To see the other types of publications on this topic, follow the link: Geometric Greece.

Dissertations / Theses on the topic 'Geometric Greece'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 21 dissertations / theses for your research on the topic 'Geometric Greece.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

De, Angelis Franco. "Boiotia in the geometric and archaic periods : population, settlement, and colonisation." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60000.

Full text
Abstract:
This study examines Boiotia in the Geometric and Archaic periods (ca. 1050-500 BC), concentrating on three aspects in particular, namely population, settlement, and colonisation. A brief chapter introduces the reader to Boiotia, the setting, which gives the relevant background to later developments. In chapter II, it is argued that Boiotia participated rather extensively in emigration during the Dark Age, leaving the homeland, with the exception of a few refuge settlements, somewhat denuded of its previous population. The following chapter not only builds on this latter point archaeologically but also looks at the development of settlement, focusing primarily on the fact that settlement, and presumably population, grew steadily in Boiotia until well into the Classical period. The final chapter is divided into two parts; it first examines the secure cases of Boiotian colonisation and then the doubtful or possible instances. After considering possible socio-political factors, the discussion is taken in another direction. The search for metals is suggested, and the study ends with a plea for a systematic study of whether land-shortage was really as paramount a cause of Greek colonisation as presently believed.
APA, Harvard, Vancouver, ISO, and other styles
2

Mann, Kristen Patricia. "Household Behaviour and Settlement Organisation at Late Geometric Zagora." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20173.

Full text
Abstract:
This thesis investigates past household behaviour and social dynamics using material excavated at the Early Iron Age (EIA) site of Zagora on Andros. Through a rigorous contextual study of domestic evidence, it addresses persistent scholarly statements about the settlement’s social organisation founded on assumptions drawn from later historical periods or superficial readings of the site plan. Specifically, it challenges discussion of Zagora as a formally planned settlement and the politicised contrast frequently made between the larger central-plateau houses and smaller-roomed houses elsewhere on site. By contextualising the excavated data in terms of the many processes that shaped it, this research also challenges shallow attempts to read gender into houses at LGII Zagora. Instead, it is argued that the settlement’s development was the cumulative consequence of household decisions, variously shaped by multivalent social, economic, and practical considerations. Building histories suggest ongoing spatial negotiation between households at the site, with evidence that earlier additive ambilocal residency patterns became increasingly difficult to sustain due to escalating spatial pressure. As a result, the final generations to inhabit the site developed more creative approaches to spatial modifications and behavioural patterning. Contrary to earlier studies that rely on room size as a measure of status, there is little evidence for the overt material manifestation of pronounced social inequality. Emphasised is the need to develop multi-layered, material understandings of people and their houses, before attempting to extrapolate socio-political inferences from settlement data. We must explicitly engage with lived experience, household spatiality, and deposition processes if we wish to convincingly interpret domestic archaeological evidence. This study emphasises the dynamic nature of households, alongside the considerable variability inherent to household spatiality and practices. Central is the importance of context to interpreting archaeological data: whether the original behavioural context, stratigraphic context, or research context. The result is a frank and reflexive consideration of how archaeological methods and practices can shape the data from which we infer past behaviour.
APA, Harvard, Vancouver, ISO, and other styles
3

HASAKI, ELENI. "CERAMIC KILNS IN ANCIENT GREECE: TECHNOLOGY AND ORGANIZATION OF CERAMIC WORKSHOPS." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1023219003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McClain, Nichola Sue. "A study in geometric construction." CSUSB ScholarWorks, 1998. https://scholarworks.lib.csusb.edu/etd-project/1811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Shimin. "Geometric Algorithms for Intervals and Related Problems." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7035.

