To see the other types of publications on this topic, follow the link: Geometric measure and integration theory.

Books on the topic 'Geometric measure and integration theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Geometric measure and integration theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

1949-, Parks Harold R., ed. Geometric integration theory. Birkhäuser, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1963-, Giannopoulos Apostolos, and Milman Vitali D. 1939-, eds. Asymptotic geometric analysis. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Federer, Herbert. Geometric measure theory. Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Federer, Herbert. Geometric Measure Theory. Edited by B. Eckmann and B. L. van der Waerden. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Whitney, Hassler. Geometric integration theory. Dover Publications, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krantz, Steven, and Harold Parks. Geometric Integration Theory. Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4679-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Measure theory and integration. American Mathematical Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Measure theory and integration. 2nd ed. Marcel Dekker, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Measure and integration theory. W. de Gruyter, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Measure theory and integration. Wiley, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Barra, G. De. Measure theory and integration. New Age International, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

author, Giannopoulos Apostolos 1963, Valettas Petros 1982 author, and Vritsiou Beatrice-Helen author, eds. Geometry of isotropic convex bodies. American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Geometric integration theory on supermanifolds. Cambridge Scientific Publishers, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Geometric measure theory: A beginner's guide. 3rd ed. Academic Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Geometric measure theory: A beginner's guide. 4th ed. Academic Press/Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Geometric measure theory: A beginner's guide. 2nd ed. Academic Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ambrosio, Luigi, ed. Geometric Measure Theory and Real Analysis. Scuola Normale Superiore, 2014. http://dx.doi.org/10.1007/978-88-7642-523-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bombieri, E., ed. Geometric Measure Theory and Minimal Surfaces. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10970-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

service), SpringerLink (Online, ed. Geometric Measure Theory and Minimal Surfaces. Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Morgan, Frank. Geometric measure theory: A beginner's guide. Academic Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

author, Rosen Daniel 1980, ed. Function theory on symplectic manifolds. American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

1947-, Weber Karl, and Sontag Alexia, eds. Integration theory. Wiley, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mitrea, Dorina. Groupoid Metrization Theory: With Applications to Analysis on Quasi-Metric Spaces and Functional Analysis. Birkhäuser Boston, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Donald C. Pierantozzi Sc D. Measure Theory And Lebesgue Integration. Independently published, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

1945-, Simon L., ed. Seminar on geometrical measure theory. Birkhäuser Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

P, Gupta V., ed. Lebesgue measure and integration. Wiley, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pitt, H. R. Integration, measure, and probability. Dover Publications, Inc., 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Figalli, Alessio, Ireneo Peral, and Enrico Valdinoci. Partial Differential Equations and Geometric Measure Theory. Edited by Alberto Farina and Enrico Valdinoci. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74042-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

De Philippis, Guido, Xavier Ros-Oton, and Georg S. Weiss. Geometric Measure Theory and Free Boundary Problems. Edited by Matteo Focardi and Emanuele Spadaro. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65799-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

1947-, Weber Karl, ed. Integration theory. Chapman & Hall, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Constantinescu, Corneliu. Advanced integration theory. Kluwer Academic Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

1968-, Dafni Galia Devora, McCann Robert John 1968-, and Stancu Alina 1968-, eds. Analysis and geometry of metric measure spaces: Lecture notes of the 50th Séminaire de Mathématiques Supérieures (SMS), Montréal, 2011. American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Giuseppe, Prato, Mennucci Andrea, and SpringerLink (Online service), eds. Introduction to Measure Theory and Integration. Edizioni della Normale, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ambrosio, Luigi, Giuseppe Da Prato, and Andrea Mennucci. Introduction to Measure Theory and Integration. Edizioni della Normale, 2011. http://dx.doi.org/10.1007/978-88-7642-386-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

1941-, Allard William K., and Almgren Frederick J, eds. Geometric measure theory and the calculus of variations. American Mathematical Society, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Allard, William, and Frederick Almgren, eds. Geometric Measure Theory and the Calculus of Variations. American Mathematical Society, 1986. http://dx.doi.org/10.1090/pspum/044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Measure and integration. AMS Chelsea Pub., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Integration: A functional approach. Birkhäuser, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rectifiable sets, densities and tangent measures. European Mathematical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nielsen, Ole A. An introduction to integration and measure theory. Wiley, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Measure and integration for use. Clarendon Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Burk, Frank. Lebesgue measure and integration: An introduction. Wiley, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Swartz, Charles. Measure, integration and function spaces. World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Measure, integration, and function spaces. World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics (2011 Messina, Italy). Fractal geometry and dynamical systems in pure and applied mathematics. Edited by Carfi David 1971-, Lapidus, Michel L. (Michel Laurent), 1956-, Pearse, Erin P. J., 1975-, Van Frankenhuysen Machiel 1967-, and Mandelbrot Benoit B. American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lukeš, Jaroslav. Measure and Integral. Matfyzpress, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pfeffer, Washek F. The Riemann approach to integration: Local geometric theory. Cambridge University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rana, Inder K. An introduction to measure and integration. Narosa, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rana, Inder K. An introduction to measure and integration. 2nd ed. American Mathematical Society, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

König, Heinz. Measure and integration: Publications 1997-2011. Birkhäuser, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!