Dissertations / Theses on the topic 'Geometrical Construction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Geometrical Construction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gover, Ashwin Roderick. "A geometrical construction of conformally invariant differential operators." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329953.
Full textMcClain, Nichola Sue. "A study in geometric construction." CSUSB ScholarWorks, 1998. https://scholarworks.lib.csusb.edu/etd-project/1811.
Full textSabir, Tanveer, and Aamir Muneer. "Geometrical Constructions : Trisecting the Angle, Doubling the Cube, Squaring the Circle and Construction of n-gons." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5401.
Full textKalden, Tenzin. "Geometrical Construction of MUBS and SIC-POVMS for Spin-1 Systems." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/1235.
Full textVan, Brunt Bruce. "Functional differential equations and lens design in geometrical optics." Thesis, University of Oxford, 1989. http://ora.ox.ac.uk/objects/uuid:d56090fc-b360-492b-9bd9-c6f36c30db86.
Full textAparicio, German Walter Jr. "Holzbau : timber construction and material information exchanges for the design of complex geometrical structures." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59105.
Full textPage 77 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 74).
In a universe made of bits where everything is continuously computing and nature itself is processing information everyday, what is it that our materials compute? Specifically, what are the bits of information registered within timber? More importantly, in this universe made of bits how do we design using this information and how do we imagine new buildings? This thesis explores the use of wood as a natural material in the design and construction of complex geometrical timber structures by capturing the natural curvature found in timber into digital data and building a framework for surface timber mapping as a design method. Key results include a detailed framework for translation, method for timber mapping and a prototype utilizing this method. Future steps include growth of timber structures and the use of living material in combination with typical timber construction methods for the design and construction of future buildings.
by German Walter Aparicio Jr.
S.M.
Campos, Filipe Alexandre Duarte González Migães de. "A sustentabilidade geométrica da construção em Terra Crua: Geometrical sustainability of raw earth construction." Master's thesis, Universidade de Évora, 2004. http://hdl.handle.net/10174/15799.
Full textSvensson, Frida. "Can you describe your home? : A study about students understanding about concepts within construction." Thesis, Linnéuniversitetet, Institutionen för matematikdidaktik (MD), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-36357.
Full textSyftet är att undersöka några gymnasieelevers visade kunskaper i geometri med fokus på konstruktion och begreppsanvändning samt den undervisning som erbjuds eleverna inom området. Elevernas hem används som utgångspunkt. Eleverna ska utifrån en teckning, som de själva ritat, och ett fotografi beskriva hemmet. De matematiska begrepp som eleverna använder analyseras. Analysverktyget bygger på van Hieles kvalitativa kunskapsnivåer och Blooms Taxonomi. Undersökningen genomfördes på en gymnasieskola i Kenya. Fyra utvalda elever intervjuades. Lektionsobservationer genomfördes i syfte att få förståelse för hur elevernas undervisningssituation ser ut och få exempel på hur undervisningen bedrivs. Slutligen intervjuades två av elevernas lärare. Eleverna har goda kunskaper på nationella prov men undersökningen visar att när dessa kunskaper skall överföras till något utanför lektionssalen stöter eleverna på problem. De har svårt att uppskatta längdenheter och svårt att jämföra skala. Det kommer också fram att deras undervisning är ganska monoton. Mycket tid läggs till att läraren undervisar eleverna framme vid tavlan eller att eleverna jobbar med uppgifter i sin övningsbok. Enligt variationsteorin, som beskrivs i arbetet, skulle elevernas kunskaper ges möjlighet att fördjupas om de geometriska objekt som skall förstås varieras. Denna variation erbjuds inte eleverna i nuläget.
Jayaram, Uma. "Extracting dimensional geometric parameters from B-spline surface models." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/37877.
Full textPh. D.
Dalstam, Anna. "Better fashion for a better future : Exploring geometrical pattern-making in relation to trend based ready-to-wear garments, with a focus on no fabric waste." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-25178.
Full textPauley, Blaga Slavcheva. "Constructible circles on the unit sphere." CSUSB ScholarWorks, 2000. https://scholarworks.lib.csusb.edu/etd-project/1675.
Full textMandil, Guillaume. "Modèle de représentation géométrique intégrant les états physiques du produit." Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00714559.
Full textSilva, Silvio Marcelino da. "Construções geométricas planas e espaciais no ensino da geometria." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154808.
Full textRejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: 01)Solicito que corrija a descrição na natureza da pesquisa(folha de rosto e aprovação): Dissertação apresentada como parte dos requisitos para obtenção do título de Mestre, junto ao Programa de Pós-Graduação Mestrado Profissional em Matemática em Rede Nacional – PROFMAT, da Faculdade de Ciências da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Bauru. Lembramos que o arquivo depositado no repositório deve ser igual ao impresso, o rigor com o padrão da Universidade se deve ao fato de que o seu trabalho passará a ser visível mundialmente. Agradecemos a compreensão. on 2018-08-06T11:58:50Z (GMT)
Submitted by Silvio Marcelino da Silva (silviomarcelinosilva@yahoo.com.br) on 2018-08-07T02:06:08Z No. of bitstreams: 1 Dissertação - Silvio M. da Silva.pdf: 2607702 bytes, checksum: 0a14a98c674f30483ae0c50601d8475b (MD5)
Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-08-07T11:54:20Z (GMT) No. of bitstreams: 1 silva_sm_me_sjrp.pdf: 2607702 bytes, checksum: 0a14a98c674f30483ae0c50601d8475b (MD5)
Made available in DSpace on 2018-08-07T11:54:21Z (GMT). No. of bitstreams: 1 silva_sm_me_sjrp.pdf: 2607702 bytes, checksum: 0a14a98c674f30483ae0c50601d8475b (MD5) Previous issue date: 2018-06-29
Este trabalho foi formulado, visando diminuir as dificuldades apresentadas na aprendizagem da geometria, e também, proporcionar aos professores da área mais um recurso didático para trabalhar este assunto que é de total relevância no ensino da Matemática. Vivemos em um mundo real e não abstrata. Além de demonstrações virtuais das figuras planas e espaciais, podemos muitas vezes, construí-las e torná-las reais manualmente, e assim, colaborar com o desenvolvimento das habilidades de construção dos educandos, além do que a aprendizagem se torna mais prazerosa e mais prática. Nosso objetivo geral é reafirmar que a geometria está presente em toda parte, que tudo o que nos cerca tem formas geométricas, tanto na natureza quanto nas coisas produzidas pelo homem no decorrer da evolução da espécie humana. E nosso objetivo específico tem como estrutura os seguintes pensamentos: facilitar uma maior compreensão da geometria plana e espacial para os alunos do Ensino Fundamental e Médio, através de construções geométricas; desenvolver um estudo mais aprofundado sobre esta temática, visando colaborar com o trabalho do professor que atua no ensino de geometria; oferecer um recurso didático adicional para facilitar a exposição do conteúdo de geometria.
This work was formulated aiming to reduce the difficulties presented in the learning of geometry, and also to provide to the teachers of this field an extra didactic resource to work on this subject which is of total relevance in the teaching of Mathematics. We live in a real world, not in a virtual one. In addition to virtual demonstrations of flat and spatial figures, we can often construct them and make them real by hand, and thus collaborate with the development of the students' construction skills, and the learning becomes more pleasurable and more practical. Our general objective is to reaffirm that geometry is present everywhere, and everything around us has geometric forms, both in nature and in things produced by man in the course of the evolution of the human species. And our specific objectives are structured as follows: facilitate a better understanding of flat and spatial geometry for elementary, middle and high school students through geometric constructions; develop a more detailed study on this subject, aiming to collaborate with teachers who work in the teaching of geometry, and offer an additional didactic resource to facilitate the exposure of the geometry contents
Belkacem, Sihem. "Recherche de forme par relaxation dynamique des structures reticulees spatiales autocontraintes." Toulouse 3, 1987. http://www.theses.fr/1987TOU30146.
Full textBenkert, Marc. "Construction and Analysis of Geometric Networks." [S.l. : s.n.], 2007. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007167.
Full textCRISSAFF, LHAYLLA DOS SANTOS. "AN ALGEBRAIC CONSTRUCTION OF GEOMETRIC CODES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7082@1.
Full textComeçamos estudando uma classe particular de códigos lineares, os chamados códigos de Goppa que são obtidos calculando o valor de certas funções em pontos de Kn, onde K é um corpo finito. Apresentamos uma generalização desta construção e definimos códigos de avaliação sobre K- ágebras satisfazendo certas propriedades. Para estes códigos, descrevemos um algoritmo de decodificação e mostramos que se considerarmos os códigos de Goppa em um ponto como exemplo desta nova construção, o algoritmo corrige mais erros do que o algoritmo clássico para os códigos de Goppa.
We begin studying a certain type of linear code the so-called Goppa codes. These codes are constructed by taking the evaluation of certain functions at points in Kn, where K is a finite field. As a generalization of this construction, we introduce the so-called evaluation codes defined over K-algebras satisfying some properties. For these codes, we describe a decoding algorithm and we show that if we consider classical one-point Goppa codes as an example of the new construction, this algorithm correct more errors that the classical algorithm for Goppa codes.
Gusmai, Rafael Martins. "Um estudo sobre três problemas clássicos da geometria euclidiana." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-29112016-141932/.
Full textThis work addresses the three classic problems ancient Greek geometry bringing the main stories and concepts needed to understand them. Geometric constructions with non-graded ruler and compass, building numbers, bodies, complex numbers and polynomials are some of the issues that precede the statements of problems. The buildings are displayed using the relationships in arithmetic operations, the options of how to represent geometrically the four basic operations and extraction of square roots, shows that every problem can be modeled in such conditions solucionas through Euclidean tools. This view comes against constructive rising numbers which the main thoughts of constructions with ruler and compass, making clear the definition of geometric constructions for the Greeks. It also present properties of abstract algebra involving numerical sets that have body characteristics, including complex numbers, also explains the importance of polynomials in the statement of classical impossibilities building the definition of degree of extension. Finally this research will clarify the integration of all the contents mentioned above and how every theory can be organized in the realization of doubling the cube demonstrations, angle trisection and squaring the circle, plus the mobilization of mathematicians throughout history for trying to explain such problems causing a high development of mathematics
Vala, Jan. "Parametrický geometrický 3D kreslicí nástroj." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236087.
Full textBojorquez, Betzabe. "Geometric Constructions from an Algebraic Perspective." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/237.
Full textGraham, S. L. "The application of geometric modelling to motor vehicle construction." Thesis, Coventry University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233947.
Full textPatel, Pritesh V. "Stepwise construction and spectroscopy of geometrically constrained bimetallic molecular triads." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427410.
Full textJesus, Gilson Bispo de. "Construções geométricas: uma alternativa para desenvolver conhecimentos acerca da demonstração em uma formação continuada." Pontifícia Universidade Católica de São Paulo, 2008. https://tede2.pucsp.br/handle/handle/11316.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
The purpose of this study is to analyze a sequence of activities carried out with in service teachers, aiming the construction of the definition of line bisector of a segment and, from this definition, to allow them to demonstrate inherent properties of this mathematical object. Moreover, the study also aimed that the teachers were able to justify it mathematically, based on plane Geometry, some geometric constructions in which this object was the main tool to solve the problem. Our research question was: Can a teaching sequence, carried out with in service teachers, and focus on geometric constructions, contribute for the development of knowledge about demonstration in Geometry? In order to answer this question, we developed a sequence with a group of in-service teachers of Mathematics for Elementary and secondary school. To reach such aim, we base our study on the theoretical approach of Duval (2003) and Brousseau (1986), about Semiotics Representation Registers, and the Didactic Situation Theory respectively. We also used the Duval and Egret (1989) and De Villiers (2001; 2002) ideas about demonstrations. Finally, we still used some authors ideas about teacher s formation. The methodological choice was research-action and Didactic Engineering, which had contributed to achieve the objective of this study. The analysis of the discussions and the behaviors of the teachers during the formation reveled that the activities had caused reciprocal reflections about definitions, properties, theorems, mathematical justifications, demonstrations. Moreover, the sequence allowed these teachers to discover and to construct some plane Geometry concepts, whilst they made geometric constructions. In this sense, we do highlight to the importance of material representation register. We conclude that this formation contributed for the autonomy of these teachers
O presente trabalho tem como objetivo analisar uma sequência de atividades desenvolvidas em uma formação continuada para professores. Esta seqüência visava que os participantes construíssem a definição de mediatriz de um segmento e, a partir desta, demonstrassem propriedades inerentes a esse objeto matemático. Além disso, objetivava que os professores justificassem matematicamente, com base na Geometria plana, algumas construções geométricas em que esse objeto era a principal ferramenta para a resolução do problema. A questão pesquisada foi: uma seqüência de ensino com enfoque em construções geométricas pode contribuir para o desenvolvimento de conhecimentos acerca da demonstração em Geometria em uma formação continuada de professores? Assim, aplicamos junto a um grupo de professores de Matemática (Ensino Fundamental e Médio) em formação continuada, a seqüência de atividades. Para tal, nos baseamos nos estudos de Duval (2003) e Brousseau (1986), sobre os registros de representação semiótica e a Teoria das Situações Didáticas respectivamente. Trabalhamos também com Duval e Egret (1989) e De Villiers (2001; 2002), no que diz respeito às demonstrações e com autores especializados em formação de professores, para a fundamentação teórica dessa pesquisa. A escolha metodológica pela pesquisa-ação e pelos pressupostos da Engenharia Didática contribuíram para o alcance dos objetivos desse estudo. A análise das discussões e comportamentos dos professores durante a formação revelou-nos que as atividades provocaram reflexões sobre definições, propriedades, teoremas recíprocos, justificativas matemáticas, demonstrações, além de oportunizar a descoberta e construção de alguns conceitos da Geometria plana ao realizarem construções geométricas. Nesse sentido, pudemos destacar o registro material de representação, identificado por nós, e inferir que essa formação contribuiu para a autonomia dos professores
Saquet, Pierre. "Further developments of the AcBuilder tool for constructing geometrical models of aircraft." Thesis, KTH, Aerodynamik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48578.
Full textMakeev, Andrew. "Geometrically nonlinear analysis of laminated composites with extension-twist coupling." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/12028.
Full textBerlinkov, Artemi. "Dimensions in Random Constructions." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3160/.
Full textIbtiouene, Rachid. "Contribution au dimensionnement électromagnétique d'une machine synchrone autopilotée à aimants insérés." Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL109N.
Full textBenkert, Marc [Verfasser], and A. [Akademischer Betreuer] Wolff. "Construction and Analysis of Geometric Networks / Marc Benkert ; Betreuer: A. Wolff." Karlsruhe : KIT-Bibliothek, 2007. http://d-nb.info/1186010932/34.
Full textMOREIRA, JOHANN SENRA. "CONSTRUCTION OF THE CONICS USING THE GEOMETRIC DRAWING AND CONCRETE INSTRUMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33061@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL
O presente trabalho tem como objetivo facilitar o estudo das cônicas e ainda despertar o interesse do aluno para o desenho geométrico. Será apresentado que as curvas cônicas estão em nosso dia a dia, não só como beleza estética, mas também provocando fenômenos físicos amplamente utilizado pela arquitetura e engenharia civil, como acústica e reflexão da luz. Utilizaremos instrumentos para desenhar curvas que despertem a curiosidade dos alunos e faremos uso das equações e lugares geométricos a fim de demostrar tais recursos. Pretende-se assim que ao adquirir tais conhecimentos o aluno aprimore seu entendimento matemático e amplie seu horizonte cultural.
The present research aims to facilitate the study of the conics and also to arouse the interest of the student for the geometric drawing. The conic curves will be presented not only as they are in our day to day as aesthetic beauty but also as responsible for the physical phenomena widely used by architecture and civil engineering as well as acoustics and reflection of light. We will use instruments to draw curves that arouse the curiosity of the students, making use of the equations and locus in order to demonstrate such resources. It is intended that the student acquire this knowledge, improving his mathematical understanding and broadening his cultural horizon.
Baldwin, Elizabeth. "A Geometric Invariant Theory Construction of Moduli Spaces of Stable Maps." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487135.
Full textChislenko, Julia. "On geometric constructions of the universal enveloping algebra U(sln̳)." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28097.
Full textSousa, Cristiano Benevides de. "Inversão Geométrica Aplicada à Resolução dos Problemas de Apolônio." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7570.
Full textApproved for entry into archive by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-10T11:33:54Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 1967459 bytes, checksum: a691ca832c8c32056bec4fdb8b24f47a (MD5)
Made available in DSpace on 2015-11-10T11:33:54Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1967459 bytes, checksum: a691ca832c8c32056bec4fdb8b24f47a (MD5) Previous issue date: 2014-09-15
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work was developed with the aim of presenting a new approach within the Geometry, the Inversion. The Inversive Geometry is a non-Euclidean geometry that has several applications, mainly related to problems of tangency. This new Geometry is presented throughout this work in order to solve the ten problems of Apollonius. All constructions are carried out with the aid of a Dynamic Geometry software, Geogebra. Since the work is directed to teachers and students of basic education, then there is a proposed roadmap for the reader to participate in the construction of the solutions of these problems process, which will enable the development of creativity, logical thinking, reasoning and practice of geometric constructions.
O presente trabalho foi desenvolvido com o objetivo de apresentar uma nova abordagem dentro da Geometria; a Inversão. A Geometria Inversiva é uma Geometria não Euclidiana que possui inúmeras aplicações, principalmente relacionada a problemas de tangência. Essa nova Geometria é apresentada ao longo desse trabalho com o objetivo de solucionar os dez problemas de Apolônio. Todas as construções são realizadas com o auxílio de um software de Geometria Dinâmica; o Geogebra. Como o trabalho é direcionado para professores e alunos do ensino básico, então há uma proposta de roteiro para que o leitor possa participar do processo de construção das soluções dos referidos problemas, o que possibilitará o desenvolvimento da criatividade, do pensamento lógico, da argumentação e da prática em construções geométricas.
Piah, Abd Rahni bin Mt. "Construction of smooth closed surfaces by piecewise tensor product polynomials." Thesis, University of Dundee, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295312.
Full textAwuah-Baffour, Robert. "Investigation on kinematic determination of highway geometric characteristics by attitude GPS." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/21657.
Full textLeung, Hoi-cheung, and 梁海翔. "Enhancing students' ability and interest in geometry learning through geometric constructions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B48367746.
Full textpublished_or_final_version
Education
Master
Master of Education
Rubinstein, Yanir Akiva. "Geometric quantization and dynamical constructions on the space of Kähler metrics." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44270.
Full textIncludes bibliographical references (p. 185-200).
This Thesis is concerned with the study of the geometry and structure of the space of Kihler metrics representing a fixed cohomology class on a compact Kähler manifold. The first part of the Thesis is concerned with a problem of geometric quantization: Can the geometry of the infinite-dimensional space of Kähler metrics be approximated in terms of the geometry of the finite-dimensional spaces of FubiniStudy Bergman metrics sitting inside it? We restrict to toric varieties and prove the following result: Given a compact Riemannian manifold with boundary and a smooth map from its boundary into the space of toric Kähler metrics there exists a harmonic map from the manifold with these boundary values and, up to the first two derivatives, it is the limit of harmonic maps from the Riemannian manifold into the spaces of Bergman metrics. This generalizes previous work of Song-Zelditch on geodesics in the space of toric Kähler metrics. In the second part of the Thesis we propose the study of certain discretizations of geometric evolution equations as an approach to the study of the existence problem of some elliptic partial differential equations of a geometric nature as well as a means to obtain interesting dynamical systems on certain infinite-dimensional spaces. We illustrate the fruitfulness of this approach in the context of the Ricci flow as well as another flow on the space of Kähler metrics. We introduce and study dynamical systems related to the Ricci operator on the space of Kähler metrics that arise as discretizations of these flows. As an application, we address several questions in Kähler geometry related to canonical metrics, energy functionals, the Moser-Trudinger-Onofri inequality, Nadel-type multiplier ideal sheaves, and the structure of the space of Kähler metrics.
by Yanir Akiva Rubinstein.
Ph.D.
Mehrotra, Anuj. "A geometric programming based procedure to design bridge superstructures." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/44081.
Full textMaster of Science
Jeong, Namin. "A surfacelet-based method for constructing geometric models of microstructure." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54438.
Full textGirotto, Naira. "O desenvolvimento de hábitos de pensamento : um estudo de caso a partir de construções geométricas no GeoGebra." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/151045.
Full textBased on geometric constructions activities with GeoGebra software, this dissertation presents a proposal for the development of mathematical thinking in elementary school. The theoretical approach of this work considers three aspects: the recommendations given at official documents about ruler and compass constructions as school activities; principles of the ruler and compass constructions, illustrated with some examples and their mathematical proofs; the potential of the GeoGebra software as a tool for geometric reasoning, in particular as a tool for development of the habits of reasoning proposed by Goldenberg. Based on those theoretical considerations, it was designed a didactic sequence that was placed under experimentation and evaluation in a class of 9th grade of elementary school in the city of Porto Alegre. Using as data base the productions of the students it was possible to observe in their strategies the presence of mathematical reasoning discussed by Goldenberg, especially those concerning to visualization and geometric exploration.
Santana, Marciano AraÃjo. "Proposta de abordagem do teorema do Ãngulo externo na formaÃÃo continuada de professores de matemÃtica da educaÃÃo a distÃncia (ead) com o uso do geogebra." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13731.
Full textThe use of geometry in everyday life people have significant importance because it is a subject that uses designs, shapes and theorems as studies of evidence to make its activities in various fields of society such as engineering, steel, architecture, topography, etc. In this context, we can say that geometric constructions provide the discovery of valuable ideas that help the understanding of geometric properties. The large-scale assessments presented in public education indicators in the State of Ceara clearly portray the difficulties of learning by students when related to geometric concepts specifically the exterior angle theorem in theory (algebraic concept) and in practice (geometric concept). From this analysis, we propose to conduct an investigation through this research that could identify possible barriers in existing geometry teaching so he could obtain advances to improve the teaching related to the External Angle Theorem and its Consequences using the old learning environments and Paper pen (VPC) and the virtual Learning Environment (VLE) with the operation of educational software of dynamic geometry GeoGebra. The work was attended by a group of twelve (12) mathematics teachers in continuing education of a Specialization Course in Teaching of Mathematics at the University Vale do Acaraà (UVA) in the city of Cascavel-Ce. The operational and pedagogical use of dynamic geometry software GeoGebra was applied in lectures with questionnaires problems involving the exterior angle theorem that seeks to assess the performance of students participating in the survey regarding their classroom practices with the teaching of geometry. We adopted a qualitative, exploratory and action research approaches to characterize the research and seek to build on the theoretical and reflexive assumptions according to Valente conceptions, Michele Artigue, Parents and Fiorentini and Lorenzato. The survey showed progress in the learning process of participating students that were excited by the knowledge that built and that allowed establish a collaborative relationship between the groups involved (students and teacher-researcher).
Hausgen, Paul E. "A thermal analysis of an alkali metal thermal to electric converter with geometrically designed interior surfaces exhibiting directionally dependent radiative properties." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/16701.
Full textLauterbach, Dominic [Verfasser]. "Singular Mixture Copulas - A Geometric Method of Constructing Copulas / Dominic Lauterbach." München : Verlag Dr. Hut, 2014. http://d-nb.info/1052375359/34.
Full textGill, Olivia Jo. "Geometric and homological methods in group theory : constructing small group resolutions." Thesis, London Metropolitan University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573402.
Full textMartin, Benjamin C. "Geometric Design Optimization of Brushless Permanent Magnet Motors." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/MartinBC2009.pdf.
Full textLischewski, Andree. "Geometric constructions and structures associated with twistor spinors on pseudo-Riemannian conformal manifolds." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17132.
Full textThe present thesis studies local geometries admitting twistor spinors on pseudo- Riemannian manifolds of arbitrary signature. To this end, we refine and extend the necessary machinery of first prolongation of conformal structures and conformal tractor calculus which allows a conformally-invariant description of twistor spinors as parallel objects. In this context, our first main theorem is a classification result for conformal geometries whose conformal holonomy group admits a totally degenerate invariant subspace of arbitrary dimension. Based on this we are able to prove a partial classification result for conformal structures admitting twistor spinors. Moreover, we study the zero set of a twistor spinor using the theory of curved orbit decompositions for parabolic geometries. We can completely describe the local geometric structure of the zero set and show that locally every twistor spinor with zero is equivalent to a parallel spinor off the zero set. An application of these results in low-dimensional split-signatures leads to a complete geometric description of manifolds admitting non-generic twistor spinors in signatures (3,2) and (3,3) in terms of parallel spinors which complements the well-known analysis of the generic case. Moreover, we apply tractor calculus for the construction of a conformal superalgebra naturally associated to a conformal spin structure. This approach leads to various results linking algebraic properties of the superalgebra to special geometric structures on the underlying manifold. It also exhibits new construction principles for twistor spinors and conformal Killing forms. Finally, we introduce and elaborate on the notion of conformal Spin-c-geometry. Among other aspects, this gives rise to a new characterization of Fefferman spaces in terms of distinguished Spin-c-twistor spinors.
Moro, Ana Cecilia Del. "Geometria das dobraduras e aplicações no Ensino Médio." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-03102017-172103/.
Full textThis work aims to study the activity of paper folding in the classroom as an auxiliary resource for the teacher. The folders are quite simple and will improve the students skills on concentration, creativity, and the ability to realize on paper his/her thoughts and ideas. The covered topics range from the construction of the main regular poligons, a spatial solid (tetrahedron), through some arithmetic applications, like division of a segment and square and cubic roots.
Rastogi, Ashwin. "Brane Constructions and BPS Spectra." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10836.
Full textPhysics
Marca, Aline. "Construções geométricas como recurso pedagógico no ensino médio." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1692.
Full textEste trabalho tem como principal objetivo proporcionar aos alunos do ensino médio um crescimento em seus conhecimentos matemáticos e geométricos, através da utilização das Construções Geométricas como recurso pedagógico nas aulas de Matemática. Primeiramente foi realizada uma pesquisa bibliográfica para compreender como surgiu e evoluiu o campo da Geometria, bem como as Construções Geométricas. Também através da pesquisa bibliográfica foram diagnosticadas as formas como o ensino da Geometria aconteceu em nosso país, além disso foram estudadas algumas teorias relacionadas `a aprendizagem e em particular a Teoria Van Hiele que trata sobre a aprendizagem geométrica. São analisadas duas formas de abordagem das Construções Geométricas em sala de aula: através dos instrumentos manuais de desenho - régua e compasso - e através do instrumento computacional - software geométrico - sendo que optamos por abordar utilizando os instrumentos régua e compasso. É proposta uma oficina com nove atividades de Construções Geométricas que foi aplicada com uma turma da 3ª série do ensino médio, da Escola de Educação Básica Professor Anacleto Damiani, na cidade de Abelardo Luz, estado de Santa Catarina. Cada atividade da oficina conta com os seguintes tópicos: Objetivos da Atividade, Folha da Atividade, Passos da Construção, Justificativa da Atividade e Solução da Atividade. Após a aplicação da oficina os dados foram analisados através da Análise de Conteúdo segundo três categorias: Instrumentos de Desenho, Ângulos e suas Implicações e Paralelas e suas Implicações. Foi possível perceber que a maioria dos alunos conseguiu atingir os objetivos da pesquisa, e tiveram uma melhora em seus conhecimentos matemáticos e geométricos, o que pode ser percebido através da análise de questionários aplicados com os alunos, gravações de áudio, observações feitas durante a oficina e principalmente através da melhora apresentada pelos alunos no desenvolvimento das atividades propostas.
This work aims to provide high school students an development in his mathematical and geometrical knowledge, through the use of Geometric Constructions as a teaching resource in Mathematics classes. First a literature search to understand how it emerged and evolved the field of geometry was carried out and the Geometric Constructions. The ways in which the teaching of geometry happened in our country, also were studied some theories related to learning and in particular the Van Hiele theory which deals with the geometric learning also through the literature search were diagnosed. Two forms of the Geometric Constructions approach are analyzed in class: through the design of hand tools - ruler and compass - and through the computational tool - geometric software - being that we chose to approach using the ruler and compass instruments. It is proposed a workshop with nine Geometric Construction activities which was applied with a group of 3rd year of high school, the Escola de Educac¸ ˜ao B´asica Professor Anacleto Damiani in the city of Abelardo Luz