Academic literature on the topic 'Geomechanical model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geomechanical model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geomechanical model"
Kim, Guan Woo, Tae Hong Kim, Jiho Lee, and Kun Sang Lee. "Coupled Geomechanical-Flow Assessment of CO2 Leakage through Heterogeneous Caprock during CCS." Advances in Civil Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/1474320.
Full textAzad, A., and R. J. J. Chalaturnyk. "The Role of Geomechanical Observation in Continuous Updating of Thermal-Recovery Simulations With the Ensemble Kalman Filter." SPE Journal 18, no. 06 (May 29, 2013): 1043–56. http://dx.doi.org/10.2118/146898-pa.
Full textSharifi, Javad, Naser Hafezi Moghaddas, Gholam Reza Lashkaripour, Abdolrahim Javaherian, and Marzieh Mirzakhanian. "Application of extended elastic impedance in seismic geomechanics." GEOPHYSICS 84, no. 3 (May 1, 2019): R429—R446. http://dx.doi.org/10.1190/geo2018-0242.1.
Full textZHANG, SHIKE, YUAN YUAN, JIANQING XIAO, and SHUNDE YIN. "APPLICATION OF COMPUTATIONAL INTELLIGENCE METHOD IN PETROLEUM GEOMECHANICS CHARACTERIZATION." International Journal of Computational Intelligence and Applications 13, no. 04 (December 2014): 1450021. http://dx.doi.org/10.1142/s1469026814500217.
Full textYounessi, Ahmadreza. "Where, when and how a field-scale 4D geomechanical model should be built." APPEA Journal 57, no. 2 (2017): 814. http://dx.doi.org/10.1071/aj16211.
Full textAhmed, Barzan I., and Mohammed S. Al-Jawad. "Geomechanical modelling and two-way coupling simulation for carbonate gas reservoir." Journal of Petroleum Exploration and Production Technology 10, no. 8 (August 10, 2020): 3619–48. http://dx.doi.org/10.1007/s13202-020-00965-7.
Full textWang, Wenli, Julia Diessl, and Michael S. Bruno. "Surface deformation study for a geothermal operation field." Advances in Geosciences 45 (September 4, 2018): 243–49. http://dx.doi.org/10.5194/adgeo-45-243-2018.
Full textHosseini, Behrooz Koohmareh, and Rick Chalaturnyk. "A Domain Splitting-Based Analytical Approach for Assessing Hydro-Thermo-Geomechanical Responses of Heavy-Oil Reservoirs." SPE Journal 22, no. 01 (July 28, 2016): 300–315. http://dx.doi.org/10.2118/170193-pa.
Full textHuang, Jian, Reza Safari, Uno Mutlu, Kevin Burns, Ingo Geldmacher, Mark McClure, and Stuart Jackson. "Natural-hydraulic fracture interaction: Microseismic observations and geomechanical predictions." Interpretation 3, no. 3 (August 1, 2015): SU17—SU31. http://dx.doi.org/10.1190/int-2014-0233.1.
Full textSchutjens, P. M. T. M. M. T. M., J. R. R. Snippe, H. Mahani, J. Turner, J. Ita, and A. P. P. Mossop. "Production-Induced Stress Change in and Above a Reservoir Pierced by Two Salt Domes: A Geomechanical Model and Its Applications." SPE Journal 17, no. 01 (October 25, 2011): 80–97. http://dx.doi.org/10.2118/131590-pa.
Full textDissertations / Theses on the topic "Geomechanical model"
Martínez, Montesinos Beatriz [Verfasser]. "Numerical approaches to model and monitor geomechanical reservoir integrity / Beatriz Martínez Montesinos." Mainz : Universitätsbibliothek Mainz, 2019. http://d-nb.info/1188573861/34.
Full textARGOTE, SANDRA MILENA ROSERO. "GEOMECHANICAL MODEL APPLIED TO THE STABILITY ANALYSIS OF WELLS WITH ENPHASIS ON SHALES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21833@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Frente à crescente complexidade dos cenarios de exploração de petróleo, as análises de estabilidade convencionais tornam-se insuficientes para determinar as condições reais dos poços. Assim, ciente destas limitações, a indústria do petróleo vem aplicando com mais frequência novos métodos como o modelo geomecânico denominado Mechanical Earth Model (MEM), pois permite gerar uma previsão da estabilidade do poço e ajuda a reduzir os riscos de perfuração. Neste sentido, o presente trabalho apresenta uma metodologia para estimar as condições da estabilidade de poços com ênfase nas formações de folhelhos, através da identificação e análise de problemas e eventos que revelem sinais de instabilidade geomecânica levantados nos dados de perfuração disponíveis. Boletins diários de perfuração e perfis elétricos de poços são as fontes de dados para análise de problemas de estabilidade que são os responsáveis pela maior parte dos tempos não produtivos, e consequentemente, de custos extras de perfuração. Por tanto, o estudo e o entendimento destes problemas contribuirá para a otimização do processo de perfuração, melhorando assim as práticas ou mitigando os efeitos severos das anormalidades.
Facing the increasing complexity of scenarios for oil exploration, the conventional stability analysis became insufficient to determine the actual condition of the wells. Aware of these limitations, the oil industry has been applying new methods such as the geomechanical model named Mechanical Earth Model – MEM, which has been applied on the prediction of wellbore stability and drilling risks mitigation. In this sense, this work presents a methodology for estimating the wellbore stability conditions of wells with special emphasis on shale formations, through the identification and assessment of events which indicate geomechanical instability during drilling. These data are available from daily drilling reports and electric logs. Well Stability problems are responsible for most non-productive time, and consequently, the extra drilling costs. Therefore, the study and understanding of these problems contribute to the drilling optimization, thus improving the practices or mitigating the effects of severe abnormalities.
Ramiah, Kalidhasen. "2D Geomechanical Model for an Offshore Gas Field in the Bredasdorp Basin, South Africa." University of the Western Cape, 2016. http://hdl.handle.net/11394/5863.
Full textThis thesis provides a 2D geomechanical model for the K-R field, Bredasdorp Basin and describes the workflow and process to do so. This study has a unique density correction software applied to density data, prior to the estimation of geopressure gradients. The aim of this research is to create a model that evaluates the geomechanical behaviour of the upper shallow marine reservoir (USM) and provide a safe drilling mud window for future in the area.
Morgan, William Edmund. "A fully implicit stochastic model for hydraulic fracturing based on the discontinuous deformation analysis." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53073.
Full textFILHO, ARMANDO PRESTES DE MENEZES. "THERMODYNAMIC NONEXTENSIVITY, DISCRETE SCALE INVARIANCE AND ELASTOPLASTICITY: A STUDY OF A SELF-ORGANIZED CRITICAL GEOMECHANICAL NUMERICAL MODEL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=4249@1.
Full textEsta tese busca utilizar os novos conceitos físicos relacionados à física do estado sólido e à mecânica estatística - teoria do caos e geometria fractal - na análise do comportamento de sistemas dinâmicos não-lineares. Mais pormenorizadamente, trata-se de estudar o comportamento de um modelo numérico elasto-plástico com função de escoamento de Mohr-Coulomb, usualmente empregado em simulações de materiais geológicos - cimentados ou não -, quando submetido a carregamentos externos, situação esta geralmente encontrada em problemas afeitos à mecânica dos solos e das rochas (p/ex., estabilidade de taludes e escavações subterrâneas). Mostra-se que tal modelo geomecânico de muitos corpos (many-body) interagentes é conduzido espontaneamente, ao longo de sua evolução temporal, à chamada criticalidade auto-organizada (self- organized criticality - SOC), estado caracterizado por apresentar evolução na fronteira entre ordem e caos, sensibilidade extrema a qualquer pequena perturbação, e desenvolvimento de interações espaço-temporais de longo alcance. Como a evolução de qualquer sistema dinâmico pode ser vista como um fluxo ininterrupto de informações entre suas partes constituintes, avaliou-se, para tal sistema, a entropia de Tsallis, formulação original proposta pelo físico brasileiro Constantino Tsallis, do Centro Brasileiro de Pesquisas Físicas (CBPF), tendo se mostrado adequada à sua descrição. Em especial, determinou-se para tal sistema, pela primeira vez, o valor do índice entrópico, que parametriza a aludida forma entrópica alternativa. Ademais, como é característico de sistemas fora do equilíbrio regidos por uma dinâmica de limiar, mostra-se que tal sistema geomecânico, durante o seu desenvolvimento, teve a sua simetria translacional inicial quebrada, sendo substituída pela simetria por escala, auto-semelhante (i.é., fractal). Em decorrência, o modelo exibe a chamada invariância discreta de escala (discrete scale invariance - DSI), fruto do processo mesmo de ruptura progressiva do material heterogêneo. Especificamente, as simulações numéricas sugeriram que o processo de ruptura progressiva do material elasto-plástico se dá por uma transferência multiplicativa de tensões, em diferentes escalas de observação hierarquicamente dispostas, acarretando o aparecimento de sinais bastante peculiares, caracterizados por desvios oscilatórios sistemáticos do padrão em lei de potência, o que possibilita a previsão de sua ruína, quando ainda em fase preparatória. Assim, esta pesquisa mostrou a eficiência de tal método de previsão, aplicado, pela primeira vez, não somente aos resultados das simulações numéricas do referido modelo geomecânico, como aos ensaios de laboratório em rochas sedimentares, realizados no Centro de Pesquisas da Petrobrás (CENPES). Por fim, é interessante assinalar que o material elasto-plástico investigado neste trabalho teve seu comportamento compartilhado por um modelo matemático bastante simples, fundamentado na função binomial multifractal, reconhecida por descrever processos multiplicativos em diferentes escalas.
This thesis aims at applying new concepts from solid state physics and statistical mechanics - chaos theory and fractal geometry - to the study of nonlinear dynamic systems. More precisely, it deals with a two-dimensional continuum elastoplastic Mohr-Coulomb model, commonly used to simulate pressure-sensitive materials (e.g., soils, rocks and concrete) subjected to stress-strain fields, normally found in general soil or rock mechanics problems (e.g., slope stability and underground excavations). It is shown that such many-body system is spontaneously driven to a state at the edge of chaos, called self- organized criticality (SOC), capable of developing long- range interactions in space and long-range memory in time. A new entropic form proposed by C. Tsallis is presented and shown that it is the suitable theoretical framework to deal with these problems. Furthermore, the index q of the Tsallis entropy, which measures the degree of non- additivity of the system, is calculated, for the first time, for an elastoplastic model. In addition, as is usual in non-equilibrium systems with threshold dynamics, the model changes its symmetry, from translational to fractal (that is, self-similar), leading to what is called discrete scale invariance. It is shown that this special type of scale invariance, characterized by systematic oscillatory deviations from the fundamental power-law behavior, can be used to predict the failure of heterogeneous materials, while the process is still being build-up, i.e., from precursory signals, typical of progressive failure processes. Specifically, this framework was applied, for the first time, not only to the elastoplastic geomechanical model, but to laboratory tests in sedimentary rocks as well. Finally, it is interesting to realize that the above- mentioned behaviors are also displayed by the binomial multifractal function, known to adequately describe multiplicative cascading processes.
Hekmatnejad, Amin. "Geostatistical modeling of discrete fracture networks for geomechanical applications in heterogeneous fractured media based on the cox-boolean model." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/167753.
Full textLa caracterización de fracturas es crítica en minería a cielo abierto y subterránea, así como en ingeniería geológica e ingeniería de petróleo, para comprender las propiedades mecánicas e hidráulicas del macizo rocoso. Dado que se observa una fracción muy pequeña de las fracturas en un área de estudio, no es aconsejable un modelo determinístico de la red de fracturas y, a menudo, es preferible un modelo estocástico. Esta tesis se centra en el llamado modelo Cox-Booleano de discos planos para describir redes de fracturas discretas, que se basa en la definición de un proceso puntual de Cox que representa los centros de fracturas, así como en una distribución de las orientaciones y de los diámetros de fracturas. El problema específico abordado es la inferencia de los parámetros del modelo, basada en información de muestreo 1D o 2D que se origina a partir de sondajes, observaciones en líneas o bidimensionales. Las soluciones actuales al problema de inferencia suelen ser aproximadas o incipientes, especialmente en lo que se refiere al potencial del proceso de Cox subyacente, que consiste en un campo aleatorio que modela el número promedio de centros de fracturas por unidad de volumen del macizo rocoso. Se desarrollan tres métodos para modelar los parámetros de un modelo Cox-Booleano. El primero se centra en la estimación de la distribución de diámetros de fracturas en función de la distribución de longitudes de trazas determinadas a partir de observaciones areales. El segundo método aborda el problema de predecir espacialmente la intensidad de fracturas (P32) y cuantificar la incertidumbre en los valores verdaderos de P32, utilizando la información de las discontinuidades observadas a lo largo de sondajes. El tercer método permite inferir la distribución del potencial en base a la intensidad de fracturas como una variable auxiliar y a una identidad general entre las distribuciones de diámetros de fracturas, de la intensidad de fracturas y del campo potencial sobre un soporte de bloque grande. Las herramientas y métodos propuestos se aplican a estudios de casos sintéticos y reales para demostrar su aplicabilidad. El conocimiento de los parámetros del modelo abre el camino para simular el DFN en el espacio y condicionar la simulación a datos observados.
De, Laplante Neil Edward James. "A framework for comparing geomechanical models of InSAR-measured surface deformation." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69473.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 133-137).
High-quality Interferometric Synthetic Aperture Radar (InSAR) surface deformation data for field sites around the world has become widely available over the past decade. Geomechanical models based on InSAR data occur frequently in the literature but few methods of systematically optimizing or comparing them are presented. This work discusses parameterization errors for simplified models of strike-slip, normal, thrust and reservoir-style faulting with the aim of identifying tests or characteristics that can differentiate between error types uniquely. Fault dip errors, slip errors and depth errors are modelled using a simple homogeneous elastic half-space earth model. Simple difference maps prove to be a powerful tool for identifying error types and parameter sensitivity, with gradient maps and gradient difference maps useful for distinguishing between similar cases. The fault dip proves to be more indicative of error resolving capability than the faulting regime; errors on intermediately dipping faults are very difficult to differentiate. More detailed modelling of compound errors, complex geomechanical properties and noisy data is proposed. The use of the tests as the starting point for an artificially intelligent modelling package is briefly discussed.
by Neil Edward James de Laplante.
S.M.
Mohamed, Ahmad. "Multi-physics modeling of geomechanical systems with coupled hydromechanical behaviors." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5674.
Full textM.S.
Masters
Civil, Environmental, and Construction Engineering
Engineering and Computer Science
Civil Engineering; Structures and Geotechnical Engineering
Linden, d’Hooghvorst Rodríguez Jean Joseph van der. "Geomechanical study of the Tarfaya basin, West African coast, using 3D/2D static models and 2D evolutionary models." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672449.
Full textMaury, Julie. "Analyse du potentiel sismique d'un secteur lithosphérique au nord ouest des Alpes." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00873526.
Full textBooks on the topic "Geomechanical model"
International Symposium on Numerical Models in Geomechanics (3rd 1989 Niagara Falls, Ont.). Numerical models in geomechanics. London: Elsevier Applied Science, 1989.
Find full textInternational Symposium on Numerical Models in Geomechanics (4th 1992 Swansea, Wales). Numerical models in geomechanics: Proceedings of the fourth international symposium on numerical models in geomechanics. Rotterdam: A.A. Balkema, 1992.
Find full textSharma, V. M. Distinct element modelling in geomechanics. Edited by Saxena K. R and Woods Richard D. Rotterdam: A.A. Balkema, 1999.
Find full textInternational Symposium on Numerical Models in Geomechanics. (2nd 1986 Ghent, Belgium). Numerical models in geomechanics: Proceedings of the International Symposium on Numerical Models in Geomechanics, Ghent, 31st March-4th April, 1986. Redruth, England: Jackson, 1986.
Find full textMultiscale geomechanics: From soil to engineering projects. London: ISTE, Ltd. ; Hoboken, NJ : John Wiley & Sons, 2011.
Find full textCavity expansion methods in geomechanics. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textInternational Symposium on Numerical Models in Geomechanics. (10th 2007 Rhodes, Greece). Numerical models in geomechanics: Proceedings of the 10th International Symposium on Numerical Models in Geomechanics (NUMOG X), Rhodes, Greece, 25-27 April 2007. Edited by Pande G. N and Pietruszczak S. London: Taylor & Francis, 2007.
Find full textInternational Symposium on Numerical Models in Geomechanics (5th 1995 Davos, Switzerland). Numerical models in geomechanics: Proceedings of the fifth International Symposium on Numerical Models in Geomechanics : NUMOG V, Davos, Switzerland, 6-8 September 1995. Rotterdam: A.A. Balkema, 1995.
Find full textAlonso, Eduardo E. Geomechanics of Failures. Advanced Topics. Dordrecht: Springer Science+Business Media B.V., 2010.
Find full textInternational Symposium on Numerical Models in Geomechanics (6th 1997 Montréal, Québec). Numerical models in geomechanics: NUMOG VI : proceedings of the Sixth International Symposium on Numerical Models in Geomechanics, Montreal, Quebec, Canada, 2-4 July, 1997. Rotterdam: A.A. Balkema, 1997.
Find full textBook chapters on the topic "Geomechanical model"
Savenkov, E. B., and V. E. Borisov. "Geomechanical Model for Large Scale Hydraulic Fracture Dynamics." In Heat-Mass Transfer and Geodynamics of the Lithosphere, 259–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63571-8_16.
Full textLade, Poul V. "Three-dimensional behaviour and parameter evaluation of an elastoplastic soil model." In Geomechanical Modelling in Engineering Practice, 297–311. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203753583-15.
Full textKhadka, Suraj, Zhong-Mei Wang, and Liang-Bo Hu. "Exploring a Coupled Approach to Model the Geomechanical Processes of Sinkholes." In Proceedings of GeoShanghai 2018 International Conference: Geoenvironment and Geohazard, 99–107. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0128-5_12.
Full textXiangning, Xu, Chen Yuliang, and Li Shengwen. "Study of Shock Landslide-Type Geomechanical Model Test for Consequent Rock Slope." In Landslide Science and Practice, 11–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31310-3_2.
Full textPerello, P. "The Geological Model Reliability in Tunnelling and Its Influence on the Geomechanical Model: A Quantification Attempt." In Challenges and Innovations in Geomechanics, 976–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64514-4_107.
Full textKamenev, Pavel, Leonid Bogomolov, and Andrey Zabolotin. "Development of Geomechanical Model of the South Segment of Central Sakhalin Fault Zone." In Springer Proceedings in Earth and Environmental Sciences, 79–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31970-0_9.
Full textPereira, Jose Henrique, and Nicole Borchardt. "UHE Belo Monte: Geological and Geomechanical Model of Intake Foundation of Belo Monte Site." In Engineering Geology for Society and Territory - Volume 6, 627–32. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09060-3_111.
Full textXu, Zhijie, Yilin Fang, Timothy D. Scheibe, and Alain Bonneville. "A Hydro-Mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration." In Energy Technology 2012, 47–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118365038.ch7.
Full textStockinger, Georg, Elena Mraz, Florian Menschik, and Kurosch Thuro. "Geomechanical Model for a Higher Certainty in Finding Fluid Bearing Regions in Non-porous Carbonate Reservoirs." In IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018—Volume 6, 193–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93142-5_27.
Full textNguyen, Van Hung, Hai Linh Luong, Minh Hoang Truong, Huu Truong Nguyen, Vu The Quang, Viet Khoi Nguyen Nguyen, and Tu An Bui. "Application of a Geomechanical Model to Wellbore Stability Analysis: A Case Study X-Well, Bach Ho Field in Vietnam." In Lecture Notes in Civil Engineering, 177–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2306-5_23.
Full textConference papers on the topic "Geomechanical model"
Rodriguez-Herrera, A., O. Zdraveva, and N. Koutsabeloulis. "Geomechanical Velocity Model Building." In 76th EAGE Conference and Exhibition 2014. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20141073.
Full textBérard, T., J. Desroches, Y. Yang, X. Weng, and K. Olson. "High-Resolution 3D Structural Geomechanics Modeling for Hydraulic Fracturing." In SPE Hydraulic Fracturing Technology Conference. SPE, 2015. http://dx.doi.org/10.2118/spe-173362-ms.
Full textLi, Pingke, and Richard J. Chalaturnyk. "Geomechanical Model of Oil Sands." In SPE International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/97949-ms.
Full textSantos, Luiz Alberto, Anderson Moraes, Aline Theophilo da Silva, Vinicius Ferreira Carneiro, Paulo Marcos de Carvalho, Mauren Paola Ruthner, and Henrique Aita Fraquelli. "Seismically guided exploration geomechanical model." In 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 31 July-3 August 2017. Brazilian Geophysical Society, 2017. http://dx.doi.org/10.1190/sbgf2017-064.
Full textPurnomo, Eko Widi, and Deva Prasad Ghosh. "Geomechanical Model from Subseismic Resolution Data." In Offshore Technology Conference Asia. Offshore Technology Conference, 2016. http://dx.doi.org/10.4043/26642-ms.
Full textLopez-Puiggene, Eva, Nubia Aurora Gonzalez-Molano, Jose Alvarellos-Iglesias, Jose M. Segura, and M. R. Lakshmikantha. "Numerical Modeling of Sand Production Potential Estimation and Passive Control Optimization: A Case Study." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77851.
Full textBhimpalli, Sarah, Ashok Shinde, Bayye L. Rao, Satya Perumalla, Anjana Panchakarla, Prajit Chakrabarti, and Sankhajit Saha. "Successful Implementation Of Geomechanics In Deep Water Setting: A Case Study From KG Offshore, India." In SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/202146-ms.
Full textVenter, Julian, and Emrich Hamman. "A practical safety risk model for monitoring program design." In First International Conference on Mining Geomechanical Risk. Australian Centre for Geomechanics, Perth, 2019. http://dx.doi.org/10.36487/acg_rep/1905_09_venter.
Full textAndrijasevich, Jake, Hakan Basarir, and Johan Wesseloo. "Construction of a damage risk model for footwall drifts." In First International Conference on Mining Geomechanical Risk. Australian Centre for Geomechanics, Perth, 2019. http://dx.doi.org/10.36487/acg_rep/1905_15_andrijasevich.
Full textFanchi, J. R. "Estimating Geomechanical Properties Using an Integrated Flow Model." In SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/75149-ms.
Full textReports on the topic "Geomechanical model"
Park, Byoung. Geomechanical Simulation of Bayou Choctaw Strategic Petroleum Reserve - Model Calibration. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1345900.
Full textPark, Byoung. Geomechanical Simulation of Big Hill Strategic Petroleum Reserve - Model Calibration. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1761931.
Full textPark, Byoung. Geomechanical Simulation of Big Hill Strategic Petroleum Reserve - Calibration of Model Containing Shear Zone. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569339.
Full textUm, Wooyong, Hun Bok Jung, Senthil Kabilan, Dong-Myung Suh, and Carlos A. Fernandez. Geochemical and Geomechanical Effects on Wellbore Cement Fractures: Data Information for Wellbore Reduced Order Model. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1121533.
Full textDeo, Milind, Hai Huang, Hyukmin Kweon, and Luanjing Guo. Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1261781.
Full textDelshad, Mojdeh, Mary Wheeler, Kamy Sepehrnoori, and Gary Pope. Development of an Advanced Simulator to Model Mobility Control and Geomechanics during CO{sub 2} Floods. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1130970.
Full text