Academic literature on the topic 'Geomagnetic storm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geomagnetic storm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Geomagnetic storm"

1

Davidson, Nigel Charles. "The analysis of geomagnetic storm-time variations." Thesis, University of Edinburgh, 1992. http://hdl.handle.net/1842/13577.

Full text
Abstract:
The earth is bathed in an ever changing magnetic environment due to fluctuations in the solar wind. The external field induces currents within the earth which cause a secondary internal field. The ratio of internal to external parts of the magnetic potential is known as the response and may be derived from measurements of the field at the surface. The response of the earth is dependent on the spatial form of the field and distribution of conductivity within the earth. The analysis of numerous geomagnetic storms, large disturbances in the field surrounding the whole earth, is presented with the aim of determining a reliable response function which enables an estimate to be made of the average conductivity of the upper mantle. The compilation of a database of geomagnetic storms was a major part of the work. All the suitable storm events were selected between 1957 and 1982 to give 44 storms. The entire set of hourly values were checked for errors and corrections made where necessary. Where data were missing their values were interpolated using information from nearby observatories. The lower the frequency of external magnetic variations the deeper the penetration into the earth. The frequency content of geomagnetic storms allows depths approaching 1500km to be investigated. The observations of magnetic field were Fourier transformed and attention focussed on the Fourier coefficients of the lowest frequencies, 0.03 to 1 cycle per day. From Spherical Harmonic Analysis in the frequency domain it was found that a pure <i>P</i><SUB>1<SUP>o</SUB></SUP> spherical harmonic model is acceptable for the spatial form of the field at the frequencies of most interest. Thus the source is assumed to be a simple ring current in common with most of the previous research. The Fourier coefficients of the X and Z magnetic components were then fitted to the appropriate <i>P</i><SUB>1<SUP>o</SUB></SUP> model which allows the separate internal and external parts to be evaluated. A robust method, to reduce the influence of anomalous values, was used for determining the optimum fit to the Fourier coefficients. The technique was assessed by examining the distribution of residuals.
APA, Harvard, Vancouver, ISO, and other styles
2

Vaishnav, Rajesh Ishwardas, and Christoph Jacobi. "Correction to: Ionospheric response to the 25 - 26 August 2018 intense geomagnetic storm." Universität Leipzig, 2020. https://ul.qucosa.de/id/qucosa%3A74122.

Full text
Abstract:
The thermosphere-ionosphere regions are mainly controlled by the solar, but also by geomagnetic activity. In this case study, the Earth’s ionospheric response to the 25-26 August 2018 intense geomagnetic storm is investigated using the International GNSS System (IGS) Total Electron Content (TEC) observations. During this major storm, the minimum disturbance storm time (Dst) index reached -174 nT. We use observations and model simulations to analyse the ionospheric response during the initial phase and the main phase of the magnetic storm. A significant difference between storm day and quiet day TEC is observed. The O/N2 ratio observed from the GUVI instrument onboard the TIMED satellite is used to analyse the storm effect. The result shows a clear depletion of the O/N2 ratio in the high latitude region, and an enhancement in the low latitude region during the main phase of the storm. Furthermore, the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model simulations were used. The results suggest that the CTIPe model can capture the ionospheric variations during storms.<br>Die Regionen der Ionosphären und Thermosphäre werden hauptsächlich von der Sonne sowie auch von geomagnetische Aktivität beeinflusst. In dieser Fallstudie wurde die ionosphärische Reaktion der Erde auf den starken geomagnetischen Sturm vom 25./26. August 2018 unter Verwendung der Gesamtelektronengehaltsdaten (Total Electron Content, TEC) vom Internationalen GNSS Service untersucht. Während dieses großen Sturms wurde ein ”Disturbance Storm Time Index” Dst von -174 nT erreicht. Beobachtungen und Modellsimulationen wurden verwendet, um die ionosphärische Reaktion während der Anfangsphase und der Hauptphase des magnetischen Sturms zu untersuchen. Ein signifikanter Unterschied zwischen TEC während eines Sturmtages und eines ruhigen Tages wurde beobachtet. Das vom GUVI-Instrument an Bord des TIMED-Satelliten beobachtete O/N2 -Verhältnis wurde verwendet, um den Sturmeffekt weiter zu untersuchen. Das Ergebnis zeigt eine deutliche Abnahme/Zunahme des O/N2 Verhältnis in hohen/niedrigen Breiten während der Hauptphase des Sturms. Darüber hinaus wurde das Coupled Thermosphere Ionosphere Plasmasphere ectrodynamics (CTIPe) Modell verwendet. Die Ergebnisse legen nahe, dass das CTIPe-Modell die ionosphärischen Schwankungen während eines Sturms erfassen kann.
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Zhonghua. "Study of Geomagnetic Disturbances and Ring Current Variability During Storm and Quiet Times Using Wavelet Analysis and Ground-based Magnetic Data from Multiple Stations." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/984.

