Academic literature on the topic 'Geometric Transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometric Transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometric Transport"
BINI, DONATO, CHRISTIAN CHERUBINI, GIANLUCA CRUCIANI, and ROBERT T. JANTZEN. "GEOMETRIC TRANSPORT ALONG CIRCULAR ORBITS IN STATIONARY AXISYMMETRIC SPACETIMES." International Journal of Modern Physics D 13, no. 09 (October 2004): 1771–803. http://dx.doi.org/10.1142/s0218271804005237.
Full textMehrafarin, Mohammad, and Reza Torabi. "Geometric aspects of phonon polarization transport." Physics Letters A 373, no. 25 (June 2009): 2114–16. http://dx.doi.org/10.1016/j.physleta.2009.04.041.
Full textRau, Jochen. "Geometric magnetism in classical transport theory." Physical Review E 56, no. 2 (August 1, 1997): R1295—R1298. http://dx.doi.org/10.1103/physreve.56.r1295.
Full textSil, Gourab, Avijit Maji, Suresh Nama, and Akhilesh Kumar Maurya. "OPERATING SPEED PREDICTION MODEL AS A TOOL FOR CONSISTENCY BASED GEOMETRIC DESIGN OF FOUR-LANE DIVIDED HIGHWAYS." Transport 34, no. 4 (July 17, 2019): 425–36. http://dx.doi.org/10.3846/transport.2019.10715.
Full textAbercrombie, Ronald F., and James E. Moore. "Ca Chelators and Membrane Transport: “Geometric” Considerations." Open Enzyme Inhibition Journal 1, no. 1 (April 7, 2008): 1–4. http://dx.doi.org/10.2174/1874940200801010001.
Full textLéger, Flavien. "A Geometric Perspective on Regularized Optimal Transport." Journal of Dynamics and Differential Equations 31, no. 4 (July 2, 2018): 1777–91. http://dx.doi.org/10.1007/s10884-018-9684-9.
Full textDontsov, I. E. "Storage of Geometric Data." World of Transport and Transportation 17, no. 2 (September 13, 2019): 190–96. http://dx.doi.org/10.30932/1992-3252-2019-17-2-190-196.
Full textRimkus, A. "OPTIMIZATION OF GEOMETRIC FORMS FOR URBAN TRANSPORT STOPS." Statyba 5, no. 2 (January 1999): 116–22. http://dx.doi.org/10.1080/13921525.1999.10531445.
Full textLi, Zuofeng, and Jeffrey F. Williamson. "Volume-based geometric modeling for radiation transport calculations." Medical Physics 19, no. 3 (May 1992): 667–77. http://dx.doi.org/10.1118/1.596810.
Full textKirwin, William D., and Siye Wu. "Geometric Quantization, Parallel Transport and the Fourier Transform." Communications in Mathematical Physics 266, no. 3 (July 7, 2006): 577–94. http://dx.doi.org/10.1007/s00220-006-0043-z.
Full textDissertations / Theses on the topic "Geometric Transport"
Garcia, Ramos Aguilar Felipe. "Mass transport and geometric inequalities." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/29637.
Full textOdell, Anders. "Quantum transport and geometric integration for molecular systems." Doctoral thesis, KTH, Tillämpad materialfysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26780.
Full textQC 20101202
Teo, Chi-yan Jeffrey. "Geometric phase and spin transport in quantum systems." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38226571.
Full text朱詩亮 and Shiliang Zhu. "Geometric phase and quantum transport in mesoscopic systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B3014775X.
Full textTeo, Chi-yan Jeffrey, and 張智仁. "Geometric phase and spin transport in quantum systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38226571.
Full textZhu, Shiliang. "Geometric phase and quantum transport in mesoscopic systems." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22956268.
Full textCarr, Andrew Newberry. "Geometric Extensions of Neural Processes." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8394.
Full textNaik, Shibabrat. "Geometric Approaches in Phase Space Transport and Partial Control of Escaping Dynamics." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73364.
Full textPh. D.
Gumede, Sthembiso R. "Translocation of a polymer chain under geometric confinement." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86630.
Full textENGLISH ABSTRACT: The advent of the synthesis or manufacturing of controlled structures on submicron scales as well as experimental developments enabling the investigation of physics in speci c biological systems at extremely small length scales underlines the need for dealing with the statistical physics of small systems which are geometrically con ned. A typical example of a system for which physical questions can be answered by means of theoretical modelling is the virus, where polymer genetic material is encapsulated in a protein shell. In this project the role of con nement on polymer chains will be investigated. We investigate how the translocation of polymer from one region to another through a small opening depends on various electrolytic, polymer concentration and wall interaction conditions. This is an extension of the simple, purely entropic, picture in that the interaction terms enter the picture. We employ a variational scheme in deriving our results.
AFRIKAANSE OPSOMMING: Sowel die moontlikheid van beheerbare sintese of vervaardiging van strukture op sub-mikrometer lengteskale asook die koms van eksperimentele metodes vir die ondersoek van biologiese stelsels op baie klein lengteskale onderstreep hoe nodig dit is om die statiestiese sika van klein stelsels met geometriese beperkings te verstaan. 'n Tipiese voorbeeld waar teoretiese metodes vir siese vrae aangewend word is 'n virus, waar die polimeriese genetiese materiaal in 'n proteïen skil beweeg. In die huidge projek word die rol van 'n spesi eke geometriese beperking op polimeerkettings ondersoek. Ons ondersoek hoe die oorplasing van 'n polimeer deur 'n klein opening van een gebied na die ander deur verskillende elektrolietiese, polimeer-konsentrasie en wandinteraksie eienskappe afhang. Dit is 'n uitbreiding van die eenvoudige, volledig entropiese beeld vir oorplasing deurdat wisselwerkings ingesluit word. 'n Variasiebeginsel word aangewend om die resultate af te lei.
Gregory, Simon. "The geometric correction and registration of airborne line-scanned imagery for temporal thermal studies." Thesis, Aston University, 2001. http://publications.aston.ac.uk/14142/.
Full textBooks on the topic "Geometric Transport"
1970-, Bal Guillaume, and International Workshop on Inverse Transport Theory and Tomography (2009 : Banff, Alta.), eds. Tomography and inverse transport theory: International Workshop on Mathematical Methods in Emerging Modalities of Medical Imaging, October 25-30, 2009, Banff, Canada : International Workshop on Inverse Transport Theory and Tomography, May 16-21, 2010, Banff, Canada. Providence, R.I: American Mathematical Society, 2011.
Find full textYuhno, Natal'ya. Mathematics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1002604.
Full textTiwari, Sandip. Nanoscale transistors. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0002.
Full textSucci, Sauro. LBE Flows in Disordered Media. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0019.
Full textSucci, Sauro. Flows at Moderate Reynolds Numbers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0018.
Full textN, Tiwari S., and United States. National Aeronautics and Space Administration., eds. Aerodynamic shape optimization of a HSCT type configuration with improved surface definition: Progress report for the period ended June 30, 1994. Norfolk, VA: Old Dominion University Research Foundation, 1994.
Find full textBook chapters on the topic "Geometric Transport"
Torres Alvarez, Pol. "Geometric Effects in Complex Experiments." In Thermal Transport in Semiconductors, 137–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94983-3_7.
Full textScovazzi, Guglielmo, and Alejandro López Ortega. "Algebraic Flux Correction and Geometric Conservation in ALE Computations." In Flux-Corrected Transport, 299–343. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4038-9_9.
Full textStern, Ady. "Geometric Phases in Mesoscopic Systems — From the Aharonov-Bohm Effect to Berry Phases." In Mesoscopic Electron Transport, 45–81. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_2.
Full textLorenzi, Marco, and Xavier Pennec. "Discrete Ladders for Parallel Transport in Transformation Groups with an Affine Connection Structure." In Geometric Theory of Information, 243–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05317-2_9.
Full textRichter, Th, and R. Seiler. "Geometric Properties of Transport in Quantum Hall Systems." In Geometry and Quantum Physics, 275–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46552-9_6.
Full textWeir, Graham J. "Geometric properties of two phase flow in geothermal reservoirs." In Mathematical Modeling for Flow and Transport Through Porous Media, 501–17. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-017-2199-8_4.
Full textCencini, Massimo, Angelo Vulpiani, and Davide Vergni. "The Role of Chaos for Inert and Reacting Transport." In Geometric Structures of Phase Space in Multidimensional Chaos, 519–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471712531.ch26.
Full textHonjo, Seiichiro, and Kunihiko Kaneko. "Structure of Resonances and Transport in Multidimensional Hamiltonian Dynamical Systems." In Geometric Structures of Phase Space in Multidimensional Chaos, 437–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471712531.ch22.
Full textBrasco, Lorenzo, and Filippo Santambrogio. "A Note on Some Poincaré Inequalities on Convex Sets by Optimal Transport Methods." In Geometric Properties for Parabolic and Elliptic PDE's, 49–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41538-3_4.
Full textLeitner, David M. "Heat Transport in Molecules and Reaction Kinetics: The Role of Quantum Energy Flow and Localization." In Geometric Structures of Phase Space in Multidimensional Chaos, 205–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471712531.ch16.
Full textConference papers on the topic "Geometric Transport"
De Winne, E., and P. De Winne. "Safety and geometric aspects of humps and road crossings." In URBAN TRANSPORT 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/ut070591.
Full textHossein, S. Aftabi, and M. Arabani. "The relationship between urban accidents, traffic and geometric design in Tehran." In Urban Transport 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/ut120491.
Full textSzameit, Alexander, Felix Dreisow, Matthias Heinrich, Robert Keil, Stefan Nolte, Andreas Tünnermann, and Stefano Longhi. "Photonic Topological Crystals: Transport, Curvature, and Geometric Potential." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.jtud9.
Full textSzameit, A., F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi. "Transport, curvature, and geometric potential in photonic topological crystals." In Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.fthj1.
Full textPanta Pazos, Rube´n. "Behavior of a Sequence of Geometric Transformations for a Truncated Ellipsoid Geometry in Transport Theory." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75758.
Full textHajieghrary, Hadi, Dhanushka Kularatne, and M. Ani Hsieh. "Cooperative transport of a buoyant load: A differential geometric approach." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206033.
Full textBrandt, Sascha, Matthias Fischer, Maria Gerges, Claudius Jähn, and Jan Berssenbrügge. "Automatic Derivation of Geometric Properties of Components From 3D Polygon Models." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67528.
Full textTarmaev, A. A., G. I. Petrov, and V. N. Filippov. "Modeling of the Dynamics of a Carriage Taking into Account the Geometric Nonlinearity of Displacements and Deformation." In Proceedings of the International Conference on Aviamechanical Engineering and Transport (AviaENT 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/aviaent-19.2019.62.
Full textVilleneuve-Faure, C., K. Makasheva, L. Boudou, and G. Teyssedre. "Handling Geometric Features in Nanoscale Characterization of Charge Injection and Transport in thin Dielectric Films." In 2018 IEEE 2nd International Conference on Dielectrics (ICD). IEEE, 2018. http://dx.doi.org/10.1109/icd.2018.8468409.
Full textVilleneuve-Faure, C., K. Makasheva, L. Boudou, and G. Teyssedre. "Handling Geometric Features in Nanoscale Characterization of Charge Injection and Transport in thin Dielectric Films." In 2018 IEEE 2nd International Conference on Dielectrics (ICD). IEEE, 2018. http://dx.doi.org/10.1109/icd.2018.8514698.
Full textReports on the topic "Geometric Transport"
T Donovan and L Tyburski. Geometric Representations in the Developmental Monte Carlo Transport Code MC21. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/883303.
Full textDittirich, W. Geometric Phase of a Transported Oscillator. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/826782.
Full textBreuer, Kenneth. Transport Properties of Biofluids in Micromachined Geometrics. Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada400327.
Full textHeimbach, Craig R., Mark A. Oliver, and Michael B. Stanka. The Radiation Transport In Air-Over-Ground Geometry. Fort Belvoir, VA: Defense Technical Information Center, December 1995. http://dx.doi.org/10.21236/ada304550.
Full textPalmer, T., and D. Anistratov. Analysis of Curvilinear Geometry Characteristic-Based Particles Transport Discretizations. Office of Scientific and Technical Information (OSTI), April 2010. http://dx.doi.org/10.2172/1130011.
Full textLewis, E. E. Variational nodal transport methods for hexagonal and three-dimensional geometries. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/7152709.
Full textWareing, T. A., and R. E. Alcouffe. An exponential discontinuous scheme for X-Y-Z geometry transport problems. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/224949.
Full textLewis, E. E. Variational nodal transport methods for hexagonal and three-dimensional geometries. Final report. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/10187641.
Full textBohon, Jennifer, John Smedley, and Kimberley Nichols. ElectroMon Geometry Considerations: Simulations of Electron Transport to a Diamond-Based Detector. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1645073.
Full textDeHart, M. D. A discrete ordinates approximation to the neutron transport equation applied to generalized geometries. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/7178767.
Full text