Academic literature on the topic 'Geometric and numerical sequences'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometric and numerical sequences.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometric and numerical sequences"
Vorontsov, Oleg, Larissa Tulupova, and Iryna Vorontsova. "Discrete modeling of building structures geometric images." International Journal of Engineering & Technology 7, no. 3.2 (June 20, 2018): 727. http://dx.doi.org/10.14419/ijet.v7i3.2.15467.
Full textAli Suliman, Bandar. "Modeling Three-Dimensional Geometric Shapes from Nucleic Acid Sequences Using a Computerized Numerical Control." International Journal of Clinical and Experimental Medical Sciences 5, no. 3 (2019): 49. http://dx.doi.org/10.11648/j.ijcems.20190503.12.
Full textGuillaume, Tristan. "Computation of the Survival Probability of Brownian Motion with Drift When the Absorbing Boundary is a Piecewise Affine or Piecewise Exponential Function of Time." International Journal of Statistics and Probability 5, no. 4 (June 27, 2016): 119. http://dx.doi.org/10.5539/ijsp.v5n4p119.
Full textChen, Yao, and Jian Feng. "Numerical Simulations on the Cable Clamp of a Concave Cable Arch." Applied Mechanics and Materials 105-107 (September 2011): 381–85. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.381.
Full textBoruah, Khirod, and Bipan Hazarika. "Application of geometric calculus in numerical analysis and difference sequence spaces." Journal of Mathematical Analysis and Applications 449, no. 2 (May 2017): 1265–85. http://dx.doi.org/10.1016/j.jmaa.2016.12.066.
Full textJi, Peng, Qing Hua Dai, Chen Bo Yin, Di Sheng Yi, Bin Wang, and Jie Zhu. "Influences of Welding Sequence on Residual Stress of Plate Butt Welding." Applied Mechanics and Materials 26-28 (June 2010): 568–72. http://dx.doi.org/10.4028/www.scientific.net/amm.26-28.568.
Full textHe, Qi-Ming, and Marcel F. Neuts. "On the convergence and limits of certain matrix sequences arising in quasi-birth-and-death Markov chains." Journal of Applied Probability 38, no. 02 (June 2001): 519–41. http://dx.doi.org/10.1017/s0021900200020015.
Full textHe, Qi-Ming, and Marcel F. Neuts. "On the convergence and limits of certain matrix sequences arising in quasi-birth-and-death Markov chains." Journal of Applied Probability 38, no. 2 (June 2001): 519–41. http://dx.doi.org/10.1239/jap/996986760.
Full textMakarov, V. L., N. O. Rossokhata, and B. I. Bandurskii. "Functional-Discrete Method with a High Order of Accuracy for the Eigenvalue Transmission Problem." Computational Methods in Applied Mathematics 4, no. 3 (2004): 324–49. http://dx.doi.org/10.2478/cmam-2004-0018.
Full textSahoo, Soumya Ranjan. "Active damping of geometrically nonlinear vibrations of smart composite shells using elliptical smart constrained layer damping treatment with fractional derivative viscoelastic layer." Journal of Intelligent Material Systems and Structures 31, no. 4 (December 25, 2019): 587–611. http://dx.doi.org/10.1177/1045389x19888800.
Full textDissertations / Theses on the topic "Geometric and numerical sequences"
TITONELI, LUANA MIRANDA BALTAZAR. "THE PATTERN OBSERVATION: MATHEMATICAL MODELING THROUGH NUMERICAL SEQUENCES AND GEOMETRIC OBJECTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33077@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL
Este trabalho é uma análise de padrões que são modelados matematicamente através de conceitos que envolvem as sequências numéricas bem como aspectos geométricos. São consideradas algumas aplicações práticas de conteúdos trabalhados na educação básica, muitas vezes estudados de forma mecânica através de fórmulas que tornam a Matemática enfadonha e até sem sentido para os discentes. O objetivo é mostrar que a Matemática transpõe os limites das salas de aula e que sua beleza pode ser vista em áreas diversas. As ideias e conceitos que envolvem as Progressões Aritméticas e Geométricas, por exemplo, são úteis na resolução de várias situações. A arte musical que está envolta em conhecimentos matemáticos desde os primórdios de seu desenvolvimento. Os estudos desenvolvidos com a sequência de Fibonacci e como está relacionada com a razão áurea e com fenômenos naturais que aparentemente nada teriam em comum. Além disso, a presença tão marcante na natureza das características dos fractais que traçam um padrão de formação para certos elementos naturais. É possível fazer com que o processo ensino- aprendizagem de Matemática torne-se efetivo através da abordagem dos conteúdos de forma prática, o que desperta no aluno o desejo de compreender o que é proposto. Este trabalho é inspirado na frase de Pitágoras: A Matemática é o alfabeto com o qual Deus escreveu o Universo e o que pretende-se é mostrar que esta ciência de fato está em toda a parte e que seu aprendizado pode ser significativo e interessante.
This work is an analysis of patterns that are modeled mathematically through concepts involving numerical sequences as well as geometric aspects. Some practical applications of content worked in basic education are considered, often mechanically studied through formulas that make Mathematics boring and even meaningless to students. The goal is to show that Mathematics transposes the boundaries of classrooms and that its beauty can be seen in several areas. The ideas and concepts that involve Arithmetic and Geometric Progressions, for example, are useful in solving various situations. The musical art that is shrouded in mathematical knowledge from the beginnings of its development. The studies developed with the Fibonacci sequence and how it is related to the golden ratio and with natural phenomena that apparently would have nothing in common. In addition, the presence so striking in the nature of the characteristics of the fractals that lay out a pattern of formation for certain natural elements. It is possible to make the teaching-learning process of Mathematics become effective by approaching the contents in a practical way, which awakens in the student the desire to understand what is proposed. This work is inspired by the phrase of Pythagoras: Mathematics is the alphabet with which God wrote the Universe and what is intended is to show that this science is indeed everywhere and that its learning can be meaningful and interesting.
Batista, Bárbara Regina da Silveira. "SEQUÊNCIAS NUMÉRICAS A PARTIR DA GEOMETRIA FRACTAL PARA LICENCIANDOS EM MATEMÁTICA Santa Maria 2017." Centro Universitário Franciscano, 2017. http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/595.
Full textMade available in DSpace on 2018-08-20T17:13:03Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_BarbaraReginaDaSilveiraBatista.pdf: 2388062 bytes, checksum: 2cec4c9f6c44ba531dba7b28764e1215 (MD5) Previous issue date: 2017-04-05
This dissertation is a result of a mathematic investigation carried out in an university, located in Santa Maria/RS, that had as objective investigate which contributions of Fractal Geometry, when was used to introduce the content of numerical sequences, to Mathematics students. This is a mathematical investigation, as a research methodology, for systematization of teaching, complemented by the qualitative approach. Fractal Geometry allows the integration of many Mathematic fields and others sciences and, when inserted in teaching process, can develop the experimental side of students and understand as a facilitator to apropration of numerical sequences concepts. The data collect was by means of photographical register, notes, material made by participants and constructions and performed registered activities in a field journal, during two horas in each workshop. Previously, the application was developed in a pilot Project, with a activities sequence, involving three licenced Mathematics professor, belonging at the institution that the researcher acts and they had experience with calculation, Statistics, discrete mathematics, analytical geometry and linear algebra subjects. Such professors never had worked with fractal geometry, even though they had some superficial knowledge about the subject, without however using it in their activities. Workshop application with professor allowed a reflexion of the referrals given by the researcher and provided the correction of ways to posterior reapplication with the graduates.in a first meeting, the researcher made a survey about the students framing on a logical sequence of graduation, concluding every graduates had finished some calculation subject. At the same meeting, explored a fractal construction by materials resources as ruler and compass, recovering some contents, forgetted by them. In the second meeting, was resumed the Snowflake fractal, builded at first meeting, to obtain sequences, involving perimeters and áreas. In a survey, applied to participants, was verified the relevance of project to recover knowledges of numerical sequences convergence, that the same indicated possibilities of using in a future professional practic, since the application was made in Mathematic Analysis and the focus in the workshop had given a new sight about the contente in a direction of teaching, main object of professor training.
Esta dissertação é resultante de uma investigação matemática realizada em uma Instituição de Ensino Superior no Município de Santa Maria/RS, a qual teve como objetivo investigar quais as contribuições da Geometria Fractal quando utilizada para introdução do conteúdo de sequências numéricas para licenciandos em Matemática. Trata-se da Investigação Matemática, como metodologia de pesquisa, para a sistematização do ensino, complementando-se por meio de uma abordagem qualitativa. A Geometria Fractal permite a integração de vários campos da Matemática e de outras ciências e, quando inserida no ensino, pode desenvolver o lado experimental dos alunos e entender Geometria como facilitadora para apropriação de conceitos de sequências numéricas. A coleta de dados deu-se por meio de registro fotográfico, anotações, material confeccionado pelos participantes e as construções e atividades realizadas e registradas em diário de campo durante dois encontros de 2 horas cada em uma oficina. Anteriormente à aplicação com os estudantes foi desenvolvido um projeto piloto com a sequência de atividades, envolvendo três professores com Licenciatura em Matemática, pertencentes à instituição em que a pesquisadora atua e que já tinham experiência com as disciplinas de Cálculo, Estatística, Matemática Discreta, Geometria Analítica e Álgebra Linear. Tais professores nunca haviam trabalhado com Geometria Fractal, muito embora tivessem algum conhecimento superficial da mesma, sem, entretanto, a utilizarem em suas atividades. A aplicação da oficina com os professores permitiu reflexão sobre os encaminhamentos dados pela pesquisadora e proporcionou correção de rumos para replicação posterior com os licenciandos. Num primeiro encontro a pesquisadora fez um levantamento sobre o enquadramento dos estudantes no quadro de sequência lógica do curso, tendo concluído que todos já haviam cursado alguma disciplina de Cálculo. No mesmo encontro explorou a construção de um fractal por meio de recursos materiais como régua e compasso, resgatando alguns conteúdos já esquecidos por eles. No segundo encontro, foi retomado o fractal Floco de Neve, construído no primeiro encontro, para obtenção de sequências envolvendo perímetros e áreas. Num questionário aplicado aos participantes foi constatada a relevância do projeto para resgatar conhecimentos de convergência de sequência numéricas, sendo que os mesmos indicaram possibilidades de utilização na prática profissional futura, uma vez que a aplicação foi realizada na disciplina de Análise Matemática e o foco dado na oficina proporcionou um novo olhar sobre o conteúdo voltado ao ensino, objeto principal da formação de professores.
Brum, Maria Gorete Nascimento. "ATIVIDADES INVESTIGATIVAS PARA O ENSINO DE MATEMÁTICA PARA ALUNOS DE 5º SÉRIE DO ENSINO FUNDAMENTAL." Universidade Franciscana, 2012. http://tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/128.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The present research investigated the contributions of the use of investigative activities in the exploration of standards and regularities in numerical and geometric sequences as elements that become easy the learning of the pupils of 5º series of Basic Education. This work was carried through with a group of 5º degree with 30 pupils of the State school of Basic Education Marechal Rondon in the periphery of the city of Santa Maria, RS. The date of the research, qualitative matrix, had been gotten of the direct action teacher s in the classroom with the pupils by means of the observation and the registers in its diary beyond the analysis of the pupils, work and the presentations to the great group. It can be inferred that the objectives considered in the sessions as explore the standard concept, to recognize, to describe standards, to continue the drawing of the sequence was reached. The objectives to generalize, to explore the notion and properties of the numbers pairs, uneven and multiple, as well as the involution of natural numbers and to work the concept of area and perimeter of plain figures, partially had been reached. The results presented for the pupils it can be concluded that the investigative activities worked with the pupils of 5ª degree, had propitiated the increase of interest, the motivation in the accomplishment of the activities proposals in classroom and as consequence had an improvement in the learning.
A presente pesquisa investigou as contribuições da utilização de atividades investigativas na exploração de padrões e regularidades em sequências numéricas e geométricas como elementos facilitadores da aprendizagem dos alunos de 5º série do Ensino Fundamental. Este trabalho foi realizado com uma turma de 5º série com 30 alunos da escola Estadual de Ensino Fundamental Marechal Rondon na periferia de Santa Maria R.S. Os dados da pesquisa, de cunho qualitativo, foram obtidos da ação direta do professor na sala de aula com os alunos por meio da observação e dos registros no seu diário de campo, além da análise dos trabalhos dos alunos e de suas apresentações ao grande grupo. Pode-se inferir que os objetivos propostos nas sessões como explorar o conceito de padrões, reconhecer, descrever padrões, continuar o desenho da sequência foram plenamente atingidos. Os objetivos de generalizar, explorar a noção e propriedade dos números pares, ímpares e múltiplos, bem como a potenciação de números naturais e trabalhar o conceito de área e perímetro de figuras planas, foram parcialmente atingidos. Dos resultados apresentados pelos alunos pode-se concluir que as atividades investigativas trabalhadas com os alunos de 5º série, propiciaram o aumento de interesse, a motivação na realização das atividades propostas em sala de aula e como consequência houve uma melhoria na aprendizagem.
Kaneko, Hajime. "LIMIT POINTS OF FRACTIONAL PARTS OF GEOMETRIC SEQUENCES." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120624.
Full textPalmacci, Matthew Stephen. "Escher's problem and numerical sequences." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-042706-133106/.
Full textLawver, Jordan D. "Robust Feature Tracking in Image Sequences Using View Geometric Constraints." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1365611706.
Full textAlsallami, Shami Ali M. "Discrete integrable systems and geometric numerical integration." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22291/.
Full textSan, Juan Camilo Andrés Méndez. "Texts, numerical sequences and patterns in my recent music." Thesis, Royal College of Music, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.691366.
Full textRadvar-Esfahlan, Hassan. "Fixtureless geometric inspection of nonrigid parts using "generalized numerical inspection fixture"." Mémoire, École de technologie supérieure, 2014. http://espace.etsmtl.ca/1294/1/RADVAR_ESFAHLAN_Hassan.pdf.
Full textFasi, Massimiliano. "Weighted geometric mean of large-scale matrices: numerical analysis and algorithms." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8274/.
Full textBooks on the topic "Geometric and numerical sequences"
Hairer, Ernst, Gerhard Wanner, and Christian Lubich. Geometric Numerical Integration. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05018-7.
Full textK, Agarwal Pankaj, ed. Davenport-Schinzel sequences and their geometric applications. Cambridge: Cambridge University Press, 1995.
Find full textBonnard, Bernard, Monique Chyba, and Jérémy Rouot. Geometric and Numerical Optimal Control. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94791-4.
Full textGeometric Numerical Integration and Schrödinger Equations. Zürich, Switzerland: European Mathematical Society, 2012.
Find full textLaumond, Jean-Paul, Nicolas Mansard, and Jean-Bernard Lasserre, eds. Geometric and Numerical Foundations of Movements. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51547-2.
Full textHasle, Geir, Knut-Andreas Lie, and Ewald Quak, eds. Geometric Modelling, Numerical Simulation, and Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68783-2.
Full textBorouchaki, Houman, and Paul Louis George. Meshing, Geometric Modeling and Numerical Simulation 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119384335.
Full textGeorge, Paul Louis, Houman Borouchaki, Frédéric Alauzet, Patrick Laug, Adrien Loseille, and Loïc Maréchal. Meshing, Geometric Modeling and Numerical Simulation 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119384380.
Full textWhitney, Hassler. Geometric integration theory. Mineola, N.Y: Dover Publications, 2005.
Find full textUdriște, Constantin. Geometric dynamics. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textBook chapters on the topic "Geometric and numerical sequences"
Loureiro-Ga, Marcos, Maria F. Garcia, Cesar Veiga, G. Fdez-Manin, Emilio Paredes, Victor Jimenez, Francisco Calvo-Iglesias, and Andrés Iñiguez. "An Aortic Root Geometric Model, Based on Transesophageal Echocardiographic Image Sequences (TEE), for Biomechanical Simulation." In Computational Mathematics, Numerical Analysis and Applications, 249–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49631-3_15.
Full textDavies, T. J. G., R. R. Martin, and A. Bowyer. "Computing Volume Properties Using Low-Discrepancy Sequences." In Geometric Modelling, 55–72. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6270-5_4.
Full textAn, Myoung, Andrzej K. Brodzik, and Richard Tolimieri. "Permutation Sequences." In Applied and Numerical Harmonic Analysis, 1–17. Boston: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4738-4_11.
Full textIserles, Arieh, and G. R. W. Quispel. "Why Geometric Numerical Integration?" In Discrete Mechanics, Geometric Integration and Lie–Butcher Series, 1–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01397-4_1.
Full textMoraglio, Alberto, Riccardo Poli, and Rolv Seehuus. "Geometric Crossover for Biological Sequences." In Lecture Notes in Computer Science, 121–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11729976_11.
Full textChan, Agnes Hui, Mark Goresky, and Andrew Klapper. "Correlation Functions of Geometric Sequences." In Advances in Cryptology — EUROCRYPT ’90, 214–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-46877-3_19.
Full textRabinowitz, Philip, Jaroslav Kautsky, Sylvan Elhay, and John C. Butcher. "On Sequences of Imbedded Integration Rules." In Numerical Integration, 113–39. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3889-2_13.
Full textRohwer, Carl. "Operators on Sequences." In International Series of Numerical Mathematics, 1–7. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7382-2_1.
Full textWinter, Steffen. "Geometric Measures for Fractals." In Applied and Numerical Harmonic Analysis, 73–89. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4888-6_6.
Full textKimmel, Ron. "Geometric Framework in Image Processing." In Numerical Geometry of Images, 141–62. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21637-9_10.
Full textConference papers on the topic "Geometric and numerical sequences"
Konca, Şükran, and Mahpeyker Öztürk. "Some topological and geometric properties of sequence spaces involving lacunary sequence in n-normed spaces." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756302.
Full textWang, Hua, and Jun Liu. "Study on the Effect of Clamping Sequence on Bulk Stress Redistribution of Long Edge." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50272.
Full textEvaristo, Jerónimo, Paula Catarino, Helena Campos, and Ana Paula Aires. "TEACHING NUMERICAL SEQUENCES FROM GEOMETRY IN THE 2ND CYCLE OF SECONDARY EDUCATION." In 14th International Technology, Education and Development Conference. IATED, 2020. http://dx.doi.org/10.21125/inted.2020.1052.
Full textPanta Pazos, Rube´n. "Behavior of a Sequence of Geometric Transformations for a Truncated Ellipsoid Geometry in Transport Theory." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75758.
Full textGou, J. B., Y. X. Chu, and Z. X. Li. "A Geometric Theory for Form, Profile and Orientation Tolerances: Evaluation Algorithms and Simulation Results." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/dfm-5744.
Full textYaghoubi, A. Seyed, and B. Liaw. "Determination of Ballistic Limits of GLARE 5 Fiber-Metal Laminates: The Influences of Geometry, Thickness and Stacking Sequence." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62139.
Full textPomier Ba´ez, L. E., J. E. Nun˜ez Mac Leod, and J. H. Baro´n. "Severe Accident Improvements for CAREM-25 to Arrest Reactor Vessel Meltdown Sequences." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22304.
Full textRui Ling, Yuanjun He, and Kairen Deng. "Automatic generation of geometric base sequences." In 2010 International Conference on Progress in Informatics and Computing (PIC). IEEE, 2010. http://dx.doi.org/10.1109/pic.2010.5687899.
Full textSharir, Micha, Richard Cole, Klara Kedem, Daniel Leven, Richard Pollack, and Shmuel Sifrony. "Geometric applications of Davenport-Schinzel sequences." In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 1986. http://dx.doi.org/10.1109/sfcs.1986.23.
Full textGu, Shengyin, Olivier Poch, Bernd Hamann, and Patrice Koehl. "A Geometric Representation of Protein Sequences." In 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007). IEEE, 2007. http://dx.doi.org/10.1109/bibm.2007.22.
Full text