Full text
Abstract:
In this dissertation, we study several problems related to intervals and develop efficient algorithms for them. Interval problems have many applications in reality because many objects, values, and ranges are intervals in nature, such as time intervals, distances, line segments, probabilities, etc. Problems on intervals are gaining attention also because intervals are among the most basic geometric objects, and for the same reason, computational geometry techniques find useful for attacking these problems. Specifically, the problems we study in this dissertation includes the following: balanced splitting on weighted intervals, minimizing the movements of spreading points, dispersing points on intervals, multiple barrier coverage, and separating overlapped intervals on a line. We develop efficient algorithms for these problems and our results are either first known solutions or improve the previous work. In the problem of balanced splitting on weighted intervals, we are given a set of n intervals with non-negative weights on a line and an integer k ≥ 1. The goal is to find k points to partition the line into k + 1 segments, such that the maximum sum of the interval weights in these segments is minimized. We give an algorithm that solves the problem in O(n log n) time. Our second problem is on minimizing the movements of spreading points. In this problem, we are given a set of points on a line and we want to spread the points on the line so that the minimum pairwise distance of all points is no smaller than a given value δ. The objective is to minimize the maximum moving distance of all points. We solve the problem in O(n) time. We also solve the cycle version of the problem in linear time. For the third problem, we are given a set of n non-overlapping intervals on a line and we want to place a point on each interval so that the minimum pairwise distance of all points are maximized. We present an O(n) time algorithm for the problem. We also solve its cycle version in O(n) time. The fourth problem is on multiple barrier coverage, where we are given n sensors in the plane and m barriers (represented by intervals) on a line. The goal is to move the sensors onto the line to cover all the barriers such that the maximum moving distance of all sensors is minimized. Our algorithm for the problem runs in O(n2 log n log log n + nm log m) time. In a special case where the sensors are all initially on the line, our algorithm runs in O((n + m) log(n + m)) time. Finally, for the problem of separating overlapped intervals, we have a set of n intervals (possibly overlapped) on a line and we want to move them along the line so that no two intervals properly intersect. The objective is to minimize the maximum moving distance of all intervals. We propose an O(n log n) time algorithm for the problem. The algorithms and techniques developed in this dissertation are quite basic and fundamental, so they might be useful for solving other related problems on intervals as well.
APA, Harvard, Vancouver, ISO, and other styles
6

Karakitsios, Vassilis. "Chronologie et geometrie de l'ouverture d'un bassin et de son inversion tectonique : le bassin ionien (epire, grece)." Paris 6, 1990. http://www.theses.fr/1990PA066755.

Full text
Abstract:
Avant le lias moyen, le domaine ionien faisait partie d'une vaste plate-forme carbonatee et neritique occupant toute la grece occidentale. Au carixian la plate-forme se disloque et s'approfondit dans tout le domaine ionien (calcaires de louros et leur equivalent lateral, les calcaires de siniais). Ces deux facies correspondent aux premiers sediments syn-rift. Le bassin initial se separe en petites unites paleogeographiques (sur chaque bloc bascule). Sur ces unites se sont deposees les formations du lias superieur-malm de telle sorte que les successions continues et epaisses correspondent dans les domaines effondres, tandis que les successions reduites avec discordances et lacunes de sedimentation dans les domaines eleves des blocs. La direction des evenements synsedimentaires de la base des formations du lias superieur-malm est parallele a celle du biseau stratigraphique des prismes de depot formes par les memes formations. Les calcaires de vigia (tithonique-senonien moyen) representent le debut de la serie post-rift. La double vergence de la structure ionienne correspondrait a la reprise en chevauchement des failles listriques du jurassique. La zone ionienne constitue un bon exemple d'inversion tectonique d'un bassin
APA, Harvard, Vancouver, ISO, and other styles
7

Camelo, Botero Miguel Hernando. "A geometric routing scheme in word-metric spaces for data networks." Doctoral thesis, Universitat de Girona, 2014. http://hdl.handle.net/10803/283749.

Full text
Abstract:
This research work explores the use of the Greedy Geometric Routing (GGR) schemes to solve the scalability problem of the routing systems in Internet-like networks and several families of Data Center architectures. We propose a novel and simple embedding of any connected finite graph into a Word-Metric space, i.e., a metric space generated by algebraic groups. Then, built on top of this greedy embedding, we propose three GGR schemes and we prove the theoretical upper bounds of the Routing Table size, vertex label size and stretch. The first scheme works for any kind of graph and the other two are specialized for Internet-like and several families of DC topologies
Este trabajo de investigación explora el uso de esquemas de Enrutamiento Geométrico Greedy (Greedy Geometric Routing o GGR) para resolver el problema de escalabilidad de los sistemas de encaminamiento de redes tipo Internet y de varias arquitecturas para Centros de Datos (Data Centers o DCs). Nosotros proponemos un nuevo y simple método de incrustación (embedding) de cualquier grafo finito y conectado en un espacio métrico de palabras (Word-Metric space), es decir, un espacio métrico generado por grupos algebraicos. Luego, construidos sobre esta incrustación, proponemos tres esquemas de GGR y derivamos los límites superiores teóricos de sus tablas de encaminamiento (Routing Table o RT), las etiquetas de los vértices y el stretch. El primer esquema trabaja sobre cualquier tipo de grafo y los otros dos son especializados para topologías tipo Internet y varias familias de arquitecturas de DCs
APA, Harvard, Vancouver, ISO, and other styles
8

Duarte, Claudio Walter Gomez. "Geometria e aritmética na concepção dos templos dóricos gregos." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/71/71131/tde-25032010-101226/.

Full text
Abstract:
A concepção arquitetônica dos templos dóricos gregos é estudada na perspectiva da Arqueologia da Arquitetura stricto sensu. Verificamos a relevância e o papel que teve a aplicação da geometria e da aritmética como recursos técnicos e metodológicos para o desenvolvimento do projeto do templo dórico grego no século V a.C., visando esclarecer e estabelecer vínculos entre tais ramos da matemática e a lógica subjacente que norteou os arquitetos, tanto em projeto como nas aplicações precisas em obra. Para isso, abordarmos os fundamentos científicos da arquitetura grega a partir da análise de 10 templos clássicos hexastilos (configuração canônica da ordem dórica) fazendo um balanço crítico sobre o alcance e o limite das teorias modernas que desenvolveram modelos de interpretação para o projeto do templo dórico grego. Adotamos como ponto de partida, e referência fundamental, os artigos publicados por J. J. Coulton em meados da década de setenta, no periódico The Annual of the British School at Athens, e vamos sistemáticamente atualizando o debate apoiado nas discussões mais recentes.
The Architectural conception of the Greek Doricos temples has been studied in the perspective of the Archaeology of the Architecture stricto sensu. We had verified the role and the relevance that the geometry and arithmetic applications such as the technical and methodology resources for the design development of the Greek Doric temple in V century B.C., in order to clarify and to establish links between mathematics branches and the underlying logic that had been guiding the architects, as much in projects as in the accuracy applications for the building constructions. In a way to approach the Greek architecture scientific fundamentals from the analysis of 10 hexastilos classic temples (canonic configuration of the Doric order) making a critical balance on the limit and the reach of the modern theories that had developed interpretation models for the design of the Greek Doric temple. We adopt as basic reference and starting point, the articles published for J.J. Coulton in middle of the seventy decade, in the periodic The Annual of the British School at Athens, and systematically go bringing up to date the debate supported in the most recent discussions.
APA, Harvard, Vancouver, ISO, and other styles
9

GAUTIER, PIERRE. "Geometrie crustale et cinematique de l'extension tardi-orogenique dans le domaine centre-egeen (iles des cyclades et d'eubee, grece)." Rennes 1, 1994. http://www.theses.fr/1994REN10015.

Full text
Abstract:
Diverses etudes de la deformation fragile ont montre que le domaine continental egeen (grece) est largement affecte par une extension de type arriere-arc depuis au moins 13 ma, se superposant aux structures de l'orogenese hellenique mesozoique-cenozoique. Le but de ce travail est de determiner si la deformation ductile observee dans certaines unites a metamorphisme hp/bt de la region resulte non pas d'une tectonique compressive, comme classiquement admis, mais d'une tectonique extensive, et de preciser la cinematique et le contexte geodynamique de cette extension. Notre etude a consiste en une analyse structurale du centre de l'egee (iles des cyclades et d'eubee). L'extension apparait responsable de la plus grande partie de la deformation au sein des unites hp ayant largement subi les effets d'un second episode metamorphique dans le facies schiste vert ou de plus haute temperature. Sur chaque ile etudiee, on observe la superposition de structures liees au developpement d'une zone de detachement extensive majeure se prolongeant jusqu'a environ 18-25 km de profondeur. Un deplacement important le long de la zone de detachement rend compte du refroidissement et de l'exhumation rapides de la croute inferieure ductile, qui vient former localement un dome metamorphique, ou metamorphic core complex. Au moins deux probablement trois zones de detachement majeures sont identifiees a l'echelle du domaine centre-egeen, subparalleles et inclinees initialement de 30-45 vers le nord. Les donnees structurales sont en faveur d'un modele cinematique caracterise par le developpement en serie de zones de detachement synthetiques, dans une direction opposee a la pente des detachements. L'extension par detachements est precoce (age minimal: 22-19 ma) et liee a un contexte arriere-arc tardi-orogenique. Le contexte geodynamique permettant l'initiation de cette extension est probablement le developpement de l'arc de subduction sud-hellenique tel qu'il existe encore actuellement
APA, Harvard, Vancouver, ISO, and other styles
10

Vergnaud, Baptiste. "Recherches sur les fortifications d'Anatolie occidentale et centrale au début du premier millénaire av. J.-C. (Xe-VIe s.)." Phd thesis, Université Michel de Montaigne - Bordeaux III, 2012. http://tel.archives-ouvertes.fr/tel-00802897.

Full text
Abstract:
La présente thèse vise à apporter des éclaircissements sur la réapparition du souci défensif, sa matérialisation et son évolution en Anatolie occidentale et centrale au début du premier millénaire av. J.-C. (Xe-VIe s.). Le territoire soumis à l'examen comprend la Phrygie, la boucle de l'Halys, la Carie, la Lydie, l'Ionie, l'Eolide et la Troade. Cette étude s'intéresse en premier lieu aux différentes méthodes de fortification utilisées au cours de cette période. Par l'examen des principales caractéristiques architecturales des murs de défense (techniques de construction, dispositifs défensifs), cette étude cherche à déterminer de quelle manière ces nouvelles constructions s'inscrivent dans la tradition architecturale anatolienne et dans quelle mesure leurs concepteurs contribuèrent à l'évolution de celle-ci en adoptant et en transformant les méthodes de fortification qui en sont issues. La construction d'un rempart, parce qu'elle impliquait de nombreux acteurs, était un fait de société majeur. Par leur conception, les techniques utilisées pour leur construction, leur emprise dans le paysage, les murailles sont des monuments chargés de symboles et des témoins privilégiés de l'histoire des sociétés qui les ont construites et perfectionnées. Au-delà des considérations archéologiques, cette étude s'attache donc aussi à replacer la construction de fortifications dans le contexte militaire mouvementé de l'Anatolie préclassique et tente également d'évaluer l'impact d'un tel projet de construction dans l'histoire politique et sociale des populations anatoliennes de l'âge du fer.
APA, Harvard, Vancouver, ISO, and other styles
11

Silva, Davi José Martins e. "Um método espectronodal para problemas de autovalor na teoria de transporte de nêutrons segundo a formulação de ordenadas discretas e multigrupo de energia." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=9494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Michel, Benoît. "Invariants asymptotiques en géométrie conforme et géométrie CR." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20111/document.

Full text
Abstract:
Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géométrie CR.La première partie est consacrée à la géométrie conforme. Nous calculons les premiers termes du développement asymptotique de la fonction de Green des opérateurs GJMS au voisinage de la diagonale, pour un facteur conforme normal au sens de Lee et Parker. Nous montrons que le terme constant de ce développement est covariant sous un changement de facteur conforme normal. Nous le rattachons à un invariant à l'infini de type masse ADM d'une métrique non compacte obtenue par projection stéréographique.La deuxième partie est consacrée à la géométrie CR. Nous calculons les premiers termes du développement asymptotique de la fonction de Green de l'opérateur de Yamabe CR au voisinage de sa singularité,dans le cas CR sphérique, et en dimension 3 dans une carte CR-normale au sens de Jerison et Lee, lorsque la constante de Yamabe-CR est strictement positive. Nous montrons la covariance pseudo-conforme du terme constant sous les changements de cartes respectivement CR-sphériques et CR-normales.La troisième partie donne une explication formelle à une annulation algébrique sur laquelle repose la définition de plusieurs invariants à l'infini de type masse ADM, qui n'avait pu jusqu'à présent qu'être constatée par un calcul direct
In this thesis we study the use of some asymptotic invariants in conformal and CR geometry.The first chapter is devoted to conformal geometry. We compute an asymptotic expansion ofthe Green function of GJMS operators near the diagonal, for a normal conformal factorin the sense of Lee and Parker. We show that the constant term in this expansion is covariant through achange of normal conformal factor. We relate it to an invariant at infinity of the type of the ADM massof a non-compact metric obtained by some kind of stereographic projection.In the second chapter we study CR geometry. We compute the first terms of the asymptotic expansion of the Greenfunction of the Yamabe-CR operator near its singularity, when the Yamabe-CR constant is positive, in the CR-sphericalcase, and in dimension 3 in a CR-normal chart in the sense of Jerison and Lee.We show the pseudo-conformal covariance of the constant term in this asymptotic expansion through a change of spherical chart andof CR-normal chart respectively.In the third chapter we give a formal explanation to an algebraic cancellationon which the defintion of some invariants at infinity such as the ADM mass relies
APA, Harvard, Vancouver, ISO, and other styles
13

Karis, Tomas. "Track Irregularities for High-Speed Trains : Evaluation of their correlation with vehicle response." Thesis, KTH, Järnvägsteknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Freitas, Juliana Martins de [UNESP]. "Os três problemas clássicos da Matemática grega." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/122209.

Full text
Abstract:
Made available in DSpace on 2015-04-09T12:28:28Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-09-22Bitstream added on 2015-04-09T12:47:22Z : No. of bitstreams: 1 000809291.pdf: 454961 bytes, checksum: 3231045e46f133324a8aaaf81e96ab6f (MD5)
Os séculos V e IV a.C. constituíram um período extremamente ativo da matemática no mundo grego. Aproximadamente neste período, têm início o estudo dos três problemas clássicos da matemática grega, os quais iremos abordar como tema principal. Esses problemas ficaram conhecidos como duplicação do cubo, trissecção do ângulo e quadratura do círculo. Aparentemente de enunciados simples, são problemas geométricos que envolvem construções utilizando unicamente régua não graduada e compasso. O estudo destes três problemas geométricos desafiaram o poder inventivo de inúmeros matemáticos e intelectuais durante mais de dois mil anos, e somente no século XIX demonstrou-se a impossibilidade dessas construções utilizando-se apenas régua não graduada e compasso. Em suma, a concepção fundamental que este trabalho tem a proporcionar é que a magia da Matemática não se restringe apenas nas respostas dos problemas, antigos ou atuais, mas nas novas descobertas, estratégias e métodos empregados advindos dos caminhos que conduzem às resoluções. O objetivo deste trabalho é apresentar estes três problemas, a impossibilidade da resolução dos mesmos utilizando-se apenas régua não graduada e compasso, resoluções possíveis utilizando-se outros instrumentos e uma aplicação da duplicação do cubo em sala de aula, utilizando origami
The fifth and fourth centuries BC were an extremely active period of mathematics in the Greek world. About this period, begin the study of three classical problems of Greek mathematics, which we will address as the main theme. These problems were known as duplicating the cube, trisection of the angle and squaring the circle. Apparently simple statements are geometric problems involving constructions using only not graduate ruler and compass. The study of these three geometric problems challenged the inventive power of numerous mathematicians and intellectuals for over two thousand years, and only in the nineteenth century demonstrated the impossibility of such constructions using only not graduate ruler and compass. In short, the fundamental conception that this work has to provide is the magic of mathematics is not only restricted in the responses of former and current problems, but the new findings, strategies and methods employed arising out of the paths that lead to resolutions. The objective of this paper is to present these three problems, the impossibility of solving them using only not graduated ruler and compass, possible resolutions using other instruments and an application of the doubling cube in the classroom, using origami
APA, Harvard, Vancouver, ISO, and other styles
15

Freitas, Juliana Martins de. "Os três problemas clássicos da Matemática grega /." São José do Rio Preto, 2014. http://hdl.handle.net/11449/122209.

Full text
Abstract:
Orientador: Clotilzio Moreira dos Santos
Banca: Marcio de Jesus Soares
Banca: Antonio Aparecido de Andrade
Resumo: Os séculos V e IV a.C. constituíram um período extremamente ativo da matemática no mundo grego. Aproximadamente neste período, têm início o estudo dos três problemas clássicos da matemática grega, os quais iremos abordar como tema principal. Esses problemas ficaram conhecidos como duplicação do cubo, trissecção do ângulo e quadratura do círculo. Aparentemente de enunciados simples, são problemas geométricos que envolvem construções utilizando unicamente régua não graduada e compasso. O estudo destes três problemas geométricos desafiaram o poder inventivo de inúmeros matemáticos e intelectuais durante mais de dois mil anos, e somente no século XIX demonstrou-se a impossibilidade dessas construções utilizando-se apenas régua não graduada e compasso. Em suma, a concepção fundamental que este trabalho tem a proporcionar é que a magia da Matemática não se restringe apenas nas respostas dos problemas, antigos ou atuais, mas nas novas descobertas, estratégias e métodos empregados advindos dos caminhos que conduzem às resoluções. O objetivo deste trabalho é apresentar estes três problemas, a impossibilidade da resolução dos mesmos utilizando-se apenas régua não graduada e compasso, resoluções possíveis utilizando-se outros instrumentos e uma aplicação da duplicação do cubo em sala de aula, utilizando origami
Abstract: The fifth and fourth centuries BC were an extremely active period of mathematics in the Greek world. About this period, begin the study of three classical problems of Greek mathematics, which we will address as the main theme. These problems were known as duplicating the cube, trisection of the angle and squaring the circle. Apparently simple statements are geometric problems involving constructions using only not graduate ruler and compass. The study of these three geometric problems challenged the inventive power of numerous mathematicians and intellectuals for over two thousand years, and only in the nineteenth century demonstrated the impossibility of such constructions using only not graduate ruler and compass. In short, the fundamental conception that this work has to provide is the magic of mathematics is not only restricted in the responses of former and current problems, but the new findings, strategies and methods employed arising out of the paths that lead to resolutions. The objective of this paper is to present these three problems, the impossibility of solving them using only not graduated ruler and compass, possible resolutions using other instruments and an application of the doubling cube in the classroom, using origami
Mestre
APA, Harvard, Vancouver, ISO, and other styles
16

Pedotti, Guy. "Etude sismotectonique du Péloponnèse et réponse sismique d'une vallée sédimentaire en Grèce du Nord." Phd thesis, Grenoble 1, 1988. http://tel.archives-ouvertes.fr/tel-00719640.

Full text
Abstract:
Partie 1 : Etude sismotectonique du Péloponnèse. Durant l'été 1986 nous avons installé un réseau sismologique de 46 stations couvrant l'ensemble du Péloponèse. Sur plus de 1000 séismes, 750 sont localisés à 10 km près et 480 le sont à 5 km près, 100 solutions focales ont été déterminées. La sismicité enregistrée est essentiellement crustale (95%). La croûte inférieure apparait comme une zone sismique à l'ouest et devient sismique à l'est. Les mécanismes au foyer indiquent un champ de contrainte compressiif orienté E-W dans la bordure occidentale. Immédiatement à l'est de cette zone, le régime devient extensif, d'orientation N-S au nord puis NW-SE à E-W dans !e sud et le sud-.ouest du Péloponnèse. La, sismicité intermédiaire définit la géométrie de ia subduction de la plaque Afrique sous le Péloponnèse. Le plongement est orienté NE-SW scion un pendage de 10°, à 200 km des fosses ce pendage s'accentue brusquement (45 ° ). Les mécanismes au foyer montrent une tectonique extensive orientée NE-SW, avec un pendage identique à celui de la plaque plongeante. 2* partie: Réponse sismique d'une vallée sédimentaire. Durant deux semaines , en mai 1985, cinq stations sismologiques ont été installées à travers une vallée située à 50 km de Thessalonique ( Grèce) . Les stations étaient placées sur les sédiments et sur les bords rocheux de la vallée. A partir de séismes locaux et régionaux, nous avons calculé les rapports des spectres de Fourier obtenus aux différents sites. Pour les sites sédimentaires, les rapports montrent des .amplifications maximales de 8, pour un site rocheux elles atteignent 6. Les amplifications observées sont maximales lors de séismes locaux.Nous interprétons ces effets en fonction du contexte géologique local.
APA, Harvard, Vancouver, ISO, and other styles
17

Kirberger, Michael Patrick. "Analyses and Applications of Metalloprotein Complexes." Digital Archive @ GSU, 2008. http://digitalarchive.gsu.edu/chemistry_theses/14.

Full text
Abstract:
The structural characteristics associated with the binding of beneficial metals (i.e. - Mg2+, Zn2+ and Ca2+) to natural proteins has typically received more attention than competitive binding by toxic metals (e.g. – Pb2+, Hg2+, Cd2+, La3+, etc.). In this thesis, a statistical analysis of Pb2+-binding in crystallized protein structures indicates that Pb2+ does not bind preferentially with nitrogen, as generally assumed, but binds predominantly with oxygen, and to a lesser degree, sulfur. A comparison of Ca2+ and Pb2+ indicates that Pb2+ binds with a wider range of coordination numbers, with less formal change, and with less defined structure than Ca2+. The Pb2+ ion also appears to displace Ca2+ with little conformational stress in calcium binding proteins (CaBP’s). Experimental data from the binding of metals with engineered fluorescent proteins indicate that both Pb2+ and Gd3+ will occupy grafted calcium-binding sites with greater affinity than Ca2+, and strong evidence is presented to support the hypothesis that Pb2+ and Gd3+ will bind non-specifically on the protein surface. These results suggest that toxicity is associated with two binding mechanisms: displacement of the metal cofactor which disrupts protein function, and non-specific binding which maintains higher solubility of the metal.
APA, Harvard, Vancouver, ISO, and other styles
18

Silva, Junior José Luiz Ferreira da. "Efeito Kondo e magnetismo em uma rede Kagome." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/53142.

Full text
Abstract:
Neste trabalho estudamos o modelo da rede de Kondo em uma rede kagome, buscando uma maior compreensão dos efeitos da frustração geométrica em sistemas de férmions pesados. Para tanto, fizemos uma aproximação de campo médio no hamiltoniano do sistema que serve para todas as fases do sistema. Analisamos inicialmente o caso não magnético. Obtemos neste limite as energias eletrônicas e as funções de Green necessárias ao cálculo numérico autoconsistente das ocupações e do parâmetro de Kondo. Os resultados encontrados estão em concordância qualitativa com trabalhos publicados em outras geometrias. A seguir analisamos o caso magnético, onde introduzimos uma aproximação suplementar, a qual é compatível com a de campo médio já considerada e, em princípio, existente apenas em sistemas com frustração geométrica. Realizamos cálculos autoconsistentes através de somas sobre as frequências de Matsubara. Os resultados mostram que não há coexistência entre ordem magnética e efeito Kondo, além de haver a supressão do antiferromagnetismo com o aumento de temperatura e variações no preenchimento de bandas.
In this work we study the Kondo Lattice model for the kagome lattice, in order to understand better the effects of geometrical frustration in heavy-fermion systems. In this context, we consider a mean field scheme valid for all the system’s phases. Firstly, we analyzed the nonmagnetic case. In this approximation the electron energies and spectral functions are reachable, then we use the density of states to calculate the occupations selfconsistently. Our results are qualitatively compared with previous works in other geometries. In the second part we introduce an approximation for magnestism, which takes into account the mean field scheme considered and the presence of geometrical frustration. Self-consistent calculations are done through the frequencies summation method. Our results show that the magnetism is supressed when the temperature is increased or the band filling deviates from half-filling. Besides, the coexistence of magnetic order and Kondo effect is not observable.
APA, Harvard, Vancouver, ISO, and other styles
19

Javan, Peykar Ariyan. "Explicit polynomial bounds for Arakelov invariants of Belyi curves." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112075/document.

Full text
Abstract:
On borne explicitement la hauteur de Faltings d'une courbe sur le corps de nombres algèbriques en son degré de Belyi. Des résultats similaires sont démontré pour trois autres invariants arakeloviennes : le discriminant, l'invariant delta et l'auto-intersection de omega. Nos résultats nous permettent de borner explicitement les invariantes arakeloviennes des courbes modulaires, des courbes de Fermat et des courbes de Hurwitz. En plus, comme application, on montre que l'algorithme de Couveignes-Edixhoven-Bruin est polynomial sous l’hypothèse de Riemann pour les fonctions zeta des corps de nombres. Ceci était connu uniquement pour certains sous-groupes de congruence. Finalement, on utilise nos résultats pour démontrer une conjecture de Edixhoven, de Jong et Schepers sur la hauteur de Faltings d'un revêtement ramifié de la droite projective sur l'anneau des entiers
We explicitly bound the Faltings height of a curve over the field of algebraic numbers in terms of the Belyi degree. Similar bounds are proven for three other Arakelov invariants: the discriminant, Faltings' delta invariant and the self-intersection of the dualizing sheaf. Our results allow us to explicitly bound these Arakelov invariants for modular curves, Hurwitz curves and Fermat curves. Moreover, as an application, we show that the Couveignes-Edixhoven-Bruin algorithmtime under the Riemann hypothesis for zeta-functions of number fields. This was known before only for certain congruence subgroups. Finally, we utilize our results to prove a conjecture of Edixhoven, de Jong and Schepers on the Faltings height of a branched cover of the projective line over the ring of integers
APA, Harvard, Vancouver, ISO, and other styles
20

"Poincare Embeddings for Visualizing Eigenvector Centrality." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.62689.

Full text
Abstract:
abstract: Hyperbolic geometry, which is a geometry which concerns itself with hyperbolic space, has caught the eye of certain circles in the machine learning community as of late. Lauded for its ability to encapsulate strong clustering as well as latent hierarchies in complex and social networks, hyperbolic geometry has proven itself to be an enduring presence in the network science community throughout the 2010s, with no signs of fading into obscurity anytime soon. Hyperbolic embeddings, which map a given graph to hyperbolic space, have particularly proven to be a powerful and dynamic tool for studying complex networks. Hyperbolic embeddings are exploited in this thesis to illustrate centrality in a graph. In network science, centrality quantifies the influence of individual nodes in a graph. Eigenvector centrality is one type of such measure, and assigns an influence weight to each node in a graph by solving for an eigenvector equation. A procedure is defined to embed a given network in a model of hyperbolic space, known as the Poincare disk, according to the influence weights computed by three eigenvector centrality measures: the PageRank algorithm, the Hyperlink-Induced Topic Search (HITS) algorithm, and the Pinski-Narin algorithm. The resulting embeddings are shown to accurately and meaningfully reflect each node's influence and proximity to influential nodes.
Dissertation/Thesis
Masters Thesis Computer Science 2020
APA, Harvard, Vancouver, ISO, and other styles
21

Bentz-Moffet, Rosalie. "Analyse spectrale de différents types de tambours : le tambour circulaire, le tabla et la timbale." Thèse, 2019. http://hdl.handle.net/1866/23793.

Full text
Abstract:
Ce mémoire traite de l’harmonicitié d’instruments de musique à travers la géométrie spectrale. Nous y présentons, en premier lieu, les résultats connus concernant la corde de guitare, le tambour circulaire et puis le tabla ; le premier est harmonique, le deuxième ne l’est pas et puis le dernier s’en approche. Le cas de la timbale est ce qui constitue la majeure partie de notre travail. L’ingénieur-physicien Robert E. Davis en avait déjà étudié la quasi-harmonicité et nous faisons ici une relecture mathématique de sa démarche. En alliant les méthodes analytiques et numériques, nous montrons que la caisse de résonance de la timbale permet à la fois d’ajuster les fréquences de vibration de la forme ω_(i1) , avec 1 ≤ i ≤ 5, afin qu’elles s’approchent du rapport idéal 2 : 3 : 4 : 5 : 6, et elle permet aussi d’étouffer certains autres modes dissonants. Pour ce faire, nous élaborons un modèle simplifié de timbale cylindrique basé sur la physique et sur ce que propose Davis dans sa thèse. Ce modèle nous fournit un système d’équations divisé en trois parties : la vibration de la peau et la pression à l’intérieur et à l’extérieur de la timbale. Nous utilisons la méthode des fonctions de Green pour trouver les expressions des deux pressions. Nous nous servons de celles-ci ainsi que d’un développement en série de Fourier-Bessel modifiée pour résoudre les équations de la vibration de la peau. La résolution de ces équations se ramène finalement à celle d’un système matriciel infini dont nous faisons l’analyse numériquement. À l’aide de Mathématica et de ce système matriciel, nous trouvons les fréquences de vibration de la timbale, ce qui nous permet d’analyser l’harmonicité de l’instrument. Grâce à une mesure de dissonance, nous optimisons l’harmonicité de la timbale en fonction du rayon du cylindre, de sa hauteur et de la tension.
This thesis deals with the harmonicity of musical instruments through spectral geometry. First, we present the known results concerning the guitar string, the circular drum and the tabla ; the first is harmonic, the second is not, and the last is somewhere in between. The case of the timpani constitutes the major part of our work. The physicist-engineer Robert E. Davis had already studied its quasi-harmonicity and here we undergo a mathematical proofreading of his approach. By combining analytical and numerical methods, we show that the sound box of the timpani allows an adjustement of the vibration frequencies of the form ω_(i1) , with 1 ≤ i ≤ 5, so that they get close to the ideal 2 : 3 : 4 : 5 : 6 ratio, while it also stifles some other dissonant modes. To do so, we develop a simplified model of a cylindrical timpani based on physics and on what Davis suggests in his thesis. This model provides a system of equations divided into three parts : the vibration of the skin and the pressure inside and outside the timpani. We use the method of Green’s functions to find the expressions of the pressures. We use these together with a modified Fourier-Bessel series development to solve the equations of the vibration of the skin. In the end, the solving of these equations is reduced to an infinite matrix system that we analyze numerically. Using Mathematica and this matrix system, we find the vibrational frequencies of the timpani, which allows us to analyze the harmonicity of the instrument. Thanks to a measure of dissonance, we optimize the harmonicity of different timpani models with different cylinder radii, heights and tensions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography