Academic literature on the topic 'Geometric analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometric analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geometric analysis"

1

Gong, Wenjuan, Bin Zhang, Chaoqi Wang, et al. "A Literature Review: Geometric Methods and Their Applications in Human-Related Analysis." Sensors 19, no. 12 (2019): 2809. http://dx.doi.org/10.3390/s19122809.

Full text
Abstract:
Geometric features, such as the topological and manifold properties, are utilized to extract geometric properties. Geometric methods that exploit the applications of geometrics, e.g., geometric features, are widely used in computer graphics and computer vision problems. This review presents a literature review on geometric concepts, geometric methods, and their applications in human-related analysis, e.g., human shape analysis, human pose analysis, and human action analysis. This review proposes to categorize geometric methods based on the scope of the geometric properties that are extracted:
APA, Harvard, Vancouver, ISO, and other styles
2

Pinus, A. G. "Geometric and conditional geometric equivalences of algebras." Algebra and Logic 51, no. 6 (2013): 507–10. http://dx.doi.org/10.1007/s10469-013-9210-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Akbar, M. Matejić, Igor Ž. Milovanović, Emina I. Milovanović, Stefan D. Stankov, and Zahid Raza. "On arithmetic-geometric and geometric-arithmetic indices of graphs." Journal of Mathematical Inequalities, no. 4 (2023): 1565–79. http://dx.doi.org/10.7153/jmi-2023-17-103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mostajeran, Cyrus, Christian Grussler, and Rodolphe Sepulchre. "Geometric Matrix Midranges." SIAM Journal on Matrix Analysis and Applications 41, no. 3 (2020): 1347–68. http://dx.doi.org/10.1137/19m1273475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

J. Washington, Andres. "Fingerprint Geometric Analysis." International Journal of Criminal and Forensic Science 1, no. 1 (2017): 08–10. http://dx.doi.org/10.25141/2576-3563-2017-1.0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Artstein-Avidan, Shiri, Hermann König, and Alexander Koldobsky. "Asymptotic Geometric Analysis." Oberwolfach Reports 13, no. 1 (2016): 507–65. http://dx.doi.org/10.4171/owr/2016/11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blasius, Joerg. "Geometric Data Analysis." Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique 68, no. 1 (2000): 54–55. http://dx.doi.org/10.1177/075910630006800123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hong, Seok-In. "Geometric circuit analysis." Physics Education 58, no. 6 (2023): 065021. http://dx.doi.org/10.1088/1361-6552/acf108.

Full text
Abstract:
Abstract The Smith rectangle symbolises the resistor and its width, height, aspect ratio, and area represent the current through, the voltage across, the resistance of, and the power dissipated in the resistor, respectively. In this article, the mosaic of rectangles (MOR) is introduced as a geometric approach to connected planar resistive network circuits with an ideal voltage source. In the MOR, the geometric Kirchhoff’s current and voltage laws are expressed as width and height conservations, respectively and are automatically satisfied. Four basic circuits are considered as applications of
APA, Harvard, Vancouver, ISO, and other styles
9

Yau, Shing-Tung. "A survey of geometric structure in geometric analysis." Surveys in Differential Geometry 16, no. 1 (2011): 325–48. http://dx.doi.org/10.4310/sdg.2011.v16.n1.a7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moakher, Maher. "A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices." SIAM Journal on Matrix Analysis and Applications 26, no. 3 (2005): 735–47. http://dx.doi.org/10.1137/s0895479803436937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Geometric analysis"

1

Roysdon, Michael A. "ON SOME GEOMETRIC AND FUNCTIONAL INEQUALITIES INASYMPTOTIC GEOMETRIC ANALYSIS." Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1599821442510494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wink, Matthias. "Ricci solitons and geometric analysis." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:3aae2c5e-58aa-42da-9a1b-ec15cacafdad.

Full text
Abstract:
This thesis studies Ricci solitons of cohomogeneity one and uniform Poincaré inequalities for differentials on Riemann surfaces. In the two summands case, which assumes that the isotropy representation of the principal orbit consists of two inequivalent Ad-invariant irreducible summands, complete steady and expanding Ricci solitons have been detected numerically by Buzano-Dancer-Gallaugher-Wang. This work provides a rigorous construction thereof. A Lyapunov function is introduced to prove that the Ricci soliton metrics lie in a bounded region of an associated phase space. This also gives an a
APA, Harvard, Vancouver, ISO, and other styles
3

Gasparini, Riccardo. "Engineering Analysis in Imprecise Geometric Models." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1793.

Full text
Abstract:
Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it. Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the comp
APA, Harvard, Vancouver, ISO, and other styles
4

Raub, Corey Bevan. "Geometric analysis of axisymmetric disk forging." Ohio : Ohio University, 2000. http://www.ohiolink.edu/etd/view.cgi?ohiou1172778393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Benkert, Marc. "Construction and Analysis of Geometric Networks." [S.l. : s.n.], 2007. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Litsgård, Malte. "The Orbit Method and Geometric Quantisation." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-351508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arroyave-Tobón, Santiago. "Polyhedral models reduction in geometric tolerance analysis." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0720/document.

Full text
Abstract:
L’analyse de tolérances par des ensembles de contraintes repose sur la détermination de l’accumulation de variations géométriques par des sommes et intersections d’ensembles opérandes 6d. Les degrés de liberté des liaisons et les degrés d’invariance des surfaces génèrent des opérandes non-bornés (polyèdres), posant des problèmes de simulation. En 2014, L. Homria proposé une méthode pour résoudre ce problème, consistant à ajouter des limites artificielles(contraintes bouchon) sur les déplacements non-bornés. Même si cette méthode permet la manipulation d’objets bornés (polytopes), les contraint
APA, Harvard, Vancouver, ISO, and other styles
8

Lindgren, Natalia. "Geometric and Mechanical Analysis of Aortic Aneurysm." Thesis, KTH, Hållfasthetslära, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284352.

Full text
Abstract:
The aorta, the main and largest artery in the human body, is susceptible for many types of problems. One of the most common aortic disease is the formation of an aneurysm. Endovascular aortic aneurysm repair (EVAR) is a minimally invasive treatment option for aortic aneurysms, involving the deployment of an expandable stent graft within the aorta without operating the aneurysm directly. With 1.5 to 43 % of EVAR patients having postoperative complications, research to help predict these complications of EVAR is of essence. In this study, the deformations of the aorta induced by a deployed stent
APA, Harvard, Vancouver, ISO, and other styles
9

Tiwari, Abhishek Murray Richard M. Murray Richard M. "Geometric analysis of spatio-temporal planning problems /." Diss., Pasadena, Calif. : Caltech, 2007. http://resolver.caltech.edu/CaltechETD:etd-05202007-135411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gautam, Sushrut Zubin Sulaksh. "Two geometric obstruction results in harmonic analysis." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1872162601&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Geometric analysis"

1

Grinberg, Eric L., ed. Geometric Analysis. American Mathematical Society, 1992. http://dx.doi.org/10.1090/conm/140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pérez, Joaquín, and José Gálvez, eds. Geometric Analysis. American Mathematical Society, 2012. http://dx.doi.org/10.1090/conm/570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Jingyi, Peng Lu, Zhiqin Lu, and Zhou Zhang, eds. Geometric Analysis. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34953-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fraser, Ailana, André Neves, Peter M. Topping, and Paul C. Yang. Geometric Analysis. Edited by Matthew J. Gursky and Andrea Malchiodi. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53725-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bray, Hubert L. Geometric analysis. American Mathematical Society, Institute for Advanced Study, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jordán, Tibor, and Andrzej Zuk. Discrete geometric analysis. Mathematical Society of Japan, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kotani, Motoko, Tomoyuki Shirai, and Toshikazu Sunada, eds. Discrete Geometric Analysis. American Mathematical Society, 2004. http://dx.doi.org/10.1090/conm/347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Byun, Jisoo, Hong Rae Cho, Sung Yeon Kim, Kang-Hyurk Lee, and Jong-Do Park, eds. Geometric Complex Analysis. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1672-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rosén, Andreas. Geometric Multivector Analysis. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31411-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ludwig, Monika, Vitali D. Milman, Vladimir Pestov, and Nicole Tomczak-Jaegermann, eds. Asymptotic Geometric Analysis. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6406-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Geometric analysis"

1

D’Angelo, John P. "Geometric Considerations." In Hermitian Analysis. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8526-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

D’Angelo, John P. "Geometric considerations." In Hermitian Analysis. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16514-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fraser, Ailana. "Extremal Eigenvalue Problems and Free Boundary Minimal Surfaces in the Ball." In Geometric Analysis. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53725-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marques, Fernando C., and André Neves. "Applications of Min–Max Methods to Geometry." In Geometric Analysis. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53725-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Topping, Peter M. "Ricci Flow and Ricci Limit Spaces." In Geometric Analysis. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53725-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Paul C. "Pseudo-Hermitian Geometry in 3D." In Geometric Analysis. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53725-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huisken, Gerhard. "Heat diffusion in geometry." In Geometric Analysis. American Mathematical Society, 2016. http://dx.doi.org/10.1090/pcms/022/01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Topping, Peter. "Applications of Hamilton’s compactness theorem for Ricci flow." In Geometric Analysis. American Mathematical Society, 2016. http://dx.doi.org/10.1090/pcms/022/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weinkove, Ben. "The Kähler-Ricci flow on compact Kähler manifolds." In Geometric Analysis. American Mathematical Society, 2016. http://dx.doi.org/10.1090/pcms/022/03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zelditch, Steve. "Park City lectures on eigenfunctions." In Geometric Analysis. American Mathematical Society, 2016. http://dx.doi.org/10.1090/pcms/022/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geometric analysis"

1

Noguchi, J., H. Fujimoto, J. Kajiwara, and T. Ohsawa. "Geometric Complex Analysis." In Third International Research Institute of Mathematical Society of Japan. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814532143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lane, R. G., R. M. Clare, and T. Y. Chew. "Analysis of Geometric Wavefront Sensing." In Adaptive Optics: Methods, Analysis and Applications. OSA, 2005. http://dx.doi.org/10.1364/aopt.2005.athc1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hildenbrand, Dietmar. "Foundations of Geometric Algebra computing." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Armstrong, C. G., R. M. McKeag, H. Ou, and M. A. Price. "Geometric processing for analysis." In Proceedings Geometric Modeling and Processing 2000. Theory and Applications. IEEE, 2000. http://dx.doi.org/10.1109/gmap.2000.838237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brugnano, Luigi, and Felice Iavernaro. "Geometric integration by playing with matrices." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Castelli, Mauro, Luca Manzoni, Ivo Gonçalves, Leonardo Vanneschi, Leonardo Trujillo, and Sara Silva. "An Analysis of Geometric Semantic Crossover: A Computational Geometry Approach." In 8th International Conference on Evolutionary Computation Theory and Applications. SCITEPRESS - Science and Technology Publications, 2016. http://dx.doi.org/10.5220/0006056402010208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cortés, Jorge. "Motion coordination algorithms resulting from classical geometric optimization problems." In GLOBAL ANALYSIS AND APPLIED MATHEMATICS: International Workshop on Global Analysis. AIP, 2004. http://dx.doi.org/10.1063/1.1814715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Skeel, Robert D., Ruijun Zhao, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Solving Geometric Two-Point Boundary Value Problems." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Erdogan, Fatma Ozen, Basri Celik, Suleyman Ciftci, et al. "On Some Geometric Structures and Local Rings." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Modin, K., C. Führer, G. Soöderlind, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Geometric Integration of Weakly Dissipative Systems." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241619.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geometric analysis"

1

Carlsson, Gunnar, and Mike Mahoney. Geometric Networks Analysis. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada567132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Watterberg, P. A. Geometric simplification of analysis models. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/750027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Little, Charles, and David Biedenharn. Technical assessment of the Old, Mississippi, Atchafalaya, and Red (OMAR) Rivers : channel geometry analysis. Engineer Research and Development Center (U.S.), 2022. http://dx.doi.org/10.21079/11681/45147.

Full text
Abstract:
The Old River Control Complex (ORCC) consists of the Low Sill, Auxiliary, and Overbank structures as features of the Old River Control Structure (ORCS) and the privately owned hydro-electric power plant. Operations of the ORCC manage the hydrologic connectivity between the Mississippi River and the Atchafalaya River/Red River systems. The morphology of the Old, the Mississippi, the Atchafalaya, and the Red Rivers (OMAR) has been influenced by the flow distribution at the ORCC, as well as the accompanying bed sediments. A geomorphic assessment of the OMAR is underway to understand the morpholog
APA, Harvard, Vancouver, ISO, and other styles
4

Przebienda, Louis M., and Shawna Youst. Geometric Processor and Multivariate Categorical Processor Market Analysis. Defense Technical Information Center, 1988. http://dx.doi.org/10.21236/ada207281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baraniuk, Richard G., and Hyeokho Choi. Higher-Dimensional Signal Processing via Multiscale Geometric Analysis. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada514181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vorjohann, Felix, and Reinhard Schiffers. Analysis of spiral mandrel dies with novel channel geometries to draw conclusions on the purging time of the melt using CFD. Universidad de los Andes, 2024. https://doi.org/10.51573/andes.pps39.gs.ex.1.

Full text
Abstract:
Spiral mandrel dies are deeply integrated into the extrusion process and are the predominant die type for manufacturing products with a ring-shaped cross-section, e.g. blown film. The geometry of the axial spiral mandrel die is characterized by a spiral mandrel with one or more feed holes that merge into the spiral channels. The spiral channels themselves are embedded in the mandrel and have a characteristic u-shape in cross-section, which is dictated by the milling head used during manufacturing. In the past, numerous geometric parameters of the conventional axial spiral mandrel distributor h
APA, Harvard, Vancouver, ISO, and other styles
7

Barlow, Richard E., and Max B. Mendel. Failure Data Analysis Based on Engineering and Geometric Principles. Defense Technical Information Center, 1995. http://dx.doi.org/10.21236/ada296135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fabbri, A. G., C. A. Kushigbor, C. R. Valenzuela, and F. D. van der Meer. Automated strategies for geometric characterization in geological remote sensing analysis. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/193962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jadbabaie, Ali, Shing-Tung Yau, Fan Chung-Graham, Gabor Lippner, Victor Preciado, and Paul Horn. Topological and Geometric Tools for the Analysis fo Complex Networks. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ad1013162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

W. Brent Lindquist. Final Report, DE-FG02-92ER14261, Pore Scale Geometric and Fluid Distribution Analysis. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/836090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!