Dissertations / Theses on the topic 'Geometric Greece'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Geometric Greece.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
De, Angelis Franco. "Boiotia in the geometric and archaic periods : population, settlement, and colonisation." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60000.
Full textMann, Kristen Patricia. "Household Behaviour and Settlement Organisation at Late Geometric Zagora." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20173.
Full textHASAKI, ELENI. "CERAMIC KILNS IN ANCIENT GREECE: TECHNOLOGY AND ORGANIZATION OF CERAMIC WORKSHOPS." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1023219003.
Full textMcClain, Nichola Sue. "A study in geometric construction." CSUSB ScholarWorks, 1998. https://scholarworks.lib.csusb.edu/etd-project/1811.
Full textLi, Shimin. "Geometric Algorithms for Intervals and Related Problems." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7035.
Full textKarakitsios, Vassilis. "Chronologie et geometrie de l'ouverture d'un bassin et de son inversion tectonique : le bassin ionien (epire, grece)." Paris 6, 1990. http://www.theses.fr/1990PA066755.
Full textCamelo, Botero Miguel Hernando. "A geometric routing scheme in word-metric spaces for data networks." Doctoral thesis, Universitat de Girona, 2014. http://hdl.handle.net/10803/283749.
Full textEste trabajo de investigación explora el uso de esquemas de Enrutamiento Geométrico Greedy (Greedy Geometric Routing o GGR) para resolver el problema de escalabilidad de los sistemas de encaminamiento de redes tipo Internet y de varias arquitecturas para Centros de Datos (Data Centers o DCs). Nosotros proponemos un nuevo y simple método de incrustación (embedding) de cualquier grafo finito y conectado en un espacio métrico de palabras (Word-Metric space), es decir, un espacio métrico generado por grupos algebraicos. Luego, construidos sobre esta incrustación, proponemos tres esquemas de GGR y derivamos los límites superiores teóricos de sus tablas de encaminamiento (Routing Table o RT), las etiquetas de los vértices y el stretch. El primer esquema trabaja sobre cualquier tipo de grafo y los otros dos son especializados para topologías tipo Internet y varias familias de arquitecturas de DCs
Duarte, Claudio Walter Gomez. "Geometria e aritmética na concepção dos templos dóricos gregos." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/71/71131/tde-25032010-101226/.
Full textThe Architectural conception of the Greek Doricos temples has been studied in the perspective of the Archaeology of the Architecture stricto sensu. We had verified the role and the relevance that the geometry and arithmetic applications such as the technical and methodology resources for the design development of the Greek Doric temple in V century B.C., in order to clarify and to establish links between mathematics branches and the underlying logic that had been guiding the architects, as much in projects as in the accuracy applications for the building constructions. In a way to approach the Greek architecture scientific fundamentals from the analysis of 10 hexastilos classic temples (canonic configuration of the Doric order) making a critical balance on the limit and the reach of the modern theories that had developed interpretation models for the design of the Greek Doric temple. We adopt as basic reference and starting point, the articles published for J.J. Coulton in middle of the seventy decade, in the periodic The Annual of the British School at Athens, and systematically go bringing up to date the debate supported in the most recent discussions.
GAUTIER, PIERRE. "Geometrie crustale et cinematique de l'extension tardi-orogenique dans le domaine centre-egeen (iles des cyclades et d'eubee, grece)." Rennes 1, 1994. http://www.theses.fr/1994REN10015.
Full textVergnaud, Baptiste. "Recherches sur les fortifications d'Anatolie occidentale et centrale au début du premier millénaire av. J.-C. (Xe-VIe s.)." Phd thesis, Université Michel de Montaigne - Bordeaux III, 2012. http://tel.archives-ouvertes.fr/tel-00802897.
Full textSilva, Davi José Martins e. "Um método espectronodal para problemas de autovalor na teoria de transporte de nêutrons segundo a formulação de ordenadas discretas e multigrupo de energia." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=9494.
Full textMichel, Benoît. "Invariants asymptotiques en géométrie conforme et géométrie CR." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20111/document.
Full textIn this thesis we study the use of some asymptotic invariants in conformal and CR geometry.The first chapter is devoted to conformal geometry. We compute an asymptotic expansion ofthe Green function of GJMS operators near the diagonal, for a normal conformal factorin the sense of Lee and Parker. We show that the constant term in this expansion is covariant through achange of normal conformal factor. We relate it to an invariant at infinity of the type of the ADM massof a non-compact metric obtained by some kind of stereographic projection.In the second chapter we study CR geometry. We compute the first terms of the asymptotic expansion of the Greenfunction of the Yamabe-CR operator near its singularity, when the Yamabe-CR constant is positive, in the CR-sphericalcase, and in dimension 3 in a CR-normal chart in the sense of Jerison and Lee.We show the pseudo-conformal covariance of the constant term in this asymptotic expansion through a change of spherical chart andof CR-normal chart respectively.In the third chapter we give a formal explanation to an algebraic cancellationon which the defintion of some invariants at infinity such as the ADM mass relies
Karis, Tomas. "Track Irregularities for High-Speed Trains : Evaluation of their correlation with vehicle response." Thesis, KTH, Järnvägsteknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156640.
Full textFreitas, Juliana Martins de [UNESP]. "Os três problemas clássicos da Matemática grega." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/122209.
Full textOs séculos V e IV a.C. constituíram um período extremamente ativo da matemática no mundo grego. Aproximadamente neste período, têm início o estudo dos três problemas clássicos da matemática grega, os quais iremos abordar como tema principal. Esses problemas ficaram conhecidos como duplicação do cubo, trissecção do ângulo e quadratura do círculo. Aparentemente de enunciados simples, são problemas geométricos que envolvem construções utilizando unicamente régua não graduada e compasso. O estudo destes três problemas geométricos desafiaram o poder inventivo de inúmeros matemáticos e intelectuais durante mais de dois mil anos, e somente no século XIX demonstrou-se a impossibilidade dessas construções utilizando-se apenas régua não graduada e compasso. Em suma, a concepção fundamental que este trabalho tem a proporcionar é que a magia da Matemática não se restringe apenas nas respostas dos problemas, antigos ou atuais, mas nas novas descobertas, estratégias e métodos empregados advindos dos caminhos que conduzem às resoluções. O objetivo deste trabalho é apresentar estes três problemas, a impossibilidade da resolução dos mesmos utilizando-se apenas régua não graduada e compasso, resoluções possíveis utilizando-se outros instrumentos e uma aplicação da duplicação do cubo em sala de aula, utilizando origami
The fifth and fourth centuries BC were an extremely active period of mathematics in the Greek world. About this period, begin the study of three classical problems of Greek mathematics, which we will address as the main theme. These problems were known as duplicating the cube, trisection of the angle and squaring the circle. Apparently simple statements are geometric problems involving constructions using only not graduate ruler and compass. The study of these three geometric problems challenged the inventive power of numerous mathematicians and intellectuals for over two thousand years, and only in the nineteenth century demonstrated the impossibility of such constructions using only not graduate ruler and compass. In short, the fundamental conception that this work has to provide is the magic of mathematics is not only restricted in the responses of former and current problems, but the new findings, strategies and methods employed arising out of the paths that lead to resolutions. The objective of this paper is to present these three problems, the impossibility of solving them using only not graduated ruler and compass, possible resolutions using other instruments and an application of the doubling cube in the classroom, using origami
Freitas, Juliana Martins de. "Os três problemas clássicos da Matemática grega /." São José do Rio Preto, 2014. http://hdl.handle.net/11449/122209.
Full textBanca: Marcio de Jesus Soares
Banca: Antonio Aparecido de Andrade
Resumo: Os séculos V e IV a.C. constituíram um período extremamente ativo da matemática no mundo grego. Aproximadamente neste período, têm início o estudo dos três problemas clássicos da matemática grega, os quais iremos abordar como tema principal. Esses problemas ficaram conhecidos como duplicação do cubo, trissecção do ângulo e quadratura do círculo. Aparentemente de enunciados simples, são problemas geométricos que envolvem construções utilizando unicamente régua não graduada e compasso. O estudo destes três problemas geométricos desafiaram o poder inventivo de inúmeros matemáticos e intelectuais durante mais de dois mil anos, e somente no século XIX demonstrou-se a impossibilidade dessas construções utilizando-se apenas régua não graduada e compasso. Em suma, a concepção fundamental que este trabalho tem a proporcionar é que a magia da Matemática não se restringe apenas nas respostas dos problemas, antigos ou atuais, mas nas novas descobertas, estratégias e métodos empregados advindos dos caminhos que conduzem às resoluções. O objetivo deste trabalho é apresentar estes três problemas, a impossibilidade da resolução dos mesmos utilizando-se apenas régua não graduada e compasso, resoluções possíveis utilizando-se outros instrumentos e uma aplicação da duplicação do cubo em sala de aula, utilizando origami
Abstract: The fifth and fourth centuries BC were an extremely active period of mathematics in the Greek world. About this period, begin the study of three classical problems of Greek mathematics, which we will address as the main theme. These problems were known as duplicating the cube, trisection of the angle and squaring the circle. Apparently simple statements are geometric problems involving constructions using only not graduate ruler and compass. The study of these three geometric problems challenged the inventive power of numerous mathematicians and intellectuals for over two thousand years, and only in the nineteenth century demonstrated the impossibility of such constructions using only not graduate ruler and compass. In short, the fundamental conception that this work has to provide is the magic of mathematics is not only restricted in the responses of former and current problems, but the new findings, strategies and methods employed arising out of the paths that lead to resolutions. The objective of this paper is to present these three problems, the impossibility of solving them using only not graduated ruler and compass, possible resolutions using other instruments and an application of the doubling cube in the classroom, using origami
Mestre
Pedotti, Guy. "Etude sismotectonique du Péloponnèse et réponse sismique d'une vallée sédimentaire en Grèce du Nord." Phd thesis, Grenoble 1, 1988. http://tel.archives-ouvertes.fr/tel-00719640.
Full textKirberger, Michael Patrick. "Analyses and Applications of Metalloprotein Complexes." Digital Archive @ GSU, 2008. http://digitalarchive.gsu.edu/chemistry_theses/14.
Full textSilva, Junior José Luiz Ferreira da. "Efeito Kondo e magnetismo em uma rede Kagome." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/53142.
Full textIn this work we study the Kondo Lattice model for the kagome lattice, in order to understand better the effects of geometrical frustration in heavy-fermion systems. In this context, we consider a mean field scheme valid for all the system’s phases. Firstly, we analyzed the nonmagnetic case. In this approximation the electron energies and spectral functions are reachable, then we use the density of states to calculate the occupations selfconsistently. Our results are qualitatively compared with previous works in other geometries. In the second part we introduce an approximation for magnestism, which takes into account the mean field scheme considered and the presence of geometrical frustration. Self-consistent calculations are done through the frequencies summation method. Our results show that the magnetism is supressed when the temperature is increased or the band filling deviates from half-filling. Besides, the coexistence of magnetic order and Kondo effect is not observable.
Javan, Peykar Ariyan. "Explicit polynomial bounds for Arakelov invariants of Belyi curves." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112075/document.
Full textWe explicitly bound the Faltings height of a curve over the field of algebraic numbers in terms of the Belyi degree. Similar bounds are proven for three other Arakelov invariants: the discriminant, Faltings' delta invariant and the self-intersection of the dualizing sheaf. Our results allow us to explicitly bound these Arakelov invariants for modular curves, Hurwitz curves and Fermat curves. Moreover, as an application, we show that the Couveignes-Edixhoven-Bruin algorithmtime under the Riemann hypothesis for zeta-functions of number fields. This was known before only for certain congruence subgroups. Finally, we utilize our results to prove a conjecture of Edixhoven, de Jong and Schepers on the Faltings height of a branched cover of the projective line over the ring of integers
"Poincare Embeddings for Visualizing Eigenvector Centrality." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.62689.
Full textDissertation/Thesis
Masters Thesis Computer Science 2020
Bentz-Moffet, Rosalie. "Analyse spectrale de différents types de tambours : le tambour circulaire, le tabla et la timbale." Thèse, 2019. http://hdl.handle.net/1866/23793.
Full textThis thesis deals with the harmonicity of musical instruments through spectral geometry. First, we present the known results concerning the guitar string, the circular drum and the tabla ; the first is harmonic, the second is not, and the last is somewhere in between. The case of the timpani constitutes the major part of our work. The physicist-engineer Robert E. Davis had already studied its quasi-harmonicity and here we undergo a mathematical proofreading of his approach. By combining analytical and numerical methods, we show that the sound box of the timpani allows an adjustement of the vibration frequencies of the form ω_(i1) , with 1 ≤ i ≤ 5, so that they get close to the ideal 2 : 3 : 4 : 5 : 6 ratio, while it also stifles some other dissonant modes. To do so, we develop a simplified model of a cylindrical timpani based on physics and on what Davis suggests in his thesis. This model provides a system of equations divided into three parts : the vibration of the skin and the pressure inside and outside the timpani. We use the method of Green’s functions to find the expressions of the pressures. We use these together with a modified Fourier-Bessel series development to solve the equations of the vibration of the skin. In the end, the solving of these equations is reduced to an infinite matrix system that we analyze numerically. Using Mathematica and this matrix system, we find the vibrational frequencies of the timpani, which allows us to analyze the harmonicity of the instrument. Thanks to a measure of dissonance, we optimize the harmonicity of different timpani models with different cylinder radii, heights and tensions.