Full text
Abstract:
The magnetosphere-ionosphere contains a number of current systems. These currents vary on a wide range of spatial and temporal scales and physically couple with each other. To study the complicated behaviors of these coupled current systems, the ground-based magnetometer has been a useful tool, but the recorded magnetometer data are always multi-scaled and intermittent due to the nature of these current systems. To distinguish these geomagnetic effects with multiple temporal and frequency scales, the wavelet analysis technique is especially suitable because of its special abilities of presenting information in both temporal and frequency domains. In this dissertation, the geomagnetic disturbances and the ring current variability during storm and quiet times are studied by using wavelet analysis and ground-based magnetic data from multiple stations. The first part of this dis- sertation investigates the strengths of applying the wavelet procedure to geomagnetic data for ring current study during storm and quiet periods. The second part of this dissertation characterizes the geomagnetic effects caused by symmetric and asymmetric components of ring currents during storm and quiet times by applying wavelet analysis to geomagnetic data from multiple stations. The third part of this dissertation studies the spatial variabil- ity of the symmetric ring current by applying the wavelet analysis technique to multiple components of magnetic data from multiple stations. The results show the unique strengths of the wavelet method allow us to quantitatively distinguish the geomagnetic effects on ring current variations from other M-I current systems. The unique strengths of wavelet method also allow us to separate the magnetic effects of the symmetric ring current from those caused by the asymmetric ring current. Quantitative information of the spatial variability of the ring currents is essential for understanding the dynamics of the ring currents, as well as the magnetic storm processes. The techniques developed in this dissertation have potential values as space weather monitoring tools for satellite controls, power grids, com- munication systems, oil pipelines, and other high-tech systems that are vulnerable to the negative impacts of disruptive geomagnetic events.
APA, Harvard, Vancouver, ISO, and other styles
4

Chatterjee, Kausik. "The Development of Hydrodynamic and Kinetic Models for the Plasmasphere Refilling Problem Following a Geomagnetic Storm." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7364.

Full text
Abstract:
The objective of this dissertation is the development of computer simulation-based models for the modeling of upper ionosphere, starting from the first principles. The models were validated by exact analytical benchmarks and are seen to be consistent with experimentally obtained results. This area of research has significant implications in the area of global communication. In addition, these models would lead to a better understanding of the physical processes taking place in the upper ionosphere.
APA, Harvard, Vancouver, ISO, and other styles
5

Matsuoka, Marcelo Tomio. "Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS : avaliação na região brasileira." Presidente Prudente : [s.n.], 2007. http://hdl.handle.net/11449/100257.

Full text
Abstract:
Orientador: Paulo de Oliveira Camargo<br>Banca: João Francisco Galera Monico<br>Banca: Márcio H. O. Aquino<br>Banca: Inez Staciarini Batista<br>Banca: Claudio Antonio Brunini<br>Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC - Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul.<br>In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo - Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments.<br>Doutor
APA, Harvard, Vancouver, ISO, and other styles
6

Brückner, Marlen, Michael Lonardi, André Ehrlich, et al. "Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC): Overview of LIM Contributions." Leibniz-Institut für Troposphärenforschung, 2004. https://ul.qucosa.de/id/qucosa%3A74381.

