harvard, Vancouver, ISO, and other styles
21

Doguin, Pierre. "Crustal structure and faulting of the Gulf of California from geophysical modeling and deconvolution of magnetic profiles." Thesis, 1989. http://hdl.handle.net/1957/29154.

Full text
Abstract:
Using gravity, magnetic, bathymetric and seismic refraction data, I have constructed a geophysical cross-section of the central part of the northern Gulf of California. The section exhibits a crustal thickness of 18 km and features an anomalous block of high density lower basement (3.15 g/cm³) which probably resulted from rifting processes during the opening of the Gulf. The magnetization of the upper basement ranges from 0.0005 to 0.0030 emu/cm³. Three different layers of sediments are modeled, ranging from unconsolidated (1.85 g/cm³) to compacted (2.50 g/cm³). I present a deconvolution method for automated interpretation of magnetic profiles based on Werner's (1953) simplified thin-dike assumption, leading to the linearization of complex nonlinear magnetic problems. The method is expanded by the fact that the horizontal gradient of the total field caused by the edge of a thick interface body is equivalent to the total field of a thin dike. Statistical decision making and a seven point operator are used to insure good approximations of susceptibility, dip, depth, and horizontal location of the source. After using synthetic models to test the inversion method, I applied it to the Northern Gulf of California using data collected in 1984 by the Continental Margins Study Group at Oregon State University. Fault traces, computed by the deconvolution, are plotted on a map. The faulting pattern obtained is in good agreement with that proposed by other workers using other methods. The depths to the top of the faults range from 4 to 5 km in the eastern part of the Gulf, where they may be interpreted as the top of the structural basement. Deeper estimates are obtained for the western part of the Gulf.
Graduation date: 1990
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography