Dissertations / Theses on the topic 'Geometria diferencial de superficies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Geometria diferencial de superficies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Batista, Ricardo Alexandre [UNESP]. "Tópicos de geometria diferencial." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94373.
Full textO principal objetivo deste trabalho é confeccionar um texto para alunos de gradua ção na área de Ciências Exatas e da Terra concernente ao estudo da Curvatura Gaussiana e Aplicação de Gauss, Superfícies Mínimas, Teorema Egregium de Gauss e o Teorema de Gauss- Bonnet para curvas simples fechadas
The main objective from this work is to make a text for students of graduation in the area of exact sciences and of the land concerning to the study of the Gaussian Curvature and the Gauss Map, Minimal Surfaces, Gauss's Theorem Egregium and the Gauss-Bonnet Theorem for Simple Closed Curves
Lopes, Lauriclecio Figueiredo. "Superficies minimas folheadas por circunferencias." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306661.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T03:34:02Z (GMT). No. of bitstreams: 1 Lopes_LauriclecioFigueiredo_M.pdf: 1161319 bytes, checksum: c34f319b4252610a06e72d9b93740a89 (MD5) Previous issue date: 2005
Resumo: Entende-se por superfícies mínimas aquelas cuja curvatura média é nula. Têm-se como exemplos clássicos o catenóide, o helicóide e a superfície de Scherk. Historicamente, elas estão relacionadas com minimização de área, porém quando realiza-se uma variação normal incluindo os bordos, a superfície original com curvatura média nula pode representar uma área localmente máxima. Em certos casos de variação com bordo fixo, tem-se realmente a minimização do funcional área. No espaço euclidiano tridimensional, o Teorema da Representação de Weierstrass expressa uma superfície mínima em termos de integrais envolvendo uma função holomorfa e uma meromorfa. A partir desta meromorfa pode-se deduzir a aplicação normal de Gauss. Conceitos como curvatura Gaussiana, curvatura total, superfícies completas e regularidade também são utilizados para deduzir propriedades das superfícies mínimas. Quando estudamos as superfícies mínimas para as quais o bordo consiste de duas circunferências disjuntas, os Teoremas de Enneper e Shiffman, o Princípio de Reflexão de Schwarz e a unicidade do Problema de Bjõrling são ferramentas importantes para a dedução das soluções, a saber, o catenóide e as superfícies de Riemann. Estas apresentam simetrias por reflexão a um plano e invariância por rotação de 180 graus em torno de uma reta. A função "P de Weierstrass" simétrica é de grande utilidade no estudo destas propriedades
Abstract: Minimal surfaces are known to be the ones with mean curvature zero. Classical exampIes are the catenoid, helicoid and the Scherk surface. Historically, they were associated with the property of minimizing area. However, they can even maximize it localIy for cases of normal variation which include the boundary. For fixed boundary, we shalI analyse when they realIy minimize the area functional. In the three-dimensional Euclidean space, the Weierstrass Representation Theorem expresses any minimal surface S by means of integraIs with a holomorphic and a meromorphic functions, usualIy denoted by f and g, respectively. The unitary normal N of S is fulIy determined by g. Concepts like "Gaussian curvature", "total curvature", "com pleteness" and "regularity" are also employed in order to read off some properties of minimal surfaces. Concerning the case for which the boundary of S consists of two disjoint circumferences, Enneper's and Shiffman's Theorems, The Schwarz's Reflection PrincipIe and the B6rling's Problem are fundamental tools to characterize the solutions, namely the catenoid and the Riemann's examples. AlI these are invariant by a reflectional symmetry in a plane, and also by a rotation of 180-degree around a straight line. The symmetric Weierstrass-Pfunction is very useful to deduce these properties
Mestrado
Matematica
Mestre em Matemática
Onnis, Irene Ignazia. "Superficies em certos espaços homogeneos tridimensionais." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307114.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T19:19:12Z (GMT). No. of bitstreams: 1 Onnis_IreneIgnazia_D.pdf: 2069054 bytes, checksum: 1e17d831ed9d0ddf66676ec47d7161f4 (MD5) Previous issue date: 2005
Resumo: Neste trabalho estudamos superfícies em variedades Riemannianas homogêneas tridimensionais com condições sobre a geometria intrínseca e/ou extrínseca. Em particular: 1. Resolvemos o Problema de Bjõrling para superfícies mínimas que contêm uma dada faixa analítica em grupos de Lie munidos de uma métrica invariante à esquerda. 2. Classificamos as superfícies de curvatura média constante no produto do plano hiperbólico com a reta real, que são invariantes pela ação de um subgrupo a umparâmetro do grupo das isometrias do espaço ambiente. 3. Classificamos as superfícies de curvatura Gaussiana constante em variedades Riemannianas homogêneas de dimensão três, com particular atenção ao caso do grupo de Heisenberg e do espaço dado pelo produto do plano hiperbólico com a reta real
Abstract: In this work we study surfaces in homogeneous Riemannian manifolds of dimension three with conditions on the intrinsic and/or the extrinsic geometry. En particular: 1. We solve the Bjõrling Problem for minimal surfaces which contain an analytical strip in Lie groups with a left invariant metric. 2. We classify constant mean curvature surfaces in the product of the hyperbolic plane with the realline, which are invariant under the action of a one-parameter subgroup of the isometries group of the ambient space. 3. We classify constant Gaussian curvature surfaces of homogeneous Riemannian manifolds of dimension three, with particular attention for the case of the Heisenberg group and for the product of the hyperbolic plane and the realline
Doutorado
Geometria Diferencial
Doutor em Matemática
Gneri, Paula Olga. "Superficies minimas no grupo de Heisengerg." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307111.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-08T21:16:49Z (GMT). No. of bitstreams: 1 Gneri_PaulaOlga_M.pdf: 2971673 bytes, checksum: 11d75f0bfec160a95d70d4152cccfecb (MD5) Previous issue date: 2007
Resumo: o objetivo deste trabalho é o estudo dos gráficos mínimos no grupo de Heisenberg de dimensão três. Primeiramente fizemos uma descrição deste grupo como grupo de Lie e sua álgebra de Lie. Verificamos que a aplicação exponencial é um difeomorfismo global entre a álgebra de Lie e o grupo de Heisenberg. Seguindo o ciclo natural, passamos a estudar a geometria Riemanniana do grupo de Heisenberg com métrica invariante à esquerda, calculando os campos invariantes à esquerda, as curvaturas, as geodésicas, os campos de Killing e o grupo de isometrias deste espaço. Subseqüentemente, estudamos a aplicação normal de Gauss para gráficos no grupo de Heisenberg, concluindo, entre outras propriedades, a não existência de superfícies totalmente umbílicas neste grupo. Classificamos todas as superfícies mínimas cujo posto da aplicação de Gauss é zero ou um e concluindo que tais superfície são regradas. Finalizando, analisamos alguns exemplos de gráficos mínimos completos cuja aplicação de Gauss tem posto dois. A classificação de gráficos mínimos com aplicação de Gauss de posto dois é ainda um problema em aberto
Abstract: The purpose of this work is study minimal surfaces in tri-dimensional Heisenberg group. Firstly, we made a description of Heisenberg group as Lie group and its Lie algebra. We examined that the exponential application is a global difeomorfism between Lie algebra and Heisenberg group. Thereafter, we investigate Riemann Geometry of left invariant metric Heisenberg group, weconsider left invariant fields, curvatures, geodesics, Killing fields and isometry group of this space. Subsequently, we examined the Gauss normal application to surfaces in Heisenberg group and weconclude a series of peculiarity as, for example, the not existence of umbilic surfaces in this group. We classified all minimal surfaces with rank-zero Gauss application ar rank-one Gauss application and we conclude that these surfaces are ruled. To put an end, we analyzed some examples of complete minimal surfaces with rank-two Gauss application. The classification of minimal surfaces with rank-two Gauss application is a open problem
Mestrado
Mestre em Matemática
Andrade, Lenimar Nunes de. "Traços de interseção de superficies regulares com passos circulares." [s.n.], 1998. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261221.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-07-25T13:54:01Z (GMT). No. of bitstreams: 1 Andrade_LenimarNunesde_D.pdf: 4374702 bytes, checksum: 2b2df49fc38fb0f003c6b972a24c0b10 (MD5) Previous issue date: 1998
Resumo: Neste trabalho apresentamos uma técnica mista para o cálculo da interseção de duas superfícies regulares. Nossa técnica consiste em uma variação da técnica da subdivisão dos domínios combinada com trechos de caminhada. Através da subdivisão obtemos pontos próximos da interseção distribuídos aleatoriamente por todo o domínio da parametrização. Selecionamos alguns deles e iniciamos trechos de caminhada usando o que denominamos passo circular. Para uma maior precisão numérica, a caminhada usa em cada ponto uma construção de um círculo osculador aproximado. Para avaliar nossa técnica, fizemos comparações com as técnicas de caminhada já existentes. Baseado nos testes que fizemos podemos afirmar que nossa técnica mista é eficiente
Abstract: In this research we present a mixed technique for determining the intersection between two regular surfaces. Our technique is a variation of the domain subdivision technique combined with marching technique. The domain subdivision gives us approximated initial points distributing ramdomly on the .parametrization domain. We choose some of these points and march along the curve using the so-called circular step. In order to get a better numerical precision, we proposed the construction of an approximated osculating circle to each point of the curve to determine circular steps. For evaluating our technique, we compared the proposed technique with the existing ones. According to these tests we can assert that our mixed technique is efficient
Doutorado
Modelagem Geometrica
Doutor em Engenharia Elétrica
Silva, Cleusiane Vieira da. "Aplicações harmonicas, estruturas-f, toros e superficies de Riemann nas variedades homogeneas." [s.n.], 2002. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306781.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-07-31T17:46:49Z (GMT). No. of bitstreams: 1 Silva_CleusianeVieirada_M.pdf: 1600289 bytes, checksum: f73aa8034db2cd0fb651e4378b464ee6 (MD5) Previous issue date: 2002
Resumo: Neste trabalho, estudamos a geometria das estruturas-f invariantes e curvas fholomorfas em variedades bandeira, a construção de toros equiharmônicos em variedades bandeira complexas não-degeneradas que não são f-holomorfos para qualquer estrutura-f invariante. Calculamos a segunda variação da energia para superfícies harmônicas riemannianas fechadas em variedades bandeira munidas com métricas do tipo Borel daídiscutimos a estabilidade para o referencial de Frenet de aplicações holomorfas com respeito a uma grande classe de métricas invariantes em F(N) obtidas via perturbação de métricas Kãhler. Além disso relacionamos a teoria de torneios com as estruturas quase complexas de uma variedade bandeira. Finalmente mostramos que a métrica Killing em F(N) é (1,2)-simplética se e somente se N :S 3
Abstract: In this work we study the geometry of invariant f-structures and f-holomorphic curves on flag manifolds, and the construction of the equiharmonic tori on full complex flag manifolds which are not f-holomophic for any invariant f-estructure. Moreover we relate the tournament theory with the almost-complex on a flag manifolds. We compute the second variation of energy for harmonic closed Riemann surfaces into flag manifolds equipped with the Borel type metrics then we discuss stability for Frenet frames of holomorphics maps with respect to a very large class de invariants metrics F(N) obtained via perturbation of the Kãhler ones. Finally we proof that the metric Killing on F(N) is (1,2)-simplétic if and only if N :S 3
Mestrado
Mestre em Matemática
Lubeck, Kelly Roberta Mazzutti. "Metodo limite para solução de problemas de periodos em superficies minimas." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306660.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T08:53:28Z (GMT). No. of bitstreams: 1 Lubeck_KellyRobertaMazzutti_D.pdf: 1896664 bytes, checksum: 506a84f4e0c03b2fff585bb45b6a9b1f (MD5) Previous issue date: 2007
Resumo: Neste trabalho apresentamos o estudo e a construção de superfícies minimas atraves de um metodo exclusivo. Em 1762, Lagrange introduziu a Equacao Diferencial das Superfícies Mnimas atraves do Calculo de Variações, e hoje a teoria de tais superfícies e umaarea de pesquisa ativa e abrangente. A elaboração de novas famílias de superfícies minimas esta baseada no metodo da Construção Reversa, desenvolvido por Hermann Karcher nos meados da década de 80. Salientamos no presente trabalho a maneira diferenciada com que os problemas de periodos foram resolvidos. Para isso, utilizaram-se as equações de uma superfície mínima limite, para a qual ja era conhecido que o problema de períodos tinha solução transversal. Tal método, que neste trabalho sera denominado "método limite", simplica de maneira consideravel o esforco em solucionar os problemas de período da família original
Abstract: In this work we present the study and construction of minimal surfaces through an exclusive method. In 1762, Lagrange introduced the Minimal Surfaces Diferential Equation through the Calculus of Variations, and today the theory of such surfaces builds up an active and broad research area. We obtain new families of minimal surfaces based upon the Reverse Construction Method, developed by Hermann Karcher during the eighties. In our work we stress the original fashion with which period problems are solved: One makes use of a limit minimal surface, of which the periods are known to have transversal solution. Because of that we named our technique as "limit-method", which simplies considerably the effort of solving period problems for the sought after family of minimal surfaces
Doutorado
Geometria Diferencial
Mestre em Matemática
Albuquerque, Francisco Siberio Bezerra. "Superficies minimas completas estaveis em 3-variedades de curvatura escalar nao-negativa." Universidade Federal do CearÃ, 2007. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=716.
Full textMoraes, Simone Maria de. "Elipses de curvatura no estudo de superficies imersas em Rn, n [maior ou igual] 5." [s.n.], 2002. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306617.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-01T15:53:56Z (GMT). No. of bitstreams: 1 Moraes_SimoneMariade_D.pdf: 3314627 bytes, checksum: 0e8930feef94d5858f8719399168c08b (MD5) Previous issue date: 2002
Resumo: Dada uma superfície imersa em Rn, n= 4, podemos associar a cada ponto p ? M uma elipse, chamada a elipse de curvatura de M em p, definida como sendo o local geométrico de todos os pontos finais dos vetares curvatura das seções normais ao longo de todas as direções tangentes a M em p. O conceito de elipse de curvatura já é incluido em [36] de Moore e Wilson e amplamente utilizado par Little em [24] para caracterização de propriedades geométricas de superfícies em IR4. Neste trabalho estendemos o conceito para superfícies imersas em Rn, n =: 5, estabelecemos novas expressões que podem ser obtidas para parametrizações quaisquer da imersão. Em certos pontos de M esta elipse pode se degenerar em um segmento (pontos semiumbílicos de M), ou se degenerar em um ponto (pontos umbílicos de M). Através desta classificação dos pontos de M estudamos os pontos singulares de segunda ordem no sentido de Feldman da imersão [11]. Analisamos casos locais considerando a parametrização da imersão na forma de Monge, apresentamos as possíveis elipses de curvatura através do parabolóide osculador associado à superfície em um dado ponto. Alguns casos globais são analisados através da aplicação de Veronese de ordem e dimensão 2. Ainda por meio da classificação dos pontos da superfície em termos da elipse de curvatura (degenerada ou não) estabelecemos condições para que uma superfície imersa em IRn, n = 5, tenha contato de ordem 2=2 com k-planos ou k-esferas, 2=; k=; 4, em cada ponto. Estendemos as noções de umbilicidade, linhas de curvatura e configurações principais relativamente à direções normais em cada ponto da superfície, relacionando estes conceitos com direções no subespaço normal determinado pela elipse de curvatura e o respectivo subespaço normal complemento ortogonal. Caracterizamos semiumbilicidade total em termos de umbilicidade e configurações principais. Definimos direções binormais, assintóticas e convexidade local, fazendo um estudo análogo ao já conhecido para superfícies em IR4. Introduzimos o conceito de direção normal essencial, obtendo uma caracterização de convexidade local especial que nos possibilita determinar o número de direções binormais (essenciais) e assintóticas (essenciais) em cada ponto da superfície. Finalmente, obtemos algumas conclusões relacionando a existência de imersões regulares de superfícies de ordem 2 (no sentido de Feldman) e a existência campos normais essenciais globalmente definidos sobre superfícies em IRn, n = 5
Abstract: Given a surface M immersed in IRn, n 2:=4, we can associate at each point p ? M one ellipse, called the curvature ellipse of M at p, defined as the locus of all .the end points of the curvature vectõrs of the normal sections along all the tangent directions to M at p. The curvature ellipse has been included in [36] by Moore and Wilson and used by Little in [24] to characterize geometric properties of surfaces in IR4 o Our purpose here is to extend this concept to the case of surfaces immersed in IRn, n =5 We establish new expressions for the curvature ellipse, which are suitable for arbitrary parametrizations of the surface. At certain points of M this ellipse may degenerate becoming a segment (semiumbilic points of M) or even into a point (umbilic points of M) o A classification of points of M is used to discuss singular points of order two of the immersion in the sense of Feldman. Local cases are studied through the Monge form parametrization of the immersion. The possibilities for curvature ellipses are presented by considering the osculating paraboloid associated to the surface. Some global cases are analyzed through the Veronese map of order and dimension two. Yet by means of the classification of the points of the surface by its curvature ellipse (degenerated or not) we establish conditions that an immersed surface must satisfy in order to have contact of order at least two contact with k-planes and k-spheres, k = 4, at each point. The concepts of umbilicity, curvature lines and principal configurations relatively to the normal directions at each point of the surface are extend and related to normal directions lying on the normal subspace determined by the curvature ellipse and the corresponding orthogonal complement. Total semiumbilicity is characterized in terms of umbilicity and principal configurations. The concepts of binormal and asymptotic directions and local convexity are introduced and studied by analogy with to the well know case of surfaces in IR4. We introduced the notion of essential normal direction and see that this concept provides a criterion for determining the number of binormal (essential) and asymptotic (essential) directions at each point of surface. Some conclusions relating the existence of regular immersions of order two of surfaces in IRn, n = 5, in the sense Feldman to the existence that of essential normal fields globally defined over the surfaces in IRn, n = 5, are then obtained.
Doutorado
Doutor em Matemática
Alessio, Osmar. "Traçado não-sobreposto de interseção de superficies regulares com passos de contato de ordem 3." [s.n.], 2002. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260338.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-02T22:56:15Z (GMT). No. of bitstreams: 1 Alessio_Osmar_D.pdf: 12858957 bytes, checksum: 2a279c39a7f467f27d4b43d578a24c3d (MD5) Previous issue date: 2002
Doutorado
Melo, Édypo Ribeiro de [UNESP]. "Estruturas geômetro-diferenciais na superfície da corda bosônica." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/92033.
Full textHistoricamente, as superfícies mínimas foram inicialmente estudadas por Lagrange e Euler no século XVIII. Fisicamente, uma superfície é mínima se ela não pode ser modificada sem consequente aumento de sua área. Tais superfícies desempenham papel fundamental na moderna pesquisa em geometria diferencial. Em física relativística e na teoria de cordas, elas são usadas a fim de descrever a formulação matem´atica de buracos negros e para o estudo de loops de quarks na fronteira do espaço Anti-de-Sitter, sendo estes denominados Wilson loops. Neste trabalho, pretendemos estudar o formalismo necessário para a análise destas superfícies nos espaços Euclideano, Lorentziano e Anti-de-Sitter sob à ótica da teoria de cordas bosônicas
Historically, minimal surfaces were first studied by Lagrange and Euler in the eighteenth century. Physically, a surface is minimal if it cannot be modified without consequent increase in your area. Such surfaces play a fundamental role in the modern research in differential geometry. In relativistic physics and string theory, they are used to describe the mathematical formulation of black holes and for the study of quark loops on the boundary of the Anti-de-Sitter space, called Wilson loops. In this work, we intend to study the necessary formalism for the analysis of surfaces in Euclidean, Lorentzian and Anti-de-Sitter spaces from the perspective of bosonic string theory
Ysique, Quesquén Alan. "Dinámica de las líneas de curvatura." Master's thesis, Pontificia Universidad Católica del Perú, 2015. http://tesis.pucp.edu.pe/repositorio/handle/123456789/7460.
Full textTesis
Bonow, Isabel Castro. "O problema de Dirichlet para a equação das hipersuperfícies de curvatura média constante." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2007. http://hdl.handle.net/10183/10971.
Full textIn this work we study the existence and uniqueness of solutions to the Dirichlet problem for the constant mean curvature equation in bounded domains of the Euclidean space.
Branco, Flavia Malta. "Uma extensão do teorema de Gauss-Bonnet para superfícies com fins do tipo cone." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1999. http://hdl.handle.net/10183/117809.
Full textIn this work we define a-conical type end surfaces, a 2 >/ O, a class of complete non compact surfaces having a nice behaviour at infinity, and we present an extension of the Theorem of Gauss-Bonnet for these surfaces such that a> O.
Cuadros, Valle Jaime. "Duality on 5-dimensional S1-Seifert bundles." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95418.
Full textDescribimos una correspondencia entre dos enlaces asociados a un mismo espacio K3 que soporta a lo más, singularidades cíclicas de tipo orbifold. Esta dualidad se hace evidente cuando dos elementos, uno en el interior y el otro en la frontera del cono de Kähler, son identificados. Denominamos a esta correspondencia ∂-dualidad. También discutimos las consecuencias de ∂-dualidad al nivel de estructuras riemaniannas.
Nunes, Giovanni da Silva. "Hipersuperfícies com curvaturas principais positivas em espacos homogêneos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1998. http://hdl.handle.net/10183/127099.
Full textA classical result in differential geometry, known as Hadamard's theorem and proved by himself ([Ha]). establishes that a compact connected surface in the Euclidean space whose principal curvatures are everywhere positive is the boundary of a convex body. In particular, the surface is diffeomorphic to a sphere. In this work we present IJartial extensions of this theorem to immersions of arbitrary codimension and to other spaces than the Euclidean one, as clone in [R].
Batista, Ricardo Alexandre. "Tópicos de geometria diferencial /." Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94373.
Full textBanca: Eliris Cristina Rizziolli
Banca: Laércio Aparecido Lucas
Resumo: O principal objetivo deste trabalho é confeccionar um texto para alunos de gradua ção na área de Ciências Exatas e da Terra concernente ao estudo da Curvatura Gaussiana e Aplicação de Gauss, Superfícies Mínimas, Teorema Egregium de Gauss e o Teorema de Gauss- Bonnet para curvas simples fechadas
Abstract: The main objective from this work is to make a text for students of graduation in the area of exact sciences and of the land concerning to the study of the Gaussian Curvature and the Gauss Map, Minimal Surfaces, Gauss's Theorem Egregium and the Gauss-Bonnet Theorem for Simple Closed Curves
Mestre
Coimbra, Jose de Ribamar Viana. "Uma introdução a geometria diferencial." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307015.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação
Made available in DSpace on 2018-08-11T14:52:52Z (GMT). No. of bitstreams: 1 Coimbra_JosedeRibamarViana_M.pdf: 2680384 bytes, checksum: d91c9e63f3b142a2ff60c4d2fb586e86 (MD5) Previous issue date: 2008
Resumo:A presente dissertação é um texto de Geometria Diferencial baseado nos principais textos editados em língua portuguesa sobre o assunto. A principal intenção ao redigir a dissertação foi compilar um material que possa ser utilizado em cursos introdutórios de Geometria Diferencial tanto em nível de licenciatura quanto de bacharelado. Para tornar o texto mais acessível, notas históricas sobre o desenvolvimento da Geometria Diferencial e seus principais personagens foram introduzidas logo no primeiro capítulo. Para facilitar o entendimento e o estudo do assunto, procurou-se inserir muitos exemplos e ilustrar fartamente o texto com figuras ¿Observação: O resumo, na íntegra poderá ser visualizado no texto completo da tese digital
Abstract: This dissertation is a text of Differential Geometry based on the most important texts edited in Portuguese about this subject. Our aim in this work were to compile a material that can be used as introduction to Differential Geometry in undergraduate courses. In order to turn the text more accessible, historical notes about the beautiful development of Differential Geometry and its great persons were introduced in the first chapter. Besides, in order to help the reader with the study of this subject, we put many examples and figures to illustrate the theory...Note: The complete abstract is available with the full electronic digital thesis or dissertations
Mestrado
Mestre em Matemática
Domingues, João Paulo Felipe [UNESP]. "Geometria diferencial das curvas planas." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/94342.
Full textA história da Geometria Diferencial começa com o estudo de curvas. Noções de retas tangentes à curvas podem ser encontradas em Euclides, Arquimedes e Apolônio. Também, o Cálculo está baseado em ideias geométricas e, portanto, é natural encontrar investigações sobre curvas entre os tópicos tratados pelos pioneiros da Análise, Newton, Leibniz e Euler. Neste trabalho, serão apresentados os conceitos que fundamentam a teoria de curvas, bem como exemplos envolvendo algumas curvas clássicas, como a cicloide
The history of Differential Geometry begins with the study of curves. Notions of tangent lines to the curves can be found in Euclid, Archimedes and Apollonius. Also, the Calculus is based on geometrical ideas and therefore is natural to find researches on curves between topics treated by the pioneers of Analysis, Newton, Leibniz and Euler. In this work, the concepts that underlie the theory of curves and some examples involving classical curves are presented, as the cycloid
Santos, Samuel Paulino dos. "Geometria Diferencial do conjunto focal." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/152808.
Full textRejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: Problema 01) O arquivo contém 07(sete) páginas em branco, as mesmas devem retiradas. Problema 02) Na Folha de rosto deve constar a financiadora. Ex.: Financiadora: FAPESP – Proc. Problema 03) Na capa e folha de rosto devem constar somente o ano Problema 04) A ficha catalográfica deve ser refeita pois na contagem entraram as páginas em branco.. Na página da Seção de pós-graduação, em Instruções para Qualificação e Defesas de Dissertação e Tese, você pode acessar o modelo das páginas pré-textuais. Lembramos que o arquivo depositado no repositório deve ser igual ao impresso. Agradecemos a compreensão. on 2018-02-21T19:46:00Z (GMT)
Submitted by Samuel Paulino dos Santos null (samuelp.santos@hotmail.com) on 2018-02-22T17:32:54Z No. of bitstreams: 1 Samuel Dissertacao.pdf: 1684097 bytes, checksum: f23b4c4291af5720876a40f4fad8bc75 (MD5)
Rejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: Problema 01) O arquivo contém 07(sete) páginas em branco, as mesmas devem retiradas, pois não pode haver páginas em branco no arquivo. Problema 02) Na Folha de rosto deve constar a financiadora. Ex.: Financiadora: FAPESP – Proc. Problema 03) Na capa e folha de rosto devem constar somente o ano Problema 04) A ficha catalográfica deve ser refeita pois na contagem entraram as páginas em branco. Estamos encaminhando via e-mail o modelo das páginas pré-textuais para que você possa fazer as correções. Lembramos que o arquivo depositado no repositório deve ser igual ao impresso. Agradecemos a compreensão. on 2018-02-22T18:21:23Z (GMT)
Submitted by Samuel Paulino dos Santos null (samuelp.santos@hotmail.com) on 2018-02-22T19:27:58Z No. of bitstreams: 1 Dissertacao-Samuel-CORRECOES.pdf: 1777749 bytes, checksum: 414449c29a5a2c7be6d6e5dc4eb7fbe0 (MD5)
Submitted by Samuel Paulino dos Santos null (samuelp.santos@hotmail.com) on 2018-02-22T19:46:16Z No. of bitstreams: 1 Dissertacao-Samuel-CORRECOES.pdf: 1777749 bytes, checksum: 414449c29a5a2c7be6d6e5dc4eb7fbe0 (MD5)
Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-02-23T18:32:09Z (GMT) No. of bitstreams: 1 santos_sp_me_sjrp.pdf: 1777749 bytes, checksum: 414449c29a5a2c7be6d6e5dc4eb7fbe0 (MD5)
Made available in DSpace on 2018-02-23T18:32:09Z (GMT). No. of bitstreams: 1 santos_sp_me_sjrp.pdf: 1777749 bytes, checksum: 414449c29a5a2c7be6d6e5dc4eb7fbe0 (MD5) Previous issue date: 2018-02-08
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Seja S uma superf´ıcie regular em R3 sem pontos parab´olicos. O conjunto focal de S ´e o lugar geom´etrico dos centros das esferas que possuem contato degenerado com S em cada ponto. Tal contato ´e medido pelas singularidades da fam´ılia de func¸˜oes distaˆncia ao quadrado D associada a` S. O conjunto focal ´e uma superf´ıcie, por´em n˜ao necessariamente regular, e pode tamb´em ser visto como o conjunto bifurca¸ca˜o da fam´ılia D. A t´ecnica de associar uma variedade singular X(S) a uma subvariedade suave S do espa¸co euclidiano e descobrir alguns aspectos da geometria de S a partir daqueles de X(S) esta´ na essˆencia das aplica¸co˜es da Teoria das Singularidades `a Geometria Diferencial. Neste trabalho, estudamos os modelos, a menos de difeomorfismos, para o conjunto focal de superf´ıcies imersas em R3 gen´ericas, reunimos os principais resultados sobre a geometria da superf´ıcie focal encontrados na literatura e os apresentamos de forma mais explicativa e com uma linguagem moderna. Al´em disso, mostramos que a superf´ıcie focal pode ser parametrizada por uma frente de onda e utilizamos resultados conhecidos para tais aplica¸co˜es no estudo da geometria da superf´ıcie focal.
Let S be a immersed surface in R3 without parabolic points. The focal set of S is the locus of the centres of spheres that have a degenerate contact with S in each point. This contact is measured by singularities of the family of distance squared function D associated with S. The focal set is a surface, but is not necessarily regular, and it can also be seen as the bifurcation set of the family D. The approach of associating a singular variety X(S) to a smooth submanifold S in an Euclidian space and recover some aspects of the geometry of S from that of X(S) is at the essence of applications of singularity theory to the Differential Geometry. In this work, we study models, unless diffeomorphism, of focal set of the immersed generics surfaces in R3. We have also gathered some results about the geometry of the focal set of the literature and we present them in a more explanatory way and in a modern notation. Furthermore, we show that the focal surface can be parametrized by a wave front and use the known results of such applications in the study of the focal set.
Fapesp: 2016/21226-5
Domingues, João Paulo Felipe. "Geometria diferencial das curvas planas /." Rio Claro, 2013. http://hdl.handle.net/11449/94342.
Full textBanca: Vanderlei Marcos do Nascimento
Banca: Nivaldo de Góes Grulha Junior
Resumo: A história da Geometria Diferencial começa com o estudo de curvas. Noções de retas tangentes à curvas podem ser encontradas em Euclides, Arquimedes e Apolônio. Também, o Cálculo está baseado em ideias geométricas e, portanto, é natural encontrar investigações sobre curvas entre os tópicos tratados pelos pioneiros da Análise, Newton, Leibniz e Euler. Neste trabalho, serão apresentados os conceitos que fundamentam a teoria de curvas, bem como exemplos envolvendo algumas curvas clássicas, como a cicloide
Abstract: The history of Differential Geometry begins with the study of curves. Notions of tangent lines to the curves can be found in Euclid, Archimedes and Apollonius. Also, the Calculus is based on geometrical ideas and therefore is natural to find researches on curves between topics treated by the pioneers of Analysis, Newton, Leibniz and Euler. In this work, the concepts that underlie the theory of curves and some examples involving classical curves are presented, as the cycloid
Mestre
Correa, Eder de Moraes 1986. "Geometria diferencial em grupos de Lie." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306249.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-22T20:52:19Z (GMT). No. of bitstreams: 1 Correa_EderdeMoraes_M.pdf: 988646 bytes, checksum: e062257298f0383537889ee4999dbd31 (MD5) Previous issue date: 2013
Resumo: Neste trabalho estudamos os aspectos geométricos dos grupos de Lie do ponto de vista da geometria Riemanniana, geometria Hermitiana e geometria Kähler, através das estruturas geométricas invariantes associadas. Exploramos resultados relacionados às curvaturas da variedade Riemanniana subjacente a um grupo de Lie através do estudo de sua álgebra de Lie correspondente. No contexto da geometria Hermitiana e geometria Kähler, para um caso concreto de grupo de Lie complexo, investigaram suas curvaturas seccionais holomorfas e verificamos a existência de uma estrutura pseudo-Kähler invariante por sua forma real compacta
Abstract: In this dissertation, we study the geometric aspects of Lie groups from the viewpoint of Riemannian geometry, Hermitian geometry, and Kähler geometry through its associated invariant geometric structures. We explore results related to curvatures of Riemannian manifold underlying a Lie group by studying its corresponding Lie algebra. In the context of Hermitian geometry and Kähler geometry, for a complex Lie group case, we investigate its holomorphic sectional curvatures and verify the existence of pseudo-Kähler structure invariant for its compact real form
Mestrado
Matematica
Mestre em Matemática
Nabarro, Ana Claudia. "Equações Diferenciais Binárias e Geometria Diferencial." Universidade de São Paulo, 1997. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06062017-104536/.
Full textA binary differential equation is an implicit differential equation of the form a(x, y)dy2 + 2b(x,y)dxdy + c(x , y)dx2 = O, where a, b, c are smooth functions of x and y. At a point (x, y) where the discriminant, Δ(x, y) =b2 (x, y) a(x,y)c(x,y), is greather or equal than zero, the equation defines a pair of directions in the plane. A natural way to study this equation is to lift these bivalued direction fields to a single field defined on a covering space associated to the set Δ = {(x, y)/b2(x, y) a(x,y)c(x,y) > 0}. A. Davydov [Dv], following the pioneer work of L. Dara classified generic bivalued fields when the set Δ is a smooth curve. J. W. Bruce e F. Tari estudied in [BT a topological classification of the integral curves of the equation when the function Δ(x, y) presents singularity of Morse type. Their approac,h is to reduce the implicit equation to a normal form. The purpose of this work is to study the binary differential equations, in the neighbourhood of one isolated singular point. An analysis of these singularities is made through informations given by the Taylor\'s ,polynomial of the functions a, b e c, without reducing the EDB to a normal form. The results are applied to the study of the lines of curvature of surfaces in R3 and to the study of the asymptotic lines of convex embeddings of surfaces em R4.
Kaneko, André Toyofuji. "Aspectos de geometria diferencial em modelos estatísticos." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19012018-102543/.
Full textIn this work, we studied some basic concepts of geometry diferencial and we studied the existent connection between geometry diferencial and statistical models. Thus, we calculated geometric measures associated to the statistical models and we studied the effects of a good parametrização in the obtained inferences. In the new parametrização, we were verified the precision of the results of the inference they improve and which are the existent relationships with the geometric measures. Several applications are considered, especially with models for censored survival data or not and no linear models. We also studied the effects of a parametrização in inference Bayesiana, especially using algorithms ofsimulation of samples MCMC (Monte Cano in Chains of Markov).
Holanda, Felipe D'Angelo. "Introdução à geometria diferencial das curvas planas." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/13251.
Full textSubmitted by Erivan Almeida (eneiro@bol.com.br) on 2015-09-14T17:46:48Z No. of bitstreams: 1 2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-09-15T13:11:15Z (GMT) No. of bitstreams: 1 2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5)
Made available in DSpace on 2015-09-15T13:11:15Z (GMT). No. of bitstreams: 1 2015_dis_fdholanda.pdf: 2177390 bytes, checksum: 53286a68fd72b70cba214a2700429d7c (MD5) Previous issue date: 2015
The intention of this work is to address in basic form and introductory study of Differential Geometry, which in turn has started his studies with Planas curves. It will require a knowledge of Differential Calculus, Integral and Analytic Geometry for better understanding of this work, because as its name says in Differential Geometry comes from the joint study of geometry involving Calculation. So we discuss sub-themes as smooth curves, tangent vector, arc length through formulas of Frenet, evolutas curves and involute and conclude with some important theorems, as the fundamental theorem of plane curves, Jordan 's theorem and the theorem of four vertices. What basically is, Chapter 1, 4 and 6 of the book Introduction to Plane Curves Hilário Alencar and Walcy Santos.
A intenção desse trabalho será de abordar de forma básica e introdutória o estudo da Geometria Diferencial, que por sua vez tem seus estudos iniciados com as Curvas Planas. Será necessário um conhecimento de Cálculo Diferencial, Integral e Geometria Analítica para melhor compreensão desse trabalho, pois como seu próprio nome nos transparece Geometria Diferencial vem de uma junção do estudo da Geometria envolvendo Cálculo. Assim abordaremos subtemas como curvas suaves, vetor tangente, comprimento de arco passando por fórmulas de Frenet, curvas evolutas e involutas e finalizaremos com alguns teoremas importantes, como o teorema fundamental das curvas planas, teorema de Jordan e o teorema dos quatro vértices. O que, basicamente representa, o capítulo 1, 4 e 6 do livro Introdução às Curvas Planas de Hilário Alencar e Walcy Santos.
Paranhos, Marcos de Miranda. "Geometria dinâmica e o cálculo diferencial e integral." Pontifícia Universidade Católica de São Paulo, 2009. https://tede2.pucsp.br/handle/handle/11408.
Full textThe aim of this work is to present fundamental ideas of differential and integral calculus and its applications in solving problems. As a teacher of calculus, I see my trajectory and by exchanging experiences with other professionals, a common sense about the mechanization of techniques and low student achievement in relation to the ideas and applications so significant that the calculation might provide. Reflecting, experiencing and informing me about this issue, I think much of this problem in a limited way with which we have presented these ideas in our classes. Every teacher develops along its trajectory ways to represent the ideas you want to convey and that is the essence of pedagogical reasoning. In that sense, I understood that every idea must be transformed to be taught and it was this aspect that directed this work. Inspired by the possibility of using software in the teaching of Mathematics and didactically based on "Dialectic Tool-Object" and "Game Tables" by Régine Douady, I performed this work that consists of a sequence of activities, divided into six modules, where basic ideas about derivative, integral and optimization functions are presented by means of software and GeoGebra Winplot. The strings are made to functions with one and two variables, can be developed along with the student or be provided only by the teacher. I hope with this work is expanding the size that most students have the Calculus and its applications, besides stimulating the use of technological resources as tools for large capacity in interpreting and solving problems
O objetivo deste trabalho é apresentar idéias fundamentais do Cálculo Diferencial e Integral e suas aplicações na resolução de problemas. Como professor de Cálculo, constato pela minha trajetória e pela troca de experiências com outros profissionais da área, um senso comum a respeito da mecanização de técnicas e do baixo aproveitamento dos alunos com relação às idéias e aplicações tão significativas que o Cálculo poderia lhes proporcionar. Refletindo, experimentando e me informando sobre essa questão, penso que grande parte dessa problemática está na forma limitada com que temos apresentado essas idéias em nossas aulas. Todo professor desenvolve ao longo de sua trajetória formas de representar as idéias que deseja transmitir e essa é a essência do raciocínio pedagógico. Nesse sentido, acredito que toda idéia compreendida deve ser transformada para ser ensinada e foi esse aspecto da questão que direcionou esse trabalho. Inspirado pela possibilidade do uso de softwares no ensino do Cálculo e fundamentado didaticamente na Dialética Ferramenta-Objeto e o Jogo de Quadros de Régine Douady, realizei este trabalho que consiste de uma seqüência de atividades, divididas em seis módulos, em que as idéias básicas sobre derivada, integral e otimização de funções são apresentadas por meio dos softwares Geogebra e Winplot. As seqüências são feitas para funções com uma e duas variáveis, podendo ser desenvolvidas juntamente com o aluno ou ser apenas apresentadas pelo professor. Espero com esse trabalho estar ampliando a dimensão que a maioria dos estudantes tem do Cálculo e de suas aplicações, além de estimular o uso de recursos tecnológicos como ferramentas de larga capacidade na interpretação e resolução de problemas
Silva, Marinaldo Felipe da. "Codificação de geodesicas fechadas simples em superficies hiberbolicas." [s.n.], 2002. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260303.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-01T07:44:07Z (GMT). No. of bitstreams: 1 Silva_MarinaldoFelipeda_D.pdf: 888512 bytes, checksum: 9a33d083013464c4daa928fbfa5c6f52 (MD5) Previous issue date: 2002
Doutorado
Martins, Jose Kenedy. "Esferas minimas em variedades reimannianas." [s.n.], 1991. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306777.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica
Made available in DSpace on 2018-07-14T00:44:52Z (GMT). No. of bitstreams: 1 Martins_JoseKenedy_M.pdf: 1956277 bytes, checksum: d8586b7c2a6040dac89b8f81caeff60d (MD5) Previous issue date: 1991
Resumo: Não informado.
Abstract: Not informed.
Mestrado
Mestre em Matemática
Cruz, CÃcero Tiarlos Nogueira. "Uma demonstraÃÃo do teorema de Grayson sobre evoluÃÃo de curvas planas pela curvatura." Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5731.
Full textBaseados no recente trabalho de Andrews e Bryan [2], apresentamos uma nova demonstraÃÃo do famoso teorema de Grayson [4], que descreve o comportamento assimptÃtico de curvas planas fechadas e simples evoluindo pelo fluxo da curvatura. A demonstraÃÃo representa uma simplificaÃÃo notÃvel em relaÃÃo aos mÃtodos anteriores e consiste em normalizar o fluxo de forma a preservar o comprimento (igual a 2pi). Feito isto, estabelece-se uma desigualdade isoperimÃtrica que controla inferiormente o comprimento de cordas em termos do comprimento dos arcos correspondentes e do tempo decorrido. Essa estimativa à precisa o suficiente para permitir controlar uniformemente a curvatura ao longo do tempo, o que implica, sem muitas dificuldades, que a curvatura do fluxo normalizado converge uniformemente na topologia C∞ para a funÃÃo identicamente igual a 1.
Based on the recent work by Andrews and Bryan [2] we present a new proof of the celebrated Grayson's theorem [4], which describes the asymptotic behavior of simple curves evolving by the curve shortening ow. The proof represents a remarkable simplication over the previous methods and consist of normalizing the ow in order to preserve the length (equal to 2pi). It is then established an isoperimetric inequality which provides a lower bound for the length of chords in terms of the corresponding arcs and elapsed time. This estimate is suciently strong to uniformly control the curvature in time,implying, without many difficulties, that the curvature of the normalized ow converges in the C∞ topology to the function identically equal to 1.
Veras, Tiago MendonÃa Lucena de. "Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere." Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654.
Full textSejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes.
Let M be a closed oriented Riemannian manifold and x : Mn → Sn+1 С Rn+2 a minimal immersion of Mn in the Euclidean unit sphere. We know by Takahashiâs theorem Δx + nx=0, where x (p) = (x1 (p ),..., xn +2 (p)) and Δx (p) = (Δx1 (p), ... , Δxn +2 (p)) where Δ denotes the Laplacian on M the induced metric for x, see [11]. It follows that n is an upper bound for the first eigenvalue λ1 of Δ. When x is a embedded in 1982 was conjectured by Yau in [12] that the first eigenvalue of the Laplacian, denoted by λ1, is equal n. The first global result in the direction of such problem was obtained by Choi and Wang in cite Choi where it was proved that λ1 ≥ n / 2. In the article [2] Barros and Bessa showed that λ1 ≥ n / 2 + С (Mn, x), where С (Mn, x) is a positive constant which depends on Mn and x. The aim of this work is to present some conditions for the first eigenvalue of the Laplacian is equal to n, in other words, Yau's conjecture is true under these conditions.
Cunha, Antonio Wilson Rodrigues da. "The stability theorem of Lichnerowicz for holomorphic applications in Kahler manifolds." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8672.
Full textOur goal in this work is to present a theorem due to A. Lichnerowicz, which guarantees stability from applications holomorphic or antiholomorphic with compact domain between Kahler manifolds.
Nosso objetivo neste trabalho à apresentar um teorema devido a A. A. Lichnerowicz, que garante a estabilidade de aplicaÃÃes holomorfas ou anti-holomorfas com domÃnio compacto entre variedades Kahler.
Oliveira, Leonardo Tavares de. "Sobre teorema de comparaÃÃo de autovalores de Cheng." Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8754.
Full textNo presente trabalho apresentamos uma versÃo do Teorema de ComparaÃÃo de Autovalores de Cheng, onde a limitaÃÃo das curvaturas seccional e Ricci à trocada pela limitaÃÃo da curvatura mÃdia das esferas geodÃsicas. AlÃm disso, apresentamos a construÃÃo de mÃtricas suaves, gk , em [0, r] x S3, nÃo isomÃtrica a mÃtrica canÃnica de curvatura seccional constante k, cank , tal que as bolas geodÃsicas Bgk (r) = ([0, r] x S3,gk ), Bcank (r) = ([0, r] x S3,cank ) tÃm o mesmo primeiro autovalor, mesmo volume e as esferas geodÃsicas ӘBgk (s) e ӘBcank (s), 0< s ≤ r, tem a mesma curvatura mÃdia. Finalmente, aplicamos esta versÃo do Teorema de ComparaÃÃo de Autovalores de Cheng para a construÃÃo de exemplos de variedades Riemanniana M com tom fundamental positivo.
Cruz, Flávio França. "Sobre hipersuperfícies com curvatura e bordo prescritos em variedades riemannianas." reponame:Repositório Institucional da UFC, 2011. http://www.repositorio.ufc.br/handle/riufc/4088.
Full textSubmitted by Rocilda Sales (rocilda@ufc.br) on 2012-11-30T13:39:37Z No. of bitstreams: 1 2011_tese_ffcruz.pdf: 512633 bytes, checksum: 14ec838b790e128cef06adde406f399e (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2012-11-30T13:40:14Z (GMT) No. of bitstreams: 1 2011_tese_ffcruz.pdf: 512633 bytes, checksum: 14ec838b790e128cef06adde406f399e (MD5)
Made available in DSpace on 2012-11-30T13:40:14Z (GMT). No. of bitstreams: 1 2011_tese_ffcruz.pdf: 512633 bytes, checksum: 14ec838b790e128cef06adde406f399e (MD5) Previous issue date: 2011
We investigate the existence of hypersurfaces with prescribed curvature in a wide context. First we study the Dirichlet problem for a class of fully nonlinear elliptic equations of curvature type on a Riemannian manifold, which are closely related with the existence of hypersurfaces with prescribed curvature and boundary. In this setting we prove some existence results which extend to a Riemannian manifold previous results by Caffarelli, Nirenberg,Spruck and Bo Guan for the Euclidean space. We also study the existence of hypersurfaces with prescribed anisotropic mean curvature. We prove existence results for the Dirichlet problem related to the anisotropic mean curvature equation. This ensures the existence of Killing graphs with prescribed anisotropic mean curvature and boundary in a Riemannian manifold endowed with a nonsingular Killing vector field. Finally, we prove the existence of hyperspheres with prescribed anisotropic mean curvature in the Euclidean space, extending a previous result of Treibergs and Wei.
Neste trabalhamos investigamos a existência de hipersuperfícies com curvatura prescrista num contexto amplo. Inicialmente estudamos o problema de Dirichlet para uma equação totalmente não-linear do tipo curvatura, definida em uma variedade Riemanniana. Este problema está intimamente relacionado a existência de hipersuperfícies com curvatura e bordo prescritos. Neste contexto obtemos alguns resultados que estendem para uma variedade Riemanniana resultados obtidos anteriormente por Caffarelli, Nirenberg, Spruck e Bo Guan para o espaço Euclideano. Investigamos também a existência de hipersuperfícies com curvatura média anisotrópica prescrita. Estabelecemos a solubilidade do problema de Dirichlet relacionado a equação da curvatura média anisotrópica prescrita. Este resultado assegura a existncia de gráficos de Killing com curvatura média anisotrópica e bordo prescritos numa variedade Riemanniana dotada com um campo de Killing sem singularidades. Finalmente, provamos a existência de hiperesferas com curvatura média anisotrópica prescrita no espaço Euclideano, estendendo o resultado obtido Treibergs e Wei para a curvatura média usual.
Albujer, Brotons Alma Luisa. "Geometría global de superficies espaciales en espacios producto lorentzianos." Doctoral thesis, Universidad de Murcia, 2008. http://hdl.handle.net/10803/10968.
Full textAlong this PhD thesis we study the global geometry of spacelike surfaces, and in particular maximal surfaces, in Lorentzian product spaces. Firstly, we generalize the Calabi-Bernstien theorem when considering maximal surfaces in a Lorentzian product. We also study some local problems, which a posteriori will have important global consequences. The Lorentzian products are part of the family of the generalized Robertson-Walker spaces. Also the steady state type spaces form a subfamily of such spaces. The equivalent surfaces to the maximal ones in a steady state type space are the spacelike surfaces with H=1. In this context, we give a uniqueness result for complete spacelike surfaces with constant mean curvature bounded from the infinity of a steady state type space. Finally, we consider spacelike surfaces with constant Gaussian curvature in Riemannian and Lorentzian product spaces. In this case, we obtain some Calabi-Bernstein type results when M is the sphere S2
Sperança, Llohann Dallagnol 1986. "Geometria e topologia de cobordos." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307262.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T13:56:12Z (GMT). No. of bitstreams: 1 Speranca_LlohamDallagnol_D.pdf: 994466 bytes, checksum: 472919d7eec0f563b673a0307450dc49 (MD5) Previous issue date: 2012
Resumo: Nesse trabalho estudaremos a geometria e a topologia de algumas variedades homeomorfas, porém não difeomorfas, à esfera padrão Sn, chamadas esferas exóticas. Realizaremos duas dessas variedades como quocientes isométricos de fibrados principais com métricas de conexão sobre esferas de curvatura constante. Através disso, apresentaremos simetrias desses espaços e exemplos explícitos de difeomorfismos não isotópicos a identidade, usando-os para o cálculo de grupos de homotopia equivariante. Como mais uma aplicação dessa construção, provaremos que, se uma esfera homotópica de dimensão 15 é realizável como um fibrado linear sobre S8, então a mesma esfera é realizável como um fibrado linear sobre a esfera exótica de dimensão 8 com as mesmas funções de transição. No ultimo capítulo lidaremos com a geometria de fibrados induzidos, deduzindo uma condição necessária sobre a função indutora para que a métrica da conexão induzida tenha curvatura seccional não-negativa
Abstract: In this work we study the geometry and topology of manifolds homemorphic, but not diffeomorphic, to the standard sphere Sn, the so called exotic spheres. We realize two of these manifolds as isometric quotients of principal bundles with connection metrics over the constant curved sphere. Through this, we present symmetries in these spaces and explicit examples of diffeomorphisms not isotopic to the identity, using them for the calculation of equivariant homotopy groups. As another application, we prove that, if a homotopy 15-sphere is realizeble as the total space of a linear bundle over the standard 8-sphere, then, it is realizeble as the total space of a linear bundle over the exotic 8-sphere with the same transition maps. In the last chapter we deal with the geometry of pull-back bundles, deducing a necessary condition on the pull-back map for nonnegative curvature of the induced connection metric
Doutorado
Matematica
Doutor em Matemática
Rossow, Angélica Brandão. "Variedades completas e não compactas de curvatura não negativa." Universidade Federal Fluminense, 2003. http://www.bdtd.ndc.uff.br/tde_busca/arquivo.php?codArquivo=204.
Full textUm dos temas mais interessantes em Geometria Riemanniana é obter resultados topológicos a partir de hipóteses geométricas locais, por exemplo, hipóteses sobre a curvatura. Nesta dissertação, no capítulo 1, estudaremos conjuntos convexos, que formam uma ferramenta bastante útil na prova do Teorema de Cheeger-Gromoll. No segundo capítulo mostraremos uma versão generalizada do Teorema de Machigashira, que estende o Teorema de Toponogov para a curvatura radial. No terceiro capítulo provamos o Teorema da Alma e no quarto capítulo apresentamos o Teorema de Perelman.
Oliveira, Antônio Edinardo de. "Uma caracterização do produto Sk (cos θ) x Sn-k (sen θ) na esfera euclidiana S^ (n+1)." reponame:Repositório Institucional da UFC, 2013. http://www.repositorio.ufc.br/handle/riufc/8108.
Full textSubmitted by Erivan Almeida (eneiro@bol.com.br) on 2014-05-19T17:20:08Z No. of bitstreams: 1 2013_dis_aeoliveira.pdf: 337777 bytes, checksum: f03ae8eeda83c77ff564a8cef0460918 (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2014-05-20T11:17:05Z (GMT) No. of bitstreams: 1 2013_dis_aeoliveira.pdf: 337777 bytes, checksum: f03ae8eeda83c77ff564a8cef0460918 (MD5)
Made available in DSpace on 2014-05-20T11:17:05Z (GMT). No. of bitstreams: 1 2013_dis_aeoliveira.pdf: 337777 bytes, checksum: f03ae8eeda83c77ff564a8cef0460918 (MD5) Previous issue date: 2013
In this paper we consider n-dimensional hypersurfaces with constant scalar curvature in the unit sphere S ^ (n +1). Characterize the hypersurfaces given by products of spheres whose size is n, the unit sphere S ^ (n +1) and show that there is more compact hypersurfaces with constant scalar curvature in the unit sphere S ^ (n +1) that are not congruent itself. In particular, prove that M is an n-dimensional hypersurface (n> 3) complete with buckle locally flat accordingly constant scalar n (n-1) on the unit sphere S r ^ (n +1) is greater than r a pre-established and two results are proven value, and the other one involving isometries of existence, when are S satisfy certain conditions, where S is the square of the standard is second fundamental form of M.
Neste trabalho consideraremos hipersuperfícies n-dimensionais com curvaturas escalar constante na esfera unitária S^(n+1). Caracterizaremos as hipersuperfícies dadas por produtos de esferas, cuja dimensão é n, na esfera unitária S^(n+1) e mostraremos que existe várias hipersuperfícies compactas com curvaturas escalar constante na esfera unitária S^(n+1) que não são congruentes entre si. Em particular, provaremos que se M é uma hipersuperfície n-dimensional (n>3) completa, localmente conformemente plana com curvatura escalar constante n(n-1)r na esfera unitária S^(n+1), então r é maior do que um valor pré-estabelecido e são provados dois resultados, um envolvendo isometrias e o outro de existência, quando r e S satisfazem determinadas condições, onde S é o quadrado da norma se segunda forma fundamental de M.
Sampaio, José Edson. "A aplicação de Gauss de superfícies no espaço de Heisenberg." reponame:Repositório Institucional da UFC, 2012. http://www.repositorio.ufc.br/handle/riufc/4077.
Full textSubmitted by Rocilda Sales (rocilda@ufc.br) on 2012-11-27T14:07:20Z No. of bitstreams: 1 2012_dis_jesampaio.pdf: 431441 bytes, checksum: ff722ca4b06bbf9572d54890b7ca80c1 (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2012-11-27T14:08:40Z (GMT) No. of bitstreams: 1 2012_dis_jesampaio.pdf: 431441 bytes, checksum: ff722ca4b06bbf9572d54890b7ca80c1 (MD5)
Made available in DSpace on 2012-11-27T14:08:40Z (GMT). No. of bitstreams: 1 2012_dis_jesampaio.pdf: 431441 bytes, checksum: ff722ca4b06bbf9572d54890b7ca80c1 (MD5) Previous issue date: 2012
In this report, we study minimal surfaces of the tridimensional Heisenberg group, as well as their Gauss maps. We begin with a short presentation of the geometry of the Heisenberg group. Then, we show that, in this space: the only surfaces with constant Gauss map are the vertical planes; there are no totally umbilical surfaces nor compact minimal surfaces; every minimal surface is, necessarily, stable. We also show that the only vertical minimal surfaces are vertical planes. Finally, we present a classification of the surfaces with Gauss map of constant rank, equal to zero or one.
Nesta dissertaçãao, estudamos as superfícies mínimas do grupo de Heisenberg tridimensional, bem como a aplicação de Gauss destas superfícies. Inicialmente é feito uma breve exposição sobre a geometria do grupo de Heisenberg. Então, mostramos que, em tal espaço: as únicas superfícies com aplicação de Gauss constante são os planos verticais; não existem superfícies totalmente umbílicas nem superfícies mínimas compactas; toda superfície mínima é, necessariamente, estável. Mostramos, ainda, que as únicas superfícies mínimas verticais são os planos verticais. Por fim, apresentamos uma classificação das superfícies com aplicação de Gauss de posto constante, igual a zero ou um.
Fernandes, Francisco Yuri Alves. "Métricas m-quasi-Einstein generalizadas em variedades compactas." reponame:Repositório Institucional da UFC, 2012. http://www.repositorio.ufc.br/handle/riufc/4078.
Full textSubmitted by Rocilda Sales (rocilda@ufc.br) on 2012-11-27T15:45:22Z No. of bitstreams: 1 2012_dis_fyafernandes.pdf: 310247 bytes, checksum: d8bdd3b9d1ade3308fe549286599ec47 (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2012-11-27T15:46:26Z (GMT) No. of bitstreams: 1 2012_dis_fyafernandes.pdf: 310247 bytes, checksum: d8bdd3b9d1ade3308fe549286599ec47 (MD5)
Made available in DSpace on 2012-11-27T15:46:26Z (GMT). No. of bitstreams: 1 2012_dis_fyafernandes.pdf: 310247 bytes, checksum: d8bdd3b9d1ade3308fe549286599ec47 (MD5) Previous issue date: 2012
The main objective of this paper is to present a generalization of generalized quasi-Einstein metrics to any smooth vector fields. Moreover, we will present some integral formulae for quasi-Einstein metrics defined in a compact manifolds.
O principal objetivo deste trabalho é apresentar uma generalização das métricas quasi-Einstein generalizadas para campos de vetores suaves quaisquer. Além disso, serão apresentadas algumas fórmulas integrais para métricas quasi-Einstein gradiente generalizadas definidas em uma variedade compacta.
Viana, Emanuel Mendonça. "Hipersuperfícies cujas geodésicas tangentes não cobrem o espaço ambiente." reponame:Repositório Institucional da UFC, 2012. http://www.repositorio.ufc.br/handle/riufc/4080.
Full textSubmitted by Rocilda Sales (rocilda@ufc.br) on 2012-11-27T16:30:47Z No. of bitstreams: 1 2012_dis_emviana.pdf: 510115 bytes, checksum: 2596d72d4ce8490b044991c89f854ffb (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2012-11-28T15:39:57Z (GMT) No. of bitstreams: 1 2012_dis_emviana.pdf: 510115 bytes, checksum: 2596d72d4ce8490b044991c89f854ffb (MD5)
Made available in DSpace on 2012-11-28T15:39:57Z (GMT). No. of bitstreams: 1 2012_dis_emviana.pdf: 510115 bytes, checksum: 2596d72d4ce8490b044991c89f854ffb (MD5) Previous issue date: 2012
Let I : ∑n → Mn+1 be an immersion of an n-dimensional connected manifold ∑ in an (n + 1)-dimensional connected completed Riemannian manifold M without conjugate points. Assume that the union of geodesics tangent to I does not cover M. Under these hypotheses we have two results: 1. M is simply connected provided that the universal covering of ∑ is compact. 2. If I is a proper embedding and M is simply connected, then I(∑) is a normal graph over an open subset os a geodesic sphere. Furthermore, there exists an open star-shaped set A M such that A is a manifold with the boundary I(∑).
Seja I : ∑n → Mn+1 uma imersão de uma variedade conexa n-dimensional ∑ em uma variedade Riemanniana completa conexa (n + 1)-dimensional M sem pontos conjugados. Suponha que a união das geodésicas tangentes a I não cobrem M. Sobre essa hipótese temos dois resultados: 1. Se a cobertura universal de ∑ é compacta, então M é simplesmente conexa. 2. Se I é um mergulho próprio e M é simplesmente conexa, então I(∑) é um gráfico normal sobre um subconjunto aberto de uma esfera geodésica. Além disso, existe um conjunto estrelado aberto A está contido em M tal que A é uma variedade com fronteira I(∑).
Gomes, José Nazareno Vieira. "Rigidez de superfícies de contato e caracterização de variedades riemannianas munidas de um campo conforme ou de alguma métrica especial." reponame:Repositório Institucional da UFC, 2012. http://www.repositorio.ufc.br/handle/riufc/4082.
Full textSubmitted by Rocilda Sales (rocilda@ufc.br) on 2012-11-28T16:00:28Z No. of bitstreams: 1 2012_tese_jnvgomes.pdf: 659561 bytes, checksum: c4a8b43df34416baf47c3ef2fbc6780c (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2012-11-28T16:01:17Z (GMT) No. of bitstreams: 1 2012_tese_jnvgomes.pdf: 659561 bytes, checksum: c4a8b43df34416baf47c3ef2fbc6780c (MD5)
Made available in DSpace on 2012-11-28T16:01:17Z (GMT). No. of bitstreams: 1 2012_tese_jnvgomes.pdf: 659561 bytes, checksum: c4a8b43df34416baf47c3ef2fbc6780c (MD5) Previous issue date: 2012
This thesis is composed of four distinct parts. In the first part, we shall give a new characterization of the Euclidean sphere as the only compact Riemannian manifold with constant scalar curvature carrying a conformal vector eld non-trivial which is also Ricci conformal. In the second part, we shall prove some properties of almost Ricci solitons, which allow us to establish conditions for rigidity of these objects, as well as characterize the structures of gradient almost Ricci soliton in Euclidean sphere. Isometric immersions also will be considered, we shall classify almost Ricci solitons immersed in space forms, through algebraic condition on soliton function. Furthermore, we characterize under a condition of the umbilicity operator, n-dimensional hypersurfaces in a space form with constant mean curvature, admitting two distinct principal curvatures with multiplicities p and n - p. In the third part, we prove a result of rigidity and some integral formulae for a compact generalized m-quasi-Einstein metric. In the last part, we present a relation between the Gaussian curvature and the contact angle of surfaces immersed in Euclidean three-dimensional sphere, which allows us to conclude that such a surface is at provided its contact angle is constant. Moreover, we deduce that Clifford tori are the unique compact surfaces with constant mean curvature having such property.
Esta tese está composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterização da esfera euclidiana como a única variedade Riemanniana compacta com curvatura escalar constante e admitindo um campo de vetores conforme não trivial que é também Ricci conforme. Na segunda parte, provaremos algumas propriedades dos quase sólitons de Ricci, as quais permitem estabelecer condições de rigidez desses objetos, bem como caracterizar as estruturas de quase sólitons de Ricci gradiente na esfera euclidiana. Imersões isométricas também serão consideradas; classificaremos os quase sólitons de Ricci imersos em formas espaciais, através de uma condição algébrica sobre a função sóliton. Além disso, vamos caracterizar, através de uma condição sobre o operador de umbilicidade, as hipersuperfícies n-dimensionais de uma forma espacial, com curvatura média constante, tendo duas curvaturas principais distintas e com multiplicidades p e n - p. Na terceira parte, provaremos um resultado de rigidez e algumas fórmulas integrais para uma métrica m-quasi-Einstein generalizada compacta. Na última parte, vamos apresentar uma relação entre a curvatura gaussiana e o ângulo de contato de superfícies imersas na esfera euclidiana tridimensional,a qual permite concluir que a superfície é plana, se o ângulo de contato for constante. Além disso, deduziremos que o toro de Clifford é a única superfície compacta com curvatura média constante tendo tal propriedade.
Ribeiro, Júnior Ernani de Sousa. "A geometria das métricas tipo-Einstein." reponame:Repositório Institucional da UFC, 2011. http://www.repositorio.ufc.br/handle/riufc/1149.
Full textSubmitted by Rocilda Sales (rocilda@ufc.br) on 2011-11-17T13:11:16Z No. of bitstreams: 1 2011_tese_esrjunior.pdf: 510744 bytes, checksum: f564d14c6fbb20ff5ad39706e7e9f462 (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2011-11-17T16:37:27Z (GMT) No. of bitstreams: 1 2011_tese_esrjunior.pdf: 510744 bytes, checksum: f564d14c6fbb20ff5ad39706e7e9f462 (MD5)
Made available in DSpace on 2011-11-17T16:37:27Z (GMT). No. of bitstreams: 1 2011_tese_esrjunior.pdf: 510744 bytes, checksum: f564d14c6fbb20ff5ad39706e7e9f462 (MD5) Previous issue date: 2011
The purpose of this work is study the geometric of the like-Einstein metrics (Ricci soliton, almost Ricci solitons and quasi-Einstein metrics). More specifically, we obtain structure equations, examples, integral formulae and estimates that will enable characterize these classes of metrics
O objetivo deste trabalho é estudar a geometria das métricas tipo-Einstein (solitons de Ricci, quase solitons de Ricci e métricas quasi-Einstein). Mais especificamente, vamos obter equações de estrutura, exemplos, fórmulas integrais e estimativas que permitirão caracterizar estas classes de métricas.
Figueroa, Serrudo Christiam Bernardo. "Geometria das subvariedades do grupo de Heisenberg." [s.n.], 1996. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307113.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica
Made available in DSpace on 2018-07-21T04:22:43Z (GMT). No. of bitstreams: 1 FigueroaSerrudo_ChristiamBernardo_D.pdf: 1296783 bytes, checksum: 2c747937923788bac8b71eebe7f21984 (MD5) Previous issue date: 1996
Resumo: Neste trabalho, estudamos a Geometria Riemanniana do grupo de Heisenberg H2n+l, calculando as métricas invariantes à esquerda e a base dos campos invariantes à esquerda. Calculamos, também a álgebra do grupo de isometrias de H2n+l, dando uma descrição total do grupo de isometrias para o caso de H3. Concluimos esta parte determinando as geodésicas de H2n+l. Em seguida, classificamos as superficies de curvatura média constante de H3 que são invariantes por grupos de isometrias. Depois estudamos a aplicação normal de Gauss para superficies em H3, o que nós permite mostrar a não existencia de superficies umbílicas. Estudamos, ainda, a equação dos gráficos de curvatura média constante, mostrando que não existem superficies mínimas compactas nem gráficos completos de curvatura média constante não nula. Posteriormente damos uma classificação parcial das superficies mínimas segundo o posto da aplicação normal de Gauss. Terminamos o trabalho apresentando as hipersuperficies de rotação em H2n+l.
Abstract: Not informed.
Doutorado
Doutor em Matemática
Paredes, Gutierrez Marlio. "Aspectos da geometria complexa das variedades bandeira." [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306775.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-07-25T20:25:31Z (GMT). No. of bitstreams: 1 ParedesGutierrez_Marlio_D.pdf: 8563392 bytes, checksum: 34ffa07ce1e0867f1fe6e1150b21a58e (MD5) Previous issue date: 2000
Resumo: Novas familias de métricas invariantes (1,2)-simpléticas sobre F(n), diferentes das de Kãhler e das parabólicas, são estudadas. Mais precisamente, para cada n maior ou igual a 5 são caracterizadas n - 3 familias n-dimensionais distintas de métricas ir-variantes (1,2)-simpléticas. Cada uma destas familias corresponde a uma classe de estructuras quase-complexas invariantes distintas sobre F( n). Os casos das variedades F(5), F(6) e F(7) são estudados completamente. Obtem-se as seguintes familias de métricas (1,2)-simpléticas distintas das de Kãhler e das parabólicas: Em F(5), 2 familias 5-paramétricasj em F(6), 4 familias 6-paramétricas, das quais duas generalizam as mencionadas para F(5) e em F(7), 8 familias 7-paramétricas, das quais 4 generalizam as 4 familias mencionadas para F( 6). Estas métricas são usadas para produzir novos exemplos de aplicações harmônicas f: M2- F(n), aplicandoum conhecidoTeorema de Lichnerowicz. Finalmente, usando resultados de Negreiros estudamos a estabilidade destas aplicações harmônicas
Abstract: New families of (1,2)-symplectic invariant metrics on F(n), different to the Kililer and parabolic, are presented. Exactly, we characterize n - 3 different n-dimensional families of (1,2)-symplectic invariant metrics, for each n - 5. Each of them corresponds to a different c1ass of invariant almost-complex structure on F (n). The F(5), F(6) and F(7) cases are completely studied. We obtain the following families of (1,2)-symplectic invariant metrics, different to the Kãhler and parabolic: On F(5), two 5-parametric families; on F(6), four 6-parametric families, two of them generalizing the two families of F(5) case and, on F(7) we obtain eight 7-parametric families, four of them generalizing the four ones of the F(6) case. These metrics are used to produce new examples of harmonic maps f : M2 - F(n), applying a known Theorem due to Lichnerowicz. Finally, using Negreiros results, the stability of this harmonic maps are studied.
Doutorado
Doutor em Matemática
Noel, Filho Antonio [UNESP]. "A relação cartográfica e geometria diferencial de Mercator a Gauss." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/102109.
Full textEste trabalho é resultado de uma pesquisa que vislumbra encontrar relações entre a Cartografia e a Geometria Diferencial. Toma como ponto de partida os problemas adjacentes à Projeção de Mercator e explicita sua influencia na história do Cálculo e da Geometria Diferencial nas análises das obras de Pedro Nunes, Edward Wright e Gauss. A falta do trabalho original impediu a análise do verdadeiro método usado por Mercator na construção de sua projeção. Nos tratados, Sobre Certas Dúvidas da Navegação e em Defensam da Carta de Marear, são encontrados vestígios da contribuição da obra de Pedro Nunes na construção da Projeção de Mercator e em Certaine Errors in Navegation, Edward Wright apresenta uma justificativa matemática para o problema. O estudo da obra General Investigations of Curved Surfaces revela que o tratamento cartográfico dado aos resultados obtidos por Gauss no levantamento geodésico da cidade de Hannover serviu como base para muitos dos seus trabalhos. Os conhecimentos de Cartografia e de Astronomia adquiridos na experiência de campo, podem ter levado Gauss à formalização da teoria geral das superfícies curvas e com esta foi possível traduzir a lei da projeção de Mercator em linguagem moderna
This work is a result of research that envisions finding relations between Cartography and Differential Geometry. It takes as its starting point the problems surrounding the Mercator Projection and explains their influence in the history of calculus and differential geometry in the analysis of works of Pedro Nunes, Edward Wright and Gauss. The lack of labor prevented the original analysis of the true method used by Mercator in the construction of its projection. In the treaties, on Certain Questions of Navigation and the Letter of Defensam Marear traces of the contribution of the work of Pedro Nunes are found in the construction of the Mercator Projection and Certaine Errors in Navegation, Edward Wright presents a mathematical justification for the problem. The study of the book General Investigations of Curved Surfaces reveals that the treatment given to the mapping results obtained by the Gauss geodesic survey of Hannover city was the basis for many of his works. The knowledge of Cartography and Astronomy acquired in the field experience, may have taken Gauss to the formalization of the general theory of the surfaces curves and with this it was possible to translate the law of the projection of Mercator in modern language
Noel, Filho Antonio. "A relação cartográfica e geometria diferencial de Mercator a Gauss /." Rio Claro : [s.n.], 2012. http://hdl.handle.net/11449/102109.
Full textBanca: João Frederico da Costa Azevedo Meyer
Banca: João Carlos Vieira Sampaio
Banca: Sergio Roberto Nobre
Banca: Vanderlei Marcos do Nascimento
Resumo: Este trabalho é resultado de uma pesquisa que vislumbra encontrar relações entre a Cartografia e a Geometria Diferencial. Toma como ponto de partida os problemas adjacentes à Projeção de Mercator e explicita sua influencia na história do Cálculo e da Geometria Diferencial nas análises das obras de Pedro Nunes, Edward Wright e Gauss. A falta do trabalho original impediu a análise do verdadeiro método usado por Mercator na construção de sua projeção. Nos tratados, Sobre Certas Dúvidas da Navegação e em Defensam da Carta de Marear, são encontrados vestígios da contribuição da obra de Pedro Nunes na construção da Projeção de Mercator e em Certaine Errors in Navegation, Edward Wright apresenta uma justificativa matemática para o problema. O estudo da obra General Investigations of Curved Surfaces revela que o tratamento cartográfico dado aos resultados obtidos por Gauss no levantamento geodésico da cidade de Hannover serviu como base para muitos dos seus trabalhos. Os conhecimentos de Cartografia e de Astronomia adquiridos na experiência de campo, podem ter levado Gauss à formalização da teoria geral das superfícies curvas e com esta foi possível traduzir a lei da projeção de Mercator em linguagem moderna
Abstract: This work is a result of research that envisions finding relations between Cartography and Differential Geometry. It takes as its starting point the problems surrounding the Mercator Projection and explains their influence in the history of calculus and differential geometry in the analysis of works of Pedro Nunes, Edward Wright and Gauss. The lack of labor prevented the original analysis of the true method used by Mercator in the construction of its projection. In the treaties, on Certain Questions of Navigation and the Letter of Defensam Marear traces of the contribution of the work of Pedro Nunes are found in the construction of the Mercator Projection and Certaine Errors in Navegation, Edward Wright presents a mathematical justification for the problem. The study of the book General Investigations of Curved Surfaces reveals that the treatment given to the mapping results obtained by the Gauss geodesic survey of Hannover city was the basis for many of his works. The knowledge of Cartography and Astronomy acquired in the field experience, may have taken Gauss to the formalization of the general theory of the surfaces curves and with this it was possible to translate the law of the projection of Mercator in modern language
Doutor
ALMEIDA, Guilherme Feitosa de. "Geometria complexa generalizada e supersimetria." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/16767.
Full textMade available in DSpace on 2016-04-22T17:56:23Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Guilherme Feitosa de Almeida.pdf: 806495 bytes, checksum: 4f602495809cde9f9f71f2903a080320 (MD5) Previous issue date: 2015-08-06
CNPQ
Geometria complexa generalizada é um formalismo matemático adequado para descrever modelos sigma não-lineares do tipo N=(2,2) com fluxo H. A geometria do espaço alvo desse modelo não é Kähler, mas sim uma geometria bi-hermitiana. Recentemente, uma descrição alternativa para essa geometria foi encontrada, de fato, pode-se associar a toda geometria bihermitiana uma geometria Kähler generalizada. Generalizações dos modelos A e B para modelos sigmas N=2 com fluxo H são possíveis, uma vez que torções topológicas podem ser feitas para geoemtrias Kähler generelazidas torcidas, e não apenas para geometrias Kähler. O espaço dos observáveis também é associado à geometria complexa generalizada, pois esses espaços estão associados à cohomologia de algebroides de Lie, a qual provém de uma geometria complexa generalizada torcida.
Generalized complex geometry is a suitable mathematical formalism to describe (2,2) sigmamodels with H-flux. The target space of this geometry is not Kähler, but it is a bi-Hermitian geometry. Recently, an alternative description of this geometry was found, in fact all bi-Hermitian geometry can be associated to generalized Kähler geometry. Generalizations of the models A and B for sigma models with H-flux are possible, since topological twists can be made, if the target space is twisted generalized Kähler geometry, and not just for Kähler geometries. The space of the observable is also associated with generalized complex geometry, because it is associated with cohomology of Lie algebroids, which comes from a twisted generalized complex geometry.
Resende, Kepler Alves. "Curvas e Aplicações." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7857.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-10-09T12:27:28Z (GMT) No. of bitstreams: 2 Dissertação - Kepler Alves Resende - 2017.pdf: 8655233 bytes, checksum: e1f4de9e6c13041baa2304095e382ca4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-10-09T12:27:28Z (GMT). No. of bitstreams: 2 Dissertação - Kepler Alves Resende - 2017.pdf: 8655233 bytes, checksum: e1f4de9e6c13041baa2304095e382ca4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-09-11
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we will study some differential curves like Cycloid, Helix and Spiral of Archimedes. We show how some geometric curves represent phenomena of nature, with the intention to motivate and awaken mathematical curiosity. In the course of this study we will make a brief historical survey, passing through mathematical and geometric knowledge of the curves and their practical applications.
Neste trabalho, estudaremos algumas curvas diferenciais como a Cicloide, Hélice e Espiral de Arquimedes. Mostraremos como algumas curvas geométricas representam fenômenos da natureza, com a intenção de motivar e despertar a curiosidade matemática. No decorrer deste estudo faremos um breve levantamento histórico, passando por conhecimentos matemáticos e geométricos das curvas e suas aplicações práticas.
Barroso, Neto Nilton Moura. "A fibração de Hopf e superfícies de Willmore." reponame:Repositório Institucional da UnB, 2006. http://repositorio.unb.br/handle/10482/5491.
Full textTexto parcialmente liberado pelo autor.
Submitted by Mariana Fonseca Xavier Nunes (nanarteira@hotmail.com) on 2010-09-16T09:49:14Z No. of bitstreams: 1 2006_Nilton Moura Barroso Neto.pdf: 229403 bytes, checksum: f150da03e423f27d1f9ad0e55b6bd0d2 (MD5)
Approved for entry into archive by Carolina Campos(carolinacamposmaia@gmail.com) on 2010-09-28T12:39:26Z (GMT) No. of bitstreams: 1 2006_Nilton Moura Barroso Neto.pdf: 229403 bytes, checksum: f150da03e423f27d1f9ad0e55b6bd0d2 (MD5)
Made available in DSpace on 2010-09-28T12:39:27Z (GMT). No. of bitstreams: 1 2006_Nilton Moura Barroso Neto.pdf: 229403 bytes, checksum: f150da03e423f27d1f9ad0e55b6bd0d2 (MD5) Previous issue date: 2006
Uma imersão X : M2 ! R3 é dita uma Superfície de Willmore se é ponto crítico do funcional W(X) = RM H2da. Até 1986, os únicos exemplos conhecidos de tais superfícies eram obtidas a partir de projeções estereográficas de superfícies mínimas e compactas mergulhadas em S3. Neste trabalho mostramos a existência de uma infinidade de superfícies de Willmore que não provém de superfícies mínimas em S3, usando os trabalhos de Pinkall, Langer, Singer e Moniot. _____________________________________________________________________________ ABSTRACT
An immersion X : M2 ! R3 is called a Willmore surface if it is an extremal for the functional W(X) = RM H2da. Until 1986, the only examples of such surfaces known so far were stereographic projections of compact embedded minimal surfaces in S3. In this work we prove the existence of an infinite number of Willmore surfaces that do not stem from minimal surfaces in S3, using the works of Pinkall, Langer, Singer and Moniot.
Souza, Anyelle Nogueira de. "Imersões Taut de superfícies não compactas." reponame:Repositório Institucional da UnB, 2007. http://repositorio.unb.br/handle/10482/5502.
Full textTexto parcialmente liberado pelo autor.
Submitted by Mariana Fonseca Xavier Nunes (nanarteira@hotmail.com) on 2010-09-17T21:13:02Z No. of bitstreams: 1 2007-Anyelle Nogueira de Souza.pdf: 153774 bytes, checksum: 3267f4a8d0ea6664f812238373824288 (MD5)
Approved for entry into archive by Carolina Campos(carolinacamposmaia@gmail.com) on 2010-09-28T14:29:42Z (GMT) No. of bitstreams: 1 2007-Anyelle Nogueira de Souza.pdf: 153774 bytes, checksum: 3267f4a8d0ea6664f812238373824288 (MD5)
Made available in DSpace on 2010-09-28T14:29:42Z (GMT). No. of bitstreams: 1 2007-Anyelle Nogueira de Souza.pdf: 153774 bytes, checksum: 3267f4a8d0ea6664f812238373824288 (MD5) Previous issue date: 2007
O objetivo deste trabalho é provar, com base no artigo de Thomas E. Cecil, que se f: M(seta para direita) R3 é uma imersão taut de uma superfície não compacta e conexa, então f(M) é um hiperplano ou uma cíclide de Dupin completa. _____________________________________________________________________________ ABSTRACT
Our purpose is to prove, based on a paper of Thomas E. Cecil, that if f : M −! R3 is a taut immersion of a connected noncompact surface, then f(M) is either a hyperplane or a complete cyclide of Dupin.