Academic literature on the topic 'Geology – South Africa – Transvaal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geology – South Africa – Transvaal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geology – South Africa – Transvaal"

1

Buick, I. S., R. Uken, R. L. Gibson, and T. Wallmach. "High-δ13C Paleoproterozoic carbonates from the Transvaal Supergroup, South Africa." Geology 26, no. 10 (1998): 875. http://dx.doi.org/10.1130/0091-7613(1998)026<0875:hcpcft>2.3.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eriksson, P. G., and W. Altermann. "An overview of the geology of the Transvaal Supergroup dolomites (South Africa)." Environmental Geology 36, no. 1-2 (November 20, 1998): 179–88. http://dx.doi.org/10.1007/s002540050334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Talbot, C. J., D. R. Hunter, and A. R. Allen. "Deformation of the Assegaai supracrustals and adjoining granitoids, Transvaal, South Africa." Journal of Structural Geology 9, no. 1 (January 1987): 1–12. http://dx.doi.org/10.1016/0191-8141(87)90039-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lenhardt, N., W. Altermann, F. Humbert, and M. de Kock. "Lithostratigraphy of the Palaeoproterozoic Hekpoort Formation (Pretoria Group, Transvaal Supergroup), South Africa." South African Journal of Geology 123, no. 4 (December 1, 2020): 655–68. http://dx.doi.org/10.25131/sajg.123.0043.

Full text
Abstract:
Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.
APA, Harvard, Vancouver, ISO, and other styles
5

Martini, J. E. J. "An early Proterozoic playa in the Pretoria Group, Transvaal, South Africa." Precambrian Research 46, no. 4 (March 1990): 341–51. http://dx.doi.org/10.1016/0301-9268(90)90020-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hartzer, F. J. "Transvaal Supergroup inliers: geology, tectonic development and relationship with the Bushveld complex, South Africa." Journal of African Earth Sciences 21, no. 4 (November 1995): 521–47. http://dx.doi.org/10.1016/0899-5362(95)00108-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gauert, C. D. K., S. A. De Waal, and T. Wallmach. "Geology of the ultrabasic to basic Uitkomst complex, eastern Transvaal, South Africa: an overview." Journal of African Earth Sciences 21, no. 4 (November 1995): 553–70. http://dx.doi.org/10.1016/0899-5362(95)00112-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lubala, R. T., C. Frick, J. H. Rogers, and F. Walraven. "Petrogenesis of Syenites and Granites of the Schiel Alkaline Complex, Northern Transvaal, South Africa." Journal of Geology 102, no. 3 (May 1994): 307–16. http://dx.doi.org/10.1086/629673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Karpeta, W. P. "Volcanism and sedimentation in part of a Late Archaean rift: the Hartbeesfontein basin, Transvaal, South Africa." Basin Research 5, no. 1 (March 1993): 1–19. http://dx.doi.org/10.1111/j.1365-2117.1993.tb00053.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simonson, Bruce M., Christian Koeberl, Iain McDonald, and Wolf Uwe Reimold. "Geochemical evidence for an impact origin for a Late Archean spherule layer, Transvaal Supergroup, South Africa." Geology 28, no. 12 (2000): 1103. http://dx.doi.org/10.1130/0091-7613(2000)28<1103:gefaio>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Geology – South Africa – Transvaal"

1

Riganti, Angela. "The geology and geochemistry of the north-western portion of the Usushwana Complex, South-Eastern Transvaal." Thesis, Rhodes University, 1992. http://hdl.handle.net/10962/d1005570.

Full text
Abstract:
The 2.9 Ga old Usushwana Complex in the Piet Retief-Amsterdam area (south-eastern Transvaal) represents an exposed segment of a layered intrusion. It has the form of a dyke-like body elongated in a northwesterly direction, and extends to an estimated depth of 3000 -5500 m. Lithologically, the Complex consists of a cumulate succession of mafic rocks capped by granitoids and has intruded along the contact between the basement and the supracrustal sequences of the Kaapvaal Craton. Differentiation of an already contaminated gabbroic magma resulted in an ordered stratigraphic sequence comprising progressively more evolved lithotypes, with at least two imperfect cyclic units developed over a stratigraphic thickness of about 700 metres (Hlelo River Section). Meso- to orthocumulate textured gabbros and quartz gabbros grade upwards into magnetite- and apatite-bearing quartz gabbros, interlayered with discontinuous magnetitite horizons. The gabbros in turn grade into hornblende-rich, granophyric granodiorites. The differentiation process is regarded as having been considerably enhanced by the assimilation of acidic material, derived by partial melting of the felsic country rocks at the roof of the magma chamber. Recrystallisation of these rocks gave rise to the microgranites that locally overlie the granodiorites. Mineralogical, textural and geochemical features indicate a relatively advanced fractionation stage, suggesting that the exposed sequence of the Usushwana Complex in the study area represents the upper portion of the intrusion. No significant mineralised occurrences were identified. However, on the basis of similarities between the Usushwana Complex and other mafic layered intrusions which host significant ore deposits, it is suggested that economic concentrations of base metal(Cu-Ni) sulphides, PGE and chromitites are likely to be developed at lower stratigraphic levels.
APA, Harvard, Vancouver, ISO, and other styles
2

Crous, Stephanus Philippus. "The geology, geochemistry and stratigraphic correlations of the farm Rietfontein 70 JS on the south -eastern flank of the Dennilton Dome, Transvaal, South Africa." Thesis, Rhodes University, 1996. http://hdl.handle.net/10962/d1005572.

Full text
Abstract:
The study area is located between Loskop Dam and the town of Groblersdal, on the southeastern flank of the Dennilton dome, and is underlain by lithologies of the Pretoria Group, Bushveld Complex mafics and ultramafics and acid lavas that resort under the Rooiberg felsites. Field work comprised of geological mapping, soil-, hard-rock- and stream sediment geochemistry, various geophysical techniques and diamond drilling. The rocktypes that resembles the Rustenburg Layered Suite on the farm Rietfontein 70JS is subdivided into a Mixed Zone, Critical Zone and Main Zone, on grounds of geochemical and certain geophysical attributes. The Mixed Zone that overlies the Bushveld Complex floor-rocks, is furthermore separated into an i) Lower-, ii) Middle- and, iii) Upper Unit. The Lower Unit of the Mixed Zone consists primarily of magnetite-gabbros, iron-rich pegmatites, harzburgites and feldspathic pyroxenites. The Fe-rich constituents of this stratigraphic horizon generates a pronounced magnetic anomaly within the study area. On the basis of; amongst other parameters, Zr/Rb and Sr/Al₂0₃ ratios, the magnetite-gabbros are postulated to conform to lithotypes in the vicinity of magnetite layers 8 to 14 of Upper Zone Subzone B in a normal Bushveld Complex stratigraphical scenario. Similarly, it is argued that the feldspathic pyroxenites and norites that display elevated chromium values are analogues to normal Critical Zone rocktypes of the Rustenburg Layered Snite. A more elaborate and precise stratigraphic correlation for the Critical zone was, however, not possible. It is advocated that a volume imbalance was created by the hot, ascending mafic magmas of the intruding Bushveld Complex, resulting in the updoming of certain prevailing basement features such as the Dennilton Dome. In addition to this ideology, it is proposed that the Mineral Range Fragment is in fact a large xenolith underlain by mafics, after being detached from the Dennilton Dome during the intrusion event. Evidence generated by this study unequivocally indicate that the potential for viable PGE's, Ni, Cu and Au within a Merensky Reef- type configuration or a Plat Reef-type scenario under a relatively thin veneer of acid Bushveld Complex roof-rocks on the eastern flank of the Dennilton Dome, appears feasible.
APA, Harvard, Vancouver, ISO, and other styles
3

Bartman, R. D. (Reynard Dirk). "Geology of the Palaeoproterozoic Daspoort Formation (Pretoria Group, Transvaal Supergroup), South Africa." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/42447.

Full text
Abstract:
This thesis examines the geology of the Daspoort Formation (Pretoria Group, Transvaal Supergroup) of South Africa, with the accent on describing and interpreting its sedimentology. The Palaeoproterozoic Daspoort Formation (c. 2.1‐2.2 Ga) forms part of the Pretoria Group on the Kaapvaal craton. This sandstone‐ and quartzite‐dominated lithological formation covers an elliptical geographical area stretching from the Botswana border in the west to the Drakensberg escarpment in the east, with its northern limit in the Mokopane (Potgietersrus) area and Pretoria in the south; altered outliers are also found in the overturned units of the Vredefort dome in the Potchefstroom area. Deposition of the Daspoort Formation was in a postulated intracratonic basin which applies equally to the entire Transvaal Supergroup succession in the Transvaal depository. Various characteristics from the formation, such as sedimentary architectural elements (e.g., channel–fills etc.), maturity trends and distribution of lithofacies assemblages across the preserved basin give insight into the developing conditions during deposition and genesis of the Daspoort Formation. Subordinate evidence from basic geochemistry, ripple mark data and optical microscope petrology studies support the sedimentary setting inferred for this Palaeoproterozoic deposit. Fluvial and epeiric marine conditions prevailed during the deposition of the Daspoort clastic sediments into the intracratonic basin. This shallow epeiric sea was fed by fluvial influx, predominantly from the west when a transgressive regional systems tract led to the filling of the basin, evolving into the deeper marine Silverton Formation setting, laid down above the Daspoort. Transgression from the east (marine facies predominate) to the west (fluvial facies) is supported by cyclical trends, palaeoenvironmental and palaeogeographical interpretations. Accompanying poorly preserved microbial mat features contribute to the postulated shallow marine environment envisaged for the eastern part of the basin whereas ripple marks and grain size distribution support a fluvial setting for the west, with lithofacies assemblages accounting for both areas’ depositional interpretation.
Dissertation (MSc)--University of Pretoria, 2013.
tm2014
Geology
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
4

Brennan, Michael Brendan. "The genesis of ilmenite-rich heavy mineral deposits in the Bothaville/Delmas area, and an economic analysis of titanium, with particular reference to the Dwarsfontein deposit, Delmas district." Thesis, Rhodes University, 1991. http://hdl.handle.net/10962/d1005561.

Full text
Abstract:
A number of ilmenite-rich heavy mineral deposits occur along the northern margin of the intracratonic Karoo basin, and are hosted by the fluvio-deltaic Middle Ecca Group. Coastal reworking of delta front sands within a regressive, microtidal shoreline may be considered as a depositional model for the development of the heavy mineral deposits. An economic analysis of titanium suggests long term positive demand, and sustained high prices for this commodity. An evaluation of the Dwarsfontein ilmenite-rich heavy mineral deposit, using available data, indicates how important it is for deposits of this type to be situated close to an upgrading plant or export harbour.
APA, Harvard, Vancouver, ISO, and other styles
5

Latorre-Muzzio, Gina. "The influence of geological, genetic and economic factors on the ore reserve estimation of Kwaggashoek east iron ore deposit." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005584.

Full text
Abstract:
Tectonics plays an important role in the genesis and subsequent mlnlng development of the Kwaggashoek East ore body. Lithological key units control the effectiveness of the ore forming processes, affecting the in situ ore reserve, The Kwaggashoek East deposit is the product of primary and secondary processes. A genetic model focussed on the source, migration and deposition of iron suggests a possible original source of iron as the product of very dilute hydrothermal input into deep ocean waters, with subsequent migration through structural conduits. Supergene processes account for the upgrading of the ore and the phosphorus redistribution. A good correlation between samples in a preliminary geostatistical study reflects the effectiveness of this process in the high grade ore zone. A broad overview of the economic issues which affect the commercialization of iron, indicates a balanced supply-demand situation for the five next years. The reserve estimation procedure requires accurate scientific terminology and appropriate methodology. Documentation is essential and should be detailed enough to allow for future reassessment. The results of three estimation methods in Kwaggashoek East differ by less than 5%. The accuracy of the final results depends more on geological interpretation and assumptions than on the method applied. Although optimization of grade and tonnage in the Kwaggashoek East deposit seems to be met with the actual cut-off grade used in the Thabazimbi mine district, the grade-quality concept introduced in this thesis indicates a decrease in the estimated reserves for the deposit
APA, Harvard, Vancouver, ISO, and other styles
6

De, Bever Johannes Nicolaas. "An overview of the early-proterozoic, auriferous Black Reef placer in the Transvaal Basin." Thesis, Rhodes University, 1997. http://hdl.handle.net/10962/d1005596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Polteau, Stéphane. "Stratigraphy and geochemistry of the Makganyene formation, Transvaal supergroup, Northern Cape, South Africa." Thesis, Rhodes University, 2001. http://hdl.handle.net/10962/d1005616.

Full text
Abstract:
The Makganyene Formation forms the base of the Postmasburg Group in the Transvaal Supergroup of the Northern Cape Province. The Makganyene Formation has diamictite as the main rock type, but siltstone, sandstone, shale, and iron-formations are also present. A glacial origin has been proposed in the past due to the presence of dropstones, faceted and striated pebbles. Typically, the Makganyene Formation contains banded iron-formations interbedded with clastic rocks (shale, siltstone, sandstone and diamictites) at the contact with the underlying iron-formations. This transitional zone is generally overlain by massive or layered diamictites which contain poorly sorted clasts (mainly chert) within a shaly matrix. Striated pebbles have been found during field work, and dropstones have been observed in diamictites and banded iron-formations during the study. The top of the Makganyene Formation contains graded cycles interbedded with diamictites and thin layers of andesitic lavas from the Ongeluk Formation. The basal contact of the Makganyene Formation with the underlying Koegas Subgroup was described as unconformable by previous workers. However field work localised in the Rooinekke area shows a broadly conformable and interbedded contact with the underlying Koegas Subgroup. As described above, banded iron-formations are interbedded with the clastic rocks of the Makganyene Formation. Moreover, boreholes from the Sishen area display the same interbedding at the base of the Makganyene Formation. This suggests that no significant time gap is present in the whole succession between the Ghaap and Postmasburg Group. The Transvaal Supergroup in the Northern Cape displays the following succession : carbonates-BIFs-diamictites/ lava-BIFs-carbonates. The Makganyene Formation is thus at the centre of a symmetrical lithologic succession. Bulk rock compositions show that the diamictites have a similar composition to banded iron-formation with regard to their major element contents. Banded iron-formations acted as a source for the diamictites with carbonates and igneous rocks representing minor components. Differences in bulk composition between the Sishen and Matsap areas emphasize that the source of the diamictite was very localised. The Chemical Index of Alteration (CIA) has been calculated, but since the source dominant rock was iron-formation, this index cannot be usefully applied to the diamictites. ACN, A-CN-K, and A-CNK-FM diagrams confer a major importance in sorting processes due to the separation between the fine and coarse diamictites. The interbedded iron-formations display little clastic contamination indicating deposition in clear water conditions. However, dropstones are present in one borehole from the Matsap area, indicating that iron-formation took place under ice cover, or at least under icebergs. Stable isotope studies show that the iron-formations, interbedded towards the base of the Makganyene Formation, have similar values to the iron-formations of the Koegas Subgroup. As a result of the above observations, new correlations are proposed in this study, relating the different Transvaal Supergroup basins located on the Kaapvaal Craton. The Pretoria Group of the Transvaal Basin has no correlative in the Griqualand West Basin, and the Postmasburg Group of the Northern Cape Basin has no lateral equivalent in the Transvaal Basin. These changes have been made to overcome problems present in the current correlations between those two basins. The Makganyene Formation correlates with the Huronian glaciations which occurred between 2.4 and 2.2 Ga ago in North America. Another Precambrian glaciation is the worldwide and well-studied Neoproterozoic glaciation (640 Ma). At each of these glaciations, major banded iron-formation deposition took place with associated deposition of sedimentary manganese in post-glacial positions. The central position of the Makganyene Formation within the Transvaal Supergroup in the Northern Cape emphasizes this glacial climatic dependence of paleoproterozoic banded iron-formation and manganese deposition. However these two Precambrian glaciations are interpreted in paleomagnetic studies as having occurred near to the equator. The controversial theory of the Snowball Earth has been proposed which proposes that the Earth was entirely frozen from pole to pole. Results from field work, sedimentology, petrography and geochemistry were integrated in a proposed depositional model of the Makganyene Formation occurring at the symmetrical centre of the lithologic succession of the Transvaal Supergroup. At the beginning of the Makganyene glaciation, a regression occurred and glacial advance took place. The diamictites are mostly interpreted as being deposited from wet-based glaciers, probably tidewater glaciers, where significant slumping and debris flows occurred. Any transgression would cause a glacial retreat by rapid calving, re-establishing the chemical sedimentation of banded iron-formations. These sea-level variations are responsible for the interbedding of these different types of rocks (clastic and chemical). The end of the Makganyene glacial event is characterised by subaerial eruptions of andesitic lava of the Ongeluk Formation bringing ashes into the basin. Banded iron-formation and associated manganese accumulations are climate-dependant. Glacial events are responsible for the build up of metallic ions such as iron and manganese in solution in deep waters. A warmer climate would induce a transgression and precipitation of these metallic ions when Eh conditions are favourable. In the Transvaal Supergroup, the climatic variations from warm to cold, and cold to warm are expressed by the lithologic succession. The warm climates are represented by carbonates. Cold climates are represented by banded iron-formations and the peak in cold climate represented by the diamictites of the Makganyene Formation. These changes in climate are gradual, which contradict the dramatic Snowball Earth event: a rapid spread of glaciated areas over low-latitudes freezing the Earth from pole-to-pole. Therefore, to explain low-latitude glaciations at sea-level, a high obliquity of the ecliptic is most likely to have occurred. This high obliquity of the ecliptic was acquired at 4.5 Ga when a giant impactor collided into the Earth to form the Moon. Above the critical value of 54° of the obliquity of the ecliptic, normal climatic zonation reverts, and glaciations will take place preferentially at low-latitudes only when favourable conditions are gathered (relative position ofthe continents and PC02 in the atmosphere).
APA, Harvard, Vancouver, ISO, and other styles
8

Field, Matthew. "The petrology and geochemistry of the upper critical zone of the Bushveld complex at the Amandelbult section of Rustenberg Platinum Mines Limited, Northwestern Transvaal, South Africa." Thesis, Rhodes University, 1987. http://hdl.handle.net/10962/d1007499.

Full text
Abstract:
A study of petrological and geochemical variations through the upper Critical Zone of the Bushveld Complex at Amandelbult section of R.P,M. was undertaken. The sequence at this locality may be divided into seven "units" two of which appear to be complete, possessing the sequence harzburgite-pyroxenite-norite-anorthosite. The other five Units lack basal, intermediate or upper members. Considerable lateral variations are apparent in this sequence, but these are restricted to the Lower Pseudo Reef-Merensky Reef interval, tne same portion of the succession which is affected by pothole structures. The single most important petrographic feature of genetic significance is the occurrence of annealed, recrystallized anorthosite immediately underlying ulstramafic layers. This, together with the undulatory nature of the contact between the two rock layers, suggests that the ultramafic layer was emplaced as a hot liquid over a pre-existing, crystalline anorthosite floor, and that some remelting of this layer occurred. Variations in the chemical make-up of constituent silicate minerals reveal a number of significant processes which may have been operative in the magma chamber prior to crystallization, Olivine grains, for instance, exhibit extremely wide chemical variations both within single layers and from one layer to the next. These variations are best explained by re-equilibration processes with spinel and base metal sulphides, rather than by wide variations in original liquidus compositions. It appears that the compositions of the initial liquids from which each basal olivine-bearing layer crystallized, were approximately similar. Variations in the iron-magnesium ratio of ortho-pyroxenes indicate well defined continuous fractionation trends in units which are considered to be complete. Magnesian compositions are recorded in ultramfic members, while increasingly iron-enriched values are recorded upwards through the sequence pyroxenite-norite-antorthosite. Plagioclase grains exhibit less well defined fractionation trends, but it is clear that an upward increase in An is encountered through indivitual Units. This is in direct contrast to the trend exhibited by orthopyroxene. A further feature of plagioclase grains is the considerable degree of chemical zonation exhibited by them. In cumulus grains this is commonly manifested as strongly reversed rims, while in intercululus grains normal zoning is ubiquitous. Whole-rock chemical variations through the succession indicate that cyclical variations occur through successive Units, but that these merely reflect changes in modal mineralogy and not liquid fractionation trends. Such trends can be shown for selected element ratios, where these elements are known to partition into a single mineral phase. Rations of pyroxene components such as the nickel/scandium ratio, exhibit a saw tooth pattern through successive Units, while ratios of plagioclase components such as the strontium/alumina ratio have unique, fairly constant values for each individual Unit but different values for successive Units. The latter type of cyclicity is not always strictly confined to lithologically recognized boundaries between Units, and a slight overlap into overlying ultramafic layers is apparent. An investigation of variations in trace element levels in a single layer in five widely separated boreholes revealed that there is some evidence for a lateral fractionation trend from the southwest (more primitive) to the northeast (more evolved), although the small number of data points available preclude definite conclusions. There exists in the data some evidence that the Giant Mottled Anorthosite differs chemically from the other anorthosites in the study section, and that it more closely resembles rocks of the Main Zone. This evidence is particularly apparent in variations of the chromium/aluminium ratio of orthoyroxene grains, and in the An content of plagioclase grains, both of whose trends exhibit distinct inflections at the base of this member. The features of the succession at Amandelbult are best explained by the model of Eales et al. (in press, a), which visualizes the input of a number of pulses of new, hot liquid into a magma chamber containing the fractionated residua of previous influxes. At a critical point in time, just prior to the mafic Merensky Reef input, a large input of gabboic liquid was intruded at high levels in the chamber. The lower portions of this liquid mixed with the residua of earlier mafic inputs, which in turn mixed with new inputs of mafic, typical Critical Zone liquids. Thus the lower portions of the study section represent mixtures of new Critical Zone liquids with the residua of previous such influxes, while the upper portions have the added complication of mixture with a Main Zone-type liquid. The unique chemical character of the Giant Mottled Anorthosite appears to be a direct manifestation of the influence of the Main Zone liquid.
KMBT_363
Adobe Acrobat 9.54 Paper Capture Plug-in
APA, Harvard, Vancouver, ISO, and other styles
9

Tinney, Christopher Bruce. "The surface geology of the Lavino Chrome Mine of the farm Grootboom 336KT, eastern Transvaal." Thesis, Rhodes University, 1992. http://hdl.handle.net/10962/d1013404.

Full text
Abstract:
A mapping project of the surface geology of the Lavino chrome mine and its surroundings was initiated in order to establish the surface geological relationships in the area. In so doing the chromitite layer presently being mined has been identified and potential exploration targets in the area have been outlined. The Lavino Chrome mine field area is situated within the eastern lobe of the Bushveld Igneous Complex. The area is bounded by in the north by the Steelpoort Lineament, in the west by the Dwars River fault and in the east by the contact with the Transvaal Sequence floor rocks. Layered igneous rocks (pyroxenites, norites and anorthosites) of the Rustenburg Layered Suite dominate the geological landscape at the Lavino mine. The fact that outcropping igneous rocks of the Critical Zone abut directly against the quartzite floor rocks on the mine property makes this area unique in the Bushveld Complex. The hills in the field area are capped by mafic/ultramafic iron-rich sheet - like bodies. Extensive strike-slip faulting is seen in outcrop in the area to the north/northwest of present mining operations. On the basis of field relationships, the main chromitite layer presently being mined at Lavino is identified as the Middle Group chromitite layer MG 1. Three other prominent chromitite layers stratigraphically associated with MG 1 are identified as the Middle Group chromitites MG 2, MG 3 and MG 4. Several other less prominent outcropping chromitite layers are tentatively identified as those belonging to the Lower and Upper group of chromitites. The disconformable nature of the contact between the layered igneous rocks and the Transvaal Sequence floor rocks has resulted in the development of a wedge of undifferentiated pyroxenites in the north of the field area. The economically important LG 6 chromitite layer may be developed in subcrop within this wedge.
APA, Harvard, Vancouver, ISO, and other styles
10

Badenhorst, Jaco Cornelis. "The precambrian iron-formations in the Limpopo belt as represented by the magnetite quartzite deposits at Moonlight, Koedoesrand area, Northern Transvaal." Thesis, Rhodes University, 1991. http://hdl.handle.net/10962/d1013309.

Full text
Abstract:
This dissertation is based largely on data that was accumulated during the execution of an exploration program by Iscor Ltd in the Northern Transvaal. The program included geological mapping, geophysical surveys and drilling, on Precambrian iron-formations in the Central Zone of the Limpopo Belt. The structure, stratigraphy, metamorphism, and economic importance of the magnetite quartzites and associated lithologies of the Moonlight prospect are discussed. The lithologies underlying the Moonlight prospect area consist of various pink- and grey-banded gneisses and pink granulite, together with a variety of metasedimentary supracrustal rock-types and concordant serpentinite bodies. The gneissic rock-types consist of chlorite-quartz-feldspar gneiss, chlorite-quartz-feldspar augen gneiss, hornblende-quartz-feldspar gneiss, biotite-quartz-feldspar gneiss, felsic and mafic granulite, and foliated amphibolite. The metasedimentary lithologies are represented by calc-silicates and marble, white quartz-feldspar granulite, magnetite quartzite, metaquartzite and garnet-bearing granulite and gneiss (metapelites). The concordant ultramafic bodies consist of serpentinite with lesser amphibolite, dunite, and chromitite. Intrusive pegmatites and diabase dykes are also present in the prospect area. Metamorphism reached granulite-facies, and more than one retrqgrade metamorphic event is recognized . Amphibolite-facies assemblages are present, but it is uncertain whether they represent another retrograde event . Polyphase deformation has produced intense and complex folding , resulting in irregular magnetite quartzite orebodies. The high metamorphic grades have resulted in medium- grained recrystallization of the magnetite-quartzites with a loss of prominent banding often associated with these rock-types . The magnetite quartzite occurs as three seperate but related ore zones, consisting of one or more ore-bands seperated by other lithologies. All three zones form poor outcrops and suboutcrops in a generally flat lying and sand covered area. · Although representing a low-grade iron ore (32% total Fe), the magnetite quartzite deposits at Moonlight are regarded as potentially viable due to the large opencast tonnages available at low stripping ratios, and the relatively cheap and easy beneficiation process needed to produce a magnetite concentrate with 69-70% total Fe.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Geology – South Africa – Transvaal"

1

Harley, M. The mineralisation at Elandshoogte Gold Mine, Eastern Transvaal, South Africa. Johannesburg: University of the Witwatersrand, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Creswicke, Louis. South Africa and the Transvaal war. Toronto: Publisher's Syndicate, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tyler, N. 2200Ma-Old "trace fossils" from the Transvaal Supergroup in the Transvaal. Johannesburg: University of the Witwatersrand, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mitchell, James H. Tartan on the veld: The Transvaal Scottish, 1950₋1993. Johannesburg: Transvaal Scottish Regimental Council, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hendriks, P. G. Waai, vierkleur van Transvaal. Morgenzon: Oranjewerkers Promosies, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dorothea Sarah Florence Alexandra Phillips. Some South African recollections. London: Longmans, Green, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marshall, T. R. The alluvial-diamond fields of the western Transvaal. Johannesburg: Economic Geology Research Unit, University of the Witwatersrand, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marshall, T. R. The alluvial-diamond fields of the western Transvaal. Johannesburg: Economic Geology Research Unit, University of the Witwatersrand, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Funston, Malcolm. Bushveld trees: Lifeblood of the Transvaal lowveld. Vlaeberg: Fernwood Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Johnson, M. R. A revised Precambrian time scale for South Africa. Pretoria: Dept. of Mineral and Energy Affairs, Geological Survey, Republic of South Africa, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Geology – South Africa – Transvaal"

1

Hofmann, Axel. "Transvaal Supergroup, South Africa." In Encyclopedia of Astrobiology, 1709. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hofmann, Axel. "Transvaal Supergroup, South Africa." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1609-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hofmann, Axel. "Transvaal Supergroup, South Africa." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-27833-4_1609-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hofmann, Axel. "Transvaal Supergroup, South Africa." In Encyclopedia of Astrobiology, 2550. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cawthorn, R. Grant. "The Bushveld Complex, South Africa." In Springer Geology, 517–87. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9652-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bright, Rachel K. "The Transvaal Labour ‘Problem’ and the Chinese Solution." In Chinese Labour in South Africa, 1902–10, 22–37. London: Palgrave Macmillan UK, 2013. http://dx.doi.org/10.1057/9781137316578_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Svensen, Henrik H., Stéphane Polteau, Grant Cawthorn, and Sverre Planke. "Sub-volcanic Intrusions in the , South Africa." In Physical Geology of Shallow Magmatic Systems, 349–62. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/11157_2014_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Svensen, Henrik H., Stéphane Polteau, Grant Cawthorn, and Sverre Planke. "Sub-volcanic Intrusions in the , South Africa." In Physical Geology of Shallow Magmatic Systems, 349–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-14084-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Visser, J. N. J. "Episodic Palaeozoic Glaciation in the Cape-Karoo Basin, South Africa." In Glaciology and Quaternary Geology, 1–12. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-7823-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wabo, H., F. Humbert, M. O. de Kock, G. Belyanin, U. Söderlund, L. P. Maré, and N. J. Beukes. "Constraining the Chronology of the Mashishing Dykes from the Eastern Kaapvaal Craton in South Africa." In Springer Geology, 215–61. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1666-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geology – South Africa – Transvaal"

1

Dowdy, T., L. C. Kah, W. Altermann, and J. H. Alexander. "EXPLORATION OF POTENTIAL SEISMITES: ARCHEAN NAUGA FORMATION, TRANSVAAL SUPERGROUP, SOUTH AFRICA." In Joint 69th Annual Southeastern / 55th Annual Northeastern GSA Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020se-345256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Finkelman, Robert B., Olle Selinus, and Hassina Mouri. "MEDICAL GEOLOGY IN AFRICA: AN EXAMPLE OF A SUCCESSFUL MEDICAL GEOLOGY EDUCATIONAL INITIATIVE." In 52nd Annual GSA South-Central Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018sc-309806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ameglio, L., and J. Marsh. "The Elephant’s Head Dyke (South Africa) revisited - An integrated geophysics and geology approach." In 8th SAGA Biennial Technical Meeting and Exhibition. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.144.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Granath, James, Rolf Rango, Pete Emmet, Colin Ford, Robert Lambert, and Michael Kasli. "New Viewpoint on the Geology and Hydrocarbon Prospectivity of the Seychelles Plateau." In SPE/AAPG Africa Energy and Technology Conference. SPE, 2016. http://dx.doi.org/10.2118/afrc-2556681-ms.

Full text
Abstract:
ABSTRACT We have reprocessed, re-imaged, and interpreted 10000+ km of legacy 2D seismic data in the Seychelles, particularly in the western part of the Plateau. Seychelles data have been difficult to image, particularly for the Mesozoic section: volcanics are a major attenuator of low frequency signal, and a hard water bottom contributes to signal problems. Enhanced low frequency techniques were applied to improve the signal fidelity in the 4 to 20 Hz range, and to remove spectral notches of shallow geologic origin. These efforts have allowed a reasonable view of the structure of the Plateau to a depth equivalent to about 3.5 sec TWT, and permit a comparison of areas atop the Plateau to the south coast where the three 1980's Amoco wells were drilled. It is clear that the main Plateau area of the Seychelles (excluding the outlying territories) is comprised of several separate basins, each with similar Karoo, Cretaceous, and Cenozoic sections that relate to the East African and West Indian conjugate margins, but the basins each have nuanced tectono-stratigraphic histories. The previously recognized Correira Basin in the SE and the East and West South Coast Basins face the African conjugate margin; other unimaged ones complete the periphery of the Plateau. The interior of the Plateau is dominated by the Silhouette Basin to the west of the main islands and the Mahé Basin to the east. The co astal basins have harsh tectono-thermal histories comparable to other continental margins around the world; they are typically characterized by stretching, subsidence and breakaway from their respective conjugate margins. In contrast the interior basins are comparable to ‘failed’ rift systems such as the North Sea or the Gulf of Suez. The South Coastal Basins, for example, tend to be more extended which complicated interpretation of the Amoco wells, but they have significant upside, as exemplified by the Beau Vallon structure. The interior basins, on the other hand, have typically simpler structure: the Silhouette Basin contains a system of NW-trending linked normal faults that could easily harbor North Sea-sized hydrocarbon traps with a variety of rift-related reservoir possibilities. Bright, reflective, hard volcanic horizons are less common than usually presumed, but most of the basins may contain considerable pyroclastic material in parts of the section. All of the basins appear to be predominantly oil prone, with considerable upside prospectivity.
APA, Harvard, Vancouver, ISO, and other styles
5

Ünsal, Tuğçe, and Kübra Yazıcı. "The Importance of Gerbera as a Cut Flower and Advances of It in Scientific Research." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.010.

Full text
Abstract:
Gerbera, a member of the Asteraceae family, has approximately 30 species known in nature. It has spread naturally in South Africa, Africa, Madagascar, and tropical Asia. The first scientific description of gerberas is J.D. Described by Hooker. It is also known as the Transvaal Daisy or Barberton Daisy. It is the second most produced cut flower after carnation as cut flower in our country. We can divide the scientific studies conducted on the gerbera plant into four groups. Studies in general; To produce 1st quality gerbera by providing the growth of plant height, flower diameter and flower stem with growth regulators, to obtain fast and many plants with tissue culture, to bring new products to the product range with breeding studies and to maintain the vitality of the plant in the process from harvest to consumer It is based on increasing the life of the vase and introducing new solutions to the market. This study was conducted to emphasize the importance of Gerbera as a cut flower and its developments in scientific research.
APA, Harvard, Vancouver, ISO, and other styles
6

Duyverman, Henk J., and Emma Msaky. "Shale Oil and Gas in East Africa (Esp.Tanzania) with New Ideas on Reserves and Possible Synergies with Renewables." In SPE/AAPG Africa Energy and Technology Conference. SPE, 2016. http://dx.doi.org/10.2118/afrc-2603293-ms.

Full text
Abstract:
Short Abstract Shale oil and gas in East Africa, with new ideas on reserves and possible synergies with renewables Shale oil and gas production have lately revolutionized the oil and gas industry as a real "game-changer", especially in the US. This has prompted many companies and governments to search for these unconventionals with successes in the UK, Poland and Argentina. These unconventionals do often occur onshore in places, where there is no conventional hydrocarbon production, thus enabling the local government or companies to have a new energy source, which is especially valid in Onshore East Africa. New drilling technologies, which combine shale and geothermal drilling/production, are now being developed. Now it is possible to drill/produce both unconventionals and geothermal from a single well.Gas and oil could be produced from the central pipe, and hot water from the outer tubing, thereby reducing development cost for both methods. In Tanzania a study was performed to look at unconventional oil and gas resources in sedimentary basins. A lot of data on Karoo geology, maturity, TOC's and volumetrics will be presented. In general, one needs a thick sedimentary basin with a lot of shales, good maturity and TOC values, and a fairly unfaulted basin to prevent seismicity when fracking. In East Africa and Southern Africa at large only the Karoo sediments of Permian/Triassic age are a suitable candidate for large shale oil/gas reserves. The possible large Karoo shale gas development in South Africa is a good example. A large heavy oilfield at surface in Madagascar proves an oil source in the Karoo. In S.Kenya and also on Pemba oil shows are known, with a unknown Pre-Jurassic source. Preliminary resource calculations in Tanzania indicate possible resources in place of 50-200 Tcf of gas for the Selous basin, comparable in size with the South-African Karoo Basin. The depth of the source rocks make gas the most likely hydrocarbon phase. One has to note that calculating unconventional resources is much more complicated than with conventional resources, since the adsorbed gas (or oil) needs to be calculated from core or log analyses. An onshore well could also text the synergies with geothermal drilling. Recently, TPDC in Tanzania has started a new evaluation, based on new mapping, rock analyses and maturity studies, into the shale oil and gas potential. Altogether, shale gas (or oil) could be an interesting incentive for onshore Tanzania and East Africa at large.
APA, Harvard, Vancouver, ISO, and other styles
7

Dim, C. I., K. Mosto Onuoha, and C. Gabriel Okeugo. "Sequence Stratigraphic, Structural and Reservoir Analyses: An Integrated Approach to Exploration and Development of the Eastern Coastal Swamp Cluster, Niger Delta Basin." In SPE/AAPG Africa Energy and Technology Conference. SPE, 2016. http://dx.doi.org/10.2118/afrc-2538089-ms.

Full text
Abstract:
ABSTRACT Sequence stratigraphic, structural and reservoir analytical tools have been employed in interpreting the geology of the eastern Coastal Swamp Depo-belt of the Niger Delta Basin. The aim was to understand the stratigraphic framework, structural styles and hydrocarbon reservoir distribution for improved regional hydrocarbon exploration across the onshore Niger Delta basin. This interpretative study made use of well logs, biostratigraphic (biofacies and bio-zonation) and petrophysical data obtained from twenty wellbores, integrated with recently merged and reprocessed 3D Pre-Stack Time Migrated regional seismic volume spanning across eight fields (over 960 km2). Results reveal the occurrence of nine key chronostratigraphic surfaces (five maximum flooding surfaces and four sequence boundaries) that were tied to well-established pollen and foram bio-zones for high resolution sequence stratigraphic interpretation. The sediment stacking patterns recognized from gamma ray log signatures were used in delineating the lowstand system tract (LST), transgressive system tract (TST) and highstand system tract (HST) genetic units. Well log sequence stratigraphic correlation reveals that stratal packages within the area were segmented into three depositional sequences occurring from middle to late Miocene age. Furthermore, there is thickening of stratal packages with corresponding decrease in net-to-gross thickness from north to south (basinwards). This is due possibly to the influence of syn-depositional structures on stratigraphy. The combination of reservoir sands (of LST and HST), source and seal shales (of TST and HST) and fault structures allows for good hydrocarbon accumulation and should be targeted during exploration. Reservoir evaluation studies using petrophysical parameters indicates the presence of good quality reservoir intervals, which are laterally continuous and partly compartmentalized. Structural top maps of reservoirs show good amplitude response that are stratigraphically and structurally controlled. Structural analysis revealed the occurrence of back-to-back faulting, collapsed crest structures, simple/faulted rollovers, regional foot wall and hanging wall closures and sub-detachment structures. These structural styles constitute the major hydrocarbon entrapment mechanism in the area. Overall, the study has unraveled the existence of undrilled hydrocarbon leads at deeper depths that should be further revalidated for development and production.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography