Journal articles on the topic 'Geometric nonlinear control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Geometric nonlinear control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alvarez, Jesus, Teresa Lopez, and Eduardo Hernandez. "Robust Geometric Nonlinear Control of Process Systems." IFAC Proceedings Volumes 33, no. 10 (June 2000): 395–400. http://dx.doi.org/10.1016/s1474-6670(17)38572-5.
Full textBrockett, Roger. "The early days of geometric nonlinear control." Automatica 50, no. 9 (September 2014): 2203–24. http://dx.doi.org/10.1016/j.automatica.2014.06.010.
Full textMAIDI, Ahmed, and Jean Pierre CORRIOU. "Boundary Geometric Control of Nonlinear Diffusion Systems." IFAC Proceedings Volumes 46, no. 26 (2013): 49–54. http://dx.doi.org/10.3182/20130925-3-fr-4043.00016.
Full textWu, Shu Jing, Da Zhong Wang, and Shigenori Okubo. "Control for Nonlinear Chemical System." Key Engineering Materials 467-469 (February 2011): 1450–55. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.1450.
Full textMIROSHNIK, Iliya V. "PARTIAL STABILIZATION AND GEOMETRIC PROBLEMS OF NONLINEAR CONTROL." IFAC Proceedings Volumes 35, no. 1 (2002): 151–56. http://dx.doi.org/10.3182/20020721-6-es-1901.00275.
Full textElkin, V. I. "Geometric Theory of Reduction of Nonlinear Control Systems." Computational Mathematics and Mathematical Physics 58, no. 2 (February 2018): 155–58. http://dx.doi.org/10.1134/s0965542518020045.
Full textBell, D. "Algebraic and geometric methods in nonlinear control theory." Automatica 24, no. 4 (July 1988): 586–87. http://dx.doi.org/10.1016/0005-1098(88)90105-7.
Full textBurstein, Gabriel. "Algebraic and geometric methods in nonlinear control theory." Acta Applicandae Mathematicae 11, no. 2 (February 1988): 177–91. http://dx.doi.org/10.1007/bf00047286.
Full textKravaris, Costas, and Jeffrey C. Kantor. "Geometric methods for nonlinear process control. 1. Background." Industrial & Engineering Chemistry Research 29, no. 12 (December 1990): 2295–310. http://dx.doi.org/10.1021/ie00108a001.
Full textChen, Yahao, and Witold Respondek. "Geometric analysis of nonlinear differential-algebraic equations via nonlinear control theory." Journal of Differential Equations 314 (March 2022): 161–200. http://dx.doi.org/10.1016/j.jde.2022.01.008.
Full textSchlacher, Kurt, Andreas Kugi, and Werner Haas. "Geometric Control of a Class Of Nonlinear Descriptor Systems." IFAC Proceedings Volumes 31, no. 17 (July 1998): 379–84. http://dx.doi.org/10.1016/s1474-6670(17)40365-x.
Full textTadé, M. O., and K. M. Kam. "Differential Geometric Nonlinear Control on an Operator Training System." IFAC Proceedings Volumes 36, no. 11 (June 2003): 231–36. http://dx.doi.org/10.1016/s1474-6670(17)35668-9.
Full textMarino, R., and P. V. Kokotovic. "A Geometric Approach to Nonlinear Singularly Perturbed Control Systems." IFAC Proceedings Volumes 20, no. 5 (July 1987): 169–74. http://dx.doi.org/10.1016/s1474-6670(17)55081-8.
Full textMarino, R., and P. V. Kokotovic. "A geometric approach to nonlinear singularly perturbed control systems." Automatica 24, no. 1 (January 1988): 31–41. http://dx.doi.org/10.1016/0005-1098(88)90005-2.
Full textRuiz, A. C., and H. Nijmeijer. "Nonlinear Control Problems and Systems Approximations: a Geometric Approach." IFAC Proceedings Volumes 25, no. 13 (June 1992): 315–20. http://dx.doi.org/10.1016/s1474-6670(17)52300-9.
Full textFliess, M., J. Lévine, P. Martin, and P. Rouchon. "On a new differential geometric setting in nonlinear control." Journal of Mathematical Sciences 83, no. 4 (February 1997): 524–30. http://dx.doi.org/10.1007/bf02434981.
Full textKravaris, Costas, and Jeffrey C. Kantor. "Geometric methods for nonlinear process control. 2. Controller synthesis." Industrial & Engineering Chemistry Research 29, no. 12 (December 1990): 2310–23. http://dx.doi.org/10.1021/ie00108a002.
Full textKulhavý, Rudolf. "Recursive nonlinear estimation: A geometric approach." Automatica 26, no. 3 (May 1990): 545–55. http://dx.doi.org/10.1016/0005-1098(90)90025-d.
Full textXiaohua Xia and Jiangfeng Zhang. "Geometric Steady States of Nonlinear Systems." IEEE Transactions on Automatic Control 55, no. 6 (June 2010): 1448–54. http://dx.doi.org/10.1109/tac.2010.2044261.
Full textSakamoto, Noboru, and Enrique Zuazua. "The turnpike property in nonlinear optimal control—A geometric approach." Automatica 134 (December 2021): 109939. http://dx.doi.org/10.1016/j.automatica.2021.109939.
Full textIZAWA, Yoshiaki, and Kyojiro HAKOMORI. "Control of Nonlinear System with Hysteresis by Riemannian Geometric Approach." Transactions of the Society of Instrument and Control Engineers 33, no. 12 (1997): 1124–30. http://dx.doi.org/10.9746/sicetr1965.33.1124.
Full textBezick, Scott, Ilan Rusnak, and W. Steven Gray. "Guidance of a homing missile via nonlinear geometric control methods." Journal of Guidance, Control, and Dynamics 18, no. 3 (May 1995): 441–48. http://dx.doi.org/10.2514/3.21407.
Full textHassan, Ahmed M., and Haithem E. Taha. "Geometric control formulation and nonlinear controllability of airplane flight dynamics." Nonlinear Dynamics 88, no. 4 (March 1, 2017): 2651–69. http://dx.doi.org/10.1007/s11071-017-3401-9.
Full textLin, Zhongwei, Jizhen Liu, Weihai Zhang, and Yuguang Niu. "A geometric approach toH∞control of nonlinear Markovian jump systems." International Journal of Control 87, no. 9 (March 11, 2014): 1833–45. http://dx.doi.org/10.1080/00207179.2014.891292.
Full textMcCaffrey, D., and S. P. Banks. "Geometric existence theory for the control-affine nonlinear optimal regulator." Journal of Mathematical Analysis and Applications 305, no. 1 (May 2005): 380–90. http://dx.doi.org/10.1016/j.jmaa.2004.12.017.
Full textAlvarez, Jesús, Fernando Zaldo, and Salvador Padilla. "Integration of Process and Control Designs by Nonlinear Geometric Methods." IFAC Proceedings Volumes 28, no. 9 (June 1995): 363–68. http://dx.doi.org/10.1016/s1474-6670(17)47064-9.
Full textÁlvarez, Jesús, and Carlos Fernández. "Geometric estimation of nonlinear process systems." Journal of Process Control 19, no. 2 (February 2009): 247–60. http://dx.doi.org/10.1016/j.jprocont.2008.04.017.
Full textValpiani, James M., and Philip L. Palmer. "Nonlinear Geometric Estimation for Satellite Attitude." Journal of Guidance, Control, and Dynamics 31, no. 4 (July 2008): 835–48. http://dx.doi.org/10.2514/1.32715.
Full textMujumdar, Anusha, and Radhakant Padhi. "Reactive Collision Avoidance of Using Nonlinear Geometric and Differential Geometric Guidance." Journal of Guidance, Control, and Dynamics 34, no. 1 (January 2011): 303–11. http://dx.doi.org/10.2514/1.50923.
Full textAeyels, Dirk. "Global Controllability for Smooth Nonlinear Systems: A Geometric Approach." SIAM Journal on Control and Optimization 23, no. 3 (May 1985): 452–65. http://dx.doi.org/10.1137/0323029.
Full textShiryayeva, O. I., and L. K. Abzhanova. "Synthesis of nonlinear multiply control system based on geometric approach summary." Journal of Mathematics, Mechanics and Computer Science 92, no. 4 (2017): 109–17. http://dx.doi.org/10.26577/jmmcs-2017-4-459.
Full textKrstic, Miroslav, and Rafael Vazquez. "NONLINEAR CONTROL OF PDES: ARE FEEDBACK LINEARIZATION AND GEOMETRIC METHODS APPLICABLE?" IFAC Proceedings Volumes 40, no. 12 (2007): 20–27. http://dx.doi.org/10.3182/20070822-3-za-2920.00004.
Full textIZAWA, Yoshiaki, and Kyojiro HAKOMORI. "Nonlinear Control of a Double-Effect Evaporator by Riemannian Geometric Approach." Transactions of the Society of Instrument and Control Engineers 32, no. 2 (1996): 197–206. http://dx.doi.org/10.9746/sicetr1965.32.197.
Full textGil, Iván D., Julio C. Vargas, and Jean P. Corriou. "Nonlinear Geometric Temperature Control of a Vinyl Acetate Emulsion Polymerization Reactor." Industrial & Engineering Chemistry Research 53, no. 18 (December 31, 2013): 7397–408. http://dx.doi.org/10.1021/ie402296j.
Full textKam, Kiew M., Moses O. Tadé, Gade P. Rangaiah, and Yu C. Tian. "Strategies for Enhancing Geometric Nonlinear Control of an Industrial Evaporator System." Industrial & Engineering Chemistry Research 40, no. 2 (January 2001): 656–67. http://dx.doi.org/10.1021/ie000205g.
Full textKennedy, D., D. Miller, and Victor Quintana. "A nonlinear geometric approach to power system excitation control and stabilization." International Journal of Electrical Power & Energy Systems 20, no. 8 (November 1998): 501–15. http://dx.doi.org/10.1016/s0142-0615(98)00023-4.
Full textWu, Wei, and Ming-Yuan Huang. "Nonlinear inferential control for an exothermic packed-bed reactor: geometric approaches." Chemical Engineering Science 58, no. 10 (May 2003): 2023–34. http://dx.doi.org/10.1016/s0009-2509(03)00051-4.
Full textChiasson, J. "Nonlinear differential-geometric techniques for control of a series DC motor." IEEE Transactions on Control Systems Technology 2, no. 1 (March 1994): 35–42. http://dx.doi.org/10.1109/87.273108.
Full textRaab, Sadia, Hacene Habbi, and Ahmed Maidi. "Late‐lumping fuzzy boundary geometric control of nonlinear partial differential systems." International Journal of Robust and Nonlinear Control 30, no. 16 (August 15, 2020): 6473–501. http://dx.doi.org/10.1002/rnc.5108.
Full textChen, Yahao, and Stephan Trenn. "On geometric and differentiation index of nonlinear differential-algebraic equations." IFAC-PapersOnLine 54, no. 9 (2021): 186–91. http://dx.doi.org/10.1016/j.ifacol.2021.06.075.
Full textEcheverría-Enríquez, A., J. Marín-Solano, M. C. Muñoz-Lecanda, and N. Román-Roy. "Geometric reduction in optimal control theory with symmetries." Reports on Mathematical Physics 52, no. 1 (August 2003): 89–113. http://dx.doi.org/10.1016/s0034-4877(03)90006-1.
Full textZhou, Yi, Yuan-Qi Li, Zu-Yan Shen, and Ying-Ying Zhang. "Corotational Formulation for Geometric Nonlinear Analysis of Shell Structures by ANDES Elements." International Journal of Structural Stability and Dynamics 16, no. 03 (March 3, 2016): 1450103. http://dx.doi.org/10.1142/s021945541450103x.
Full textCoates, Erlend M., and Thor I. Fossen. "Geometric Reduced-Attitude Control of Fixed-Wing UAVs." Applied Sciences 11, no. 7 (April 1, 2021): 3147. http://dx.doi.org/10.3390/app11073147.
Full textLiu, Xiang, Guoping Cai, Fujun Peng, and Hua Zhang. "Nonlinear vibration control of a membrane antenna structure." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 9 (August 14, 2018): 3273–85. http://dx.doi.org/10.1177/0954410018794321.
Full textKolar, Bernd, Markus Schöberl, and Johannes Diwold. "Differential–geometric decomposition of flat nonlinear discrete-time systems." Automatica 132 (October 2021): 109828. http://dx.doi.org/10.1016/j.automatica.2021.109828.
Full textSass, B., and Z. Toroczkai. "Continuous extension of the geometric control method." Journal of Physics A: Mathematical and General 29, no. 13 (July 7, 1996): 3545–57. http://dx.doi.org/10.1088/0305-4470/29/13/023.
Full textSarychev, Andrey V. "Higher-order techniques for some problems of nonlinear control." Mathematical Problems in Engineering 8, no. 4-5 (2002): 413–38. http://dx.doi.org/10.1080/10241230306725.
Full textWang, Yebin, and Kenji Utsunomiya. "From acceleration-based semi-active vibration reduction control to functional observer design." at - Automatisierungstechnik 66, no. 3 (March 26, 2018): 234–45. http://dx.doi.org/10.1515/auto-2017-0064.
Full textWijnbergen, Paul, Mark Jeeninga, and Bart Besselink. "Nonlinear spacing policies for vehicle platoons: A geometric approach to decentralized control." Systems & Control Letters 153 (July 2021): 104954. http://dx.doi.org/10.1016/j.sysconle.2021.104954.
Full textLee, Dae Young, Rohit Gupta, Uroš V. Kalabić, Stefano Di Cairano, Anthony M. Bloch, James W. Cutler, and Ilya V. Kolmanovsky. "Geometric Mechanics Based Nonlinear Model Predictive Spacecraft Attitude Control with Reaction Wheels." Journal of Guidance, Control, and Dynamics 40, no. 2 (February 2017): 309–19. http://dx.doi.org/10.2514/1.g001923.
Full text