Full text
Abstract:
The thermosphere-ionosphere regions are mainly controlled by the solar, but also by geomagnetic activity. In this case study, the Earth’s ionospheric response to the 25-26 August 2018 intense geomagnetic storm is investigated using the International GNSS System (IGS) Total Electron Content (TEC) observations. During this major storm, the minimum disturbance storm time (Dst) index reached -174 nT. We use observations and model simulations to analyse the ionospheric response during the initial phase and the main phase of the magnetic storm. A significant difference between storm day and quiet day TEC is observed. The O/N2 ratio observed from the GUVI instrument onboard the TIMED satellite is used to analyse the storm effect. The result shows a clear depletion of the O/N2 ratio in the high latitude region, and an enhancement in the low latitude region during the main phase of the storm. Furthermore, the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model simulations were used. The results suggest that the CTIPe model can capture the ionospheric variations during storms.:Vaishnav, R., Jacobi, Ch.: Ionospheric response to the 25-26 August 2018 in- tense geomagnetic storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Brückner, M., Lonardi, M., Ehrlich, A., Wendisch, M., Jäkel, E. Schäfer, M., Quaas, J., Kalesse, H.: Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC): Overview of LIM Contributions . . . . . 11 Seidel, C., Lochmann, M.: Statistische Analyse der jährlichenWindverteilung für energiemeteorologische Anwendungen an der Station Lindenberg . . . . . . 20 Jahresbericht des Instituts für Meteorologie 2019 . . . . . . . . . . . . . . . 34<br>Die Regionen der Ionosphären und Thermosphäre werden hauptsächlich von der Sonne sowie auch von geomagnetische Aktivität beeinflusst. In dieser Fallstudie wurde die ionosphärische Reaktion der Erde auf den starken geomagnetischen Sturm vom 25./26. August 2018 unter Verwendung der Gesamtelektronengehaltsdaten (Total Electron Content, TEC) vom Internationalen GNSS Service untersucht. Während dieses großen Sturms wurde ein ”Disturbance Storm Time Index” Dst von -174 nT erreicht. Beobachtungen und Modellsimulationen wurden verwendet, um die ionosphärische Reaktion während der Anfangsphase und der Hauptphase des magnetischen Sturms zu untersuchen. Ein signifikanter Unterschied zwischen TEC während eines Sturmtages und eines ruhigen Tages wurde beobachtet. Das vom GUVI-Instrument an Bord des TIMED-Satelliten beobachtete O/N2 -Verhältnis wurde verwendet, um den Sturmeffekt weiter zu untersuchen. Das Ergebnis zeigt eine deutliche Abnahme/Zunahme des O/N2 Verhältnis in hohen/niedrigen Breiten während der Hauptphase des Sturms. Darüber hinaus wurde das Coupled Thermosphere Ionosphere Plasmasphere ectrodynamics (CTIPe) Modell verwendet. Die Ergebnisse legen nahe, dass das CTIPe-Modell die ionosphärischen Schwankungen während eines Sturms erfassen kann.:Vaishnav, R., Jacobi, Ch.: Ionospheric response to the 25-26 August 2018 in- tense geomagnetic storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Brückner, M., Lonardi, M., Ehrlich, A., Wendisch, M., Jäkel, E. Schäfer, M., Quaas, J., Kalesse, H.: Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC): Overview of LIM Contributions . . . . . 11 Seidel, C., Lochmann, M.: Statistische Analyse der jährlichenWindverteilung für energiemeteorologische Anwendungen an der Station Lindenberg . . . . . . 20 Jahresbericht des Instituts für Meteorologie 2019 . . . . . . . . . . . . . . . 34
APA, Harvard, Vancouver, ISO, and other styles
7

Van, de Heyde Valentino Patrick. "An Investigation of magnetic storm effects on total electron content over South Africa for selected periods in solar cycles 23 and 24." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/3997.

Full text
Abstract:
>Magister Scientiae - MSc<br>The development of regional ionospheric Total Electron Content (TEC) models has contributed to understanding the behavior of ionospheric parameters and the coupling of the ionosphere to space weather activities on both local and global scales. In the past several decades, the International Global Navigation Satellite Systems Service (GNSS) networks of dual frequency receiver data have been applied to develop global and regional models of ionospheric TEC. These models were mainly developed in the Northern Hemisphere where there are dense network of ground based GPS receivers for regional data coverage. Such efforts have been historically rare over the African region, and have only recently begun. This thesis reports the investigation of the effect of mid-latitude magnetic storms on TEC over South Africa for portions of Solar Cycles 23 and 24. The MAGIC package was used to estimate TEC over South Africa during Post Solar Maximum, Solar Minimum, and Post Solar Minimum periods. It is found that TEC is largely determined by the diurnal cycle of solar forcing and subsequent relaxation, but effects due to storms can be determined
APA, Harvard, Vancouver, ISO, and other styles
8

Salomoni, Christiane da Silva Santos. "GPS e ionosfera: estudo do comportamento do TEC e de sua influência no posicionamento com GPS na região brasileira em períodos de alta e baixa atividade solar." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/15752.

Full text
Abstract:
A ionosfera é uma das principais fontes de erro sistemático das observáveis GPS (Global Positioning System - Sistema de Posicionamento Global), pois, por ser um meio dispersivo, ela afeta a propagação de ondas eletromagnéticas, fazendo com que a modulação e a fase das ondas portadoras transmitidas pelos satélites GPS sofram, respectivamente, um retardo e um avanço, o que, por sua vez, provoca um erro na distância medida entre o satélite e o receptor. Esse erro é inversamente proporcional ao quadrado da freqüência do sinal e diretamente proporcional ao TEC (Total Electron Content - Conteúdo Total de Elétrons), ou seja, à densidade de elétrons presentes na ionosfera ao longo do caminho entre o satélite e a antena receptora. O TEC sofre variações regulares, cujo comportamento pode ser verificado ao longo do dia, ao longo das estações do ano e também ao longo de ciclos de aproximadamente onze anos (associados à ocorrência de manchas solares). Além dessas variações, eventos solares extremos (explosões solares, ejeções coronais de massa, entre outros) podem causar abruptas e significativas mudanças no comportamento do TEC, exercendo grande influência no posicionamento com GPS, principalmente com receptores de uma freqüência. No Brasil, o fator ionosfera é ainda mais relevante, pois essa região é afetada por fenômenos como a Anomalia Equatorial (AE), a Anomalia Magnética do Atlântico Sul (AMAS) e até mesmo pela ocorrência de irregularidades ionosféricas. Pretendendo aprofundar o entendimento da relação entre a ionosfera e o posicionamento com GPS na região brasileira, essa pesquisa analisou dados de TEC e dados de GPS em períodos de alta e baixa atividade solar, bem como em um período geomagneticamente perturbado. Os resultados demonstraram uma relação direta entre a redução do TEC, no período de baixa atividade solar, e a melhora no posicionamento com GPS. Essa melhora se traduziu, no posicionamento por ponto, por uma redução de 59% no erro planimétrico e 64% no erro altimétrico e, no posicionamento relativo, por uma redução de 65% no erro planimétrico e 63% no erro altimétrico. Já durante o período afetado por uma severa tempestade geomagnética verificou-se um comportamento completamente atípico da ionosfera, piorando muitos os resultados do posicionamento relativo, em horários e locais inesperados.<br>The ionosphere is one of the main sources of systemathic error of the observable GPS (Global Positioning System) because as it is a dispersive environment it affects the propagation of electromagnetics waves making the modulation and the phase of signals transmitted by GPS sattelites go through, respectivelly, delay and advance which will cause an error in the measure of the distance between the sattelite and the receptor. This error is inversely proportional to the square of the frequency of the signal and directly proportional to the TEC (Total Electron Content), what means the density of electrons on the ionosphere between the sattelite and the reception antenna. The TEC goes through regular variances, which behaviour can be verified during the day, throughout seasons and also throughout cycles of approximately eleven years (related to the ocorrence of sunspot). Besides these variances, extreme solar events such as solar flares and coronal mass ejection may cause abrupt and significant changes to TEC behavior, exerting big influence in GPS positioning, mainly to monofrequency receptors. In Brazil, the ionosphere factor is even more relevant because this region is affected by phenomena such as the Equatorial Anomaly (EA), the South Atlantic Magnetic Anomaly (SAMA) and even by the ocorrence of ionospheric irregularities. In order to develop knowledge about the relation between ionosphere and GPS positioning in Brazil, on this research TEC and GPS data were analised in periods of high and low solar activity, as well as in a geomagnetic perturbed period. The results showed direct relation between the decreasing of TEC, in the low solar activity period, and the improving of GPS positioning. This improving has resulted in a reduction of 59% in the planimetric error and 64% in the altimetric error in the point positioning and a reduction of 65% in the planimetric error and 63% in the altimetric error in the relative positioning. During the period affected by a severe geomagnetic storm, a completely atypical behavior was identified in the ionosphere, making the results of the relative positioning much worse in unexpected times and locations.
APA, Harvard, Vancouver, ISO, and other styles
9

Brückner, Marlen, Michael Lonardi, André Ehrlich, et al. "Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)." Leibniz-Institut für Troposphärenforschung, 2020. https://ul.qucosa.de/id/qucosa%3A74381.

Full text
Abstract:
The thermosphere-ionosphere regions are mainly controlled by the solar, but also by geomagnetic activity. In this case study, the Earth’s ionospheric response to the 25-26 August 2018 intense geomagnetic storm is investigated using the International GNSS System (IGS) Total Electron Content (TEC) observations. During this major storm, the minimum disturbance storm time (Dst) index reached -174 nT. We use observations and model simulations to analyse the ionospheric response during the initial phase and the main phase of the magnetic storm. A significant difference between storm day and quiet day TEC is observed. The O/N2 ratio observed from the GUVI instrument onboard the TIMED satellite is used to analyse the storm effect. The result shows a clear depletion of the O/N2 ratio in the high latitude region, and an enhancement in the low latitude region during the main phase of the storm. Furthermore, the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model simulations were used. The results suggest that the CTIPe model can capture the ionospheric variations during storms.<br>Die Regionen der Ionosphären und Thermosphäre werden hauptsächlich von der Sonne sowie auch von geomagnetische Aktivität beeinflusst. In dieser Fallstudie wurde die ionosphärische Reaktion der Erde auf den starken geomagnetischen Sturm vom 25./26. August 2018 unter Verwendung der Gesamtelektronengehaltsdaten (Total Electron Content, TEC) vom Internationalen GNSS Service untersucht. Während dieses großen Sturms wurde ein ”Disturbance Storm Time Index” Dst von -174 nT erreicht. Beobachtungen und Modellsimulationen wurden verwendet, um die ionosphärische Reaktion während der Anfangsphase und der Hauptphase des magnetischen Sturms zu untersuchen. Ein signifikanter Unterschied zwischen TEC während eines Sturmtages und eines ruhigen Tages wurde beobachtet. Das vom GUVI-Instrument an Bord des TIMED-Satelliten beobachtete O/N2 -Verhältnis wurde verwendet, um den Sturmeffekt weiter zu untersuchen. Das Ergebnis zeigt eine deutliche Abnahme/Zunahme des O/N2 Verhältnis in hohen/niedrigen Breiten während der Hauptphase des Sturms. Darüber hinaus wurde das Coupled Thermosphere Ionosphere Plasmasphere ectrodynamics (CTIPe) Modell verwendet. Die Ergebnisse legen nahe, dass das CTIPe-Modell die ionosphärischen Schwankungen während eines Sturms erfassen kann.
APA, Harvard, Vancouver, ISO, and other styles
10

Matsuoka, Marcelo Tomio [UNESP]. "Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS: avaliação na região brasileira." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/100257.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:30:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-02-28Bitstream added on 2014-06-13T21:01:19Z : No. of bitstreams: 1 matsuoka_mt_dr_prud.pdf: 13818049 bytes, checksum: ffbf4629b778855c81e385452f044bfb (MD5)<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)<br>Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC - Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul.<br>In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo - Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography