To see the other types of publications on this topic, follow the link: Geometric analysis.

Journal articles on the topic 'Geometric analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Geometric analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gong, Wenjuan, Bin Zhang, Chaoqi Wang, et al. "A Literature Review: Geometric Methods and Their Applications in Human-Related Analysis." Sensors 19, no. 12 (2019): 2809. http://dx.doi.org/10.3390/s19122809.

Full text
Abstract:
Geometric features, such as the topological and manifold properties, are utilized to extract geometric properties. Geometric methods that exploit the applications of geometrics, e.g., geometric features, are widely used in computer graphics and computer vision problems. This review presents a literature review on geometric concepts, geometric methods, and their applications in human-related analysis, e.g., human shape analysis, human pose analysis, and human action analysis. This review proposes to categorize geometric methods based on the scope of the geometric properties that are extracted:
APA, Harvard, Vancouver, ISO, and other styles
2

Pinus, A. G. "Geometric and conditional geometric equivalences of algebras." Algebra and Logic 51, no. 6 (2013): 507–10. http://dx.doi.org/10.1007/s10469-013-9210-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Akbar, M. Matejić, Igor Ž. Milovanović, Emina I. Milovanović, Stefan D. Stankov, and Zahid Raza. "On arithmetic-geometric and geometric-arithmetic indices of graphs." Journal of Mathematical Inequalities, no. 4 (2023): 1565–79. http://dx.doi.org/10.7153/jmi-2023-17-103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mostajeran, Cyrus, Christian Grussler, and Rodolphe Sepulchre. "Geometric Matrix Midranges." SIAM Journal on Matrix Analysis and Applications 41, no. 3 (2020): 1347–68. http://dx.doi.org/10.1137/19m1273475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

J. Washington, Andres. "Fingerprint Geometric Analysis." International Journal of Criminal and Forensic Science 1, no. 1 (2017): 08–10. http://dx.doi.org/10.25141/2576-3563-2017-1.0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Artstein-Avidan, Shiri, Hermann König, and Alexander Koldobsky. "Asymptotic Geometric Analysis." Oberwolfach Reports 13, no. 1 (2016): 507–65. http://dx.doi.org/10.4171/owr/2016/11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blasius, Joerg. "Geometric Data Analysis." Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique 68, no. 1 (2000): 54–55. http://dx.doi.org/10.1177/075910630006800123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hong, Seok-In. "Geometric circuit analysis." Physics Education 58, no. 6 (2023): 065021. http://dx.doi.org/10.1088/1361-6552/acf108.

Full text
Abstract:
Abstract The Smith rectangle symbolises the resistor and its width, height, aspect ratio, and area represent the current through, the voltage across, the resistance of, and the power dissipated in the resistor, respectively. In this article, the mosaic of rectangles (MOR) is introduced as a geometric approach to connected planar resistive network circuits with an ideal voltage source. In the MOR, the geometric Kirchhoff’s current and voltage laws are expressed as width and height conservations, respectively and are automatically satisfied. Four basic circuits are considered as applications of
APA, Harvard, Vancouver, ISO, and other styles
9

Yau, Shing-Tung. "A survey of geometric structure in geometric analysis." Surveys in Differential Geometry 16, no. 1 (2011): 325–48. http://dx.doi.org/10.4310/sdg.2011.v16.n1.a7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moakher, Maher. "A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices." SIAM Journal on Matrix Analysis and Applications 26, no. 3 (2005): 735–47. http://dx.doi.org/10.1137/s0895479803436937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Brüning, Jochen, Rafe Mazzeo, and Paolo Piazza. "Analysis and Geometric Singularities." Oberwolfach Reports 9, no. 2 (2012): 1487–562. http://dx.doi.org/10.4171/owr/2012/25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yau, Shing-Tung. "Perspectives on geometric analysis." Surveys in Differential Geometry 10, no. 1 (2005): 275–379. http://dx.doi.org/10.4310/sdg.2005.v10.n1.a8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yau, Shing-Tung. "Topics on geometric analysis." Surveys in Differential Geometry 17, no. 1 (2012): 459–73. http://dx.doi.org/10.4310/sdg.2012.v17.n1.a11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Martínez-Morales, José L. "Geometric data fitting." Abstract and Applied Analysis 2004, no. 10 (2004): 831–80. http://dx.doi.org/10.1155/s1085337504401043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lim, Yongdo. "Convex geometric means." Journal of Mathematical Analysis and Applications 404, no. 1 (2013): 115–28. http://dx.doi.org/10.1016/j.jmaa.2013.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lim, Yongdo. "Riemannian Distances between Geometric Means." SIAM Journal on Matrix Analysis and Applications 34, no. 3 (2013): 932–45. http://dx.doi.org/10.1137/12090006x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Andruchow, E., E. Chiumiento, and G. Larotonda. "Geometric significance of Toeplitz kernels." Journal of Functional Analysis 275, no. 2 (2018): 329–55. http://dx.doi.org/10.1016/j.jfa.2018.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gonçalves, J. Basto. "Geometric conditions for local controllability." Journal of Differential Equations 89, no. 2 (1991): 388–95. http://dx.doi.org/10.1016/0022-0396(91)90126-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Jian. "A geometric inequality with applications." Journal of Mathematical Inequalities, no. 3 (2016): 641–48. http://dx.doi.org/10.7153/jmi-10-51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bellettini, G., and M. Novaga. "Minimal Barriers for Geometric Evolutions." Journal of Differential Equations 139, no. 1 (1997): 76–103. http://dx.doi.org/10.1006/jdeq.1997.3288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sun, Churen. "On approximatingD-induced polar sets of geometric and extended geometric cones." Journal of Interdisciplinary Mathematics 11, no. 3 (2008): 301–30. http://dx.doi.org/10.1080/09720502.2008.10700561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mageed, Ismail A. "The Info-Geometric Analysis of Wind Speed Dynamics and How Energy is Influentially Impacted by Information Geometry (IG)." Journal of Data Analytics and Engineering Decision Making 1, no. 1 (2024): 01–07. https://doi.org/10.33140/jdaedm.01.01.02.

Full text
Abstract:
The use of mathematical models to forecast environmental conditions is covered in this paper. These models work well for larger-scale events, but they become more complicated when it comes to wave processes or local weather. This issue has been tackled using a variety of strategies, such as neural networks and statistical and mathematical models. This method is innovative because it makes use of statistical manifolds, which offer a more precise means of estimating cost functions and distances. To create various models that can be utilised for environmental modelling and forecasting, this work
APA, Harvard, Vancouver, ISO, and other styles
23

Yin, Zhou-Ping, Han Ding, Han-Xiong Li, and You-Lun Xiong. "Geometric mouldability analysis by geometric reasoning and fuzzy decision making." Computer-Aided Design 36, no. 1 (2004): 37–50. http://dx.doi.org/10.1016/s0010-4485(03)00067-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kong, De-Xing, and Jinhua Wang. "Einstein's hyperbolic geometric flow." Journal of Hyperbolic Differential Equations 11, no. 02 (2014): 249–67. http://dx.doi.org/10.1142/s0219891614500076.

Full text
Abstract:
We investigate the Einstein's hyperbolic geometric flow, which provides a natural tool to deform the shape of a manifold and to understand the wave character of metrics, the wave phenomenon of the curvature for evolutionary manifolds. For an initial manifold equipped with an Einstein metric and assumed to be a totally umbilical submanifold in the induced space-time, we prove that, along the Einstein's hyperbolic geometric flow, the metric is Einstein if and only if the corresponding manifold is a totally umbilical hypersurface in the induced space-time. For an initial manifold which is equippe
APA, Harvard, Vancouver, ISO, and other styles
25

Soffer, A. "Geometric Characterization of Solitons." Communications in Partial Differential Equations 33, no. 11 (2008): 1953–74. http://dx.doi.org/10.1080/03605300802501764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mallios, A. "On Geometric Topological Algebras." Journal of Mathematical Analysis and Applications 172, no. 2 (1993): 301–22. http://dx.doi.org/10.1006/jmaa.1993.1026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bătineţu-Giurgiu, D. M., and Neculai Stanciu. "Some geometric inequalities of Radon – Mitrinović." Journal of Mathematical Inequalities, no. 1 (2013): 25–32. http://dx.doi.org/10.7153/jmi-07-03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sababheh, Mohammad, Shigeru Furuichi, Zahra Heydarbeygi, and Hamid Reza Moradi. "On the arithmetic-geometric mean inequality." Journal of Mathematical Inequalities, no. 3 (2021): 1255–66. http://dx.doi.org/10.7153/jmi-2021-15-84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Morris, Jr., Walter D., and Jim Lawrence. "Geometric Properties of Hidden Minkowski Matrices." SIAM Journal on Matrix Analysis and Applications 10, no. 2 (1989): 229–32. http://dx.doi.org/10.1137/0610017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Robinson, Michael. "Imaging geometric graphs using internal measurements." Journal of Differential Equations 260, no. 1 (2016): 872–96. http://dx.doi.org/10.1016/j.jde.2015.09.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kadets, Vladimir, Ginés López-Pérez, and Miguel Martín. "Some geometric properties of Read's space." Journal of Functional Analysis 274, no. 3 (2018): 889–99. http://dx.doi.org/10.1016/j.jfa.2017.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fu, Xiaohui. "An operator α-geometric mean inequality". Journal of Mathematical Inequalities, № 3 (2015): 947–50. http://dx.doi.org/10.7153/jmi-09-77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

an Yang, Junj, та Xiaohui Fu. "Squaring operator α-geometric mean inequality". Journal of Mathematical Inequalities, № 2 (2016): 571–75. http://dx.doi.org/10.7153/jmi-10-45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Joly, J. L., G. Metivier, and J. Rauch. "Resonant One Dimensional Nonlinear Geometric Optics." Journal of Functional Analysis 114, no. 1 (1993): 106–231. http://dx.doi.org/10.1006/jfan.1993.1065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shvydkoy, R. V. "Geometric Aspects of the Daugavet Property." Journal of Functional Analysis 176, no. 2 (2000): 198–212. http://dx.doi.org/10.1006/jfan.2000.3626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Alterman, Deborah, and Jeffrey Rauch. "Nonlinear Geometric Optics for Short Pulses." Journal of Differential Equations 178, no. 2 (2002): 437–65. http://dx.doi.org/10.1006/jdeq.2001.4016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Polking, John, and Steven G. Krantz. "Complex Analysis: The Geometric Viewpoint." American Mathematical Monthly 101, no. 1 (1994): 91. http://dx.doi.org/10.2307/2325141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Berndtsson, Bo, John Erik Fornaess, and Nikolay Shcherbina. "Geometric Methods of Complex Analysis." Oberwolfach Reports 18, no. 2 (2022): 1291–345. http://dx.doi.org/10.4171/owr/2021/25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Singer, Brian D. "Risk Analysis: A Geometric Approach." AIMR Conference Proceedings 1999, no. 3 (1999): 73–79. http://dx.doi.org/10.2469/cp.v1999.n3.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Berndtsson, Bo, John Erik Fornæss, and Nikolay Shcherbina. "Geometric Methods of Complex Analysis." Oberwolfach Reports 12, no. 1 (2015): 235–83. http://dx.doi.org/10.4171/owr/2015/4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Andersson, Mats, Bo Berndtsson, John Erik Fornæss, and Nikolay Shcherbina. "Geometric Methods of Complex Analysis." Oberwolfach Reports 15, no. 3 (2019): 2253–302. http://dx.doi.org/10.4171/owr/2018/37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Vereshchaha, V., A. Naidysh, A. Pavlenko, and I. Chyzhykov. "ANALYSIS OF COMPOSITE GEOMETRIC MODELING." Modern problems of modeling 22 (June 16, 2021): 22–31. http://dx.doi.org/10.33842/22195203/2021/22/22/31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Colding, T. H., and W. P. Minicozzi. "An excursion into geometric analysis." Surveys in Differential Geometry 9, no. 1 (2004): 83–146. http://dx.doi.org/10.4310/sdg.2004.v9.n1.a4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ting, Chen, and Sun Wenchang. "Geometric inequalities in harmonic analysis." SCIENTIA SINICA Mathematica 48, no. 10 (2018): 1219. http://dx.doi.org/10.1360/n012018-00081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Osinga, Hinke M., and Krasimira T. Tsaneva-Atanasova. "Geometric analysis of transient bursts." Chaos: An Interdisciplinary Journal of Nonlinear Science 23, no. 4 (2013): 046107. http://dx.doi.org/10.1063/1.4826655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Jiang, Xianhua, Zhi-Quan Luo, and Tryphon T. Georgiou. "Geometric Methods for Spectral Analysis." IEEE Transactions on Signal Processing 60, no. 3 (2012): 1064–74. http://dx.doi.org/10.1109/tsp.2011.2178601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

KARA, LEVENT BURAK, and THOMAS F. STAHOVICH. "Causal reasoning using geometric analysis." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 16, no. 5 (2002): 363–84. http://dx.doi.org/10.1017/s0890060402165036.

Full text
Abstract:
We describe an approach that uses causal and geometric reasoning to construct explanations for the purposes of the geometric features on the parts of a mechanical device. To identify the purpose of a feature, the device is simulated with and without the feature. The simulations are then translated into a “causal-process” representation, which allows qualitatively important differences to be identified. These differences reveal the behaviors caused and prevented by the feature and thus provide useful cues about the feature's purpose. A clear understanding of the feature's purpose, however, requ
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Xiang, Weiji Li, and Chang’an Liu. "Geometric analysis of collaborative optimization." Structural and Multidisciplinary Optimization 35, no. 4 (2007): 301–13. http://dx.doi.org/10.1007/s00158-007-0127-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Struve, Rolf. "Cyclic order: a geometric analysis." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 61, no. 4 (2020): 649–69. http://dx.doi.org/10.1007/s13366-020-00490-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Segev, Reuven. "Geometric analysis of hyper-stresses." International Journal of Engineering Science 120 (November 2017): 100–118. http://dx.doi.org/10.1016/j.ijengsci.2017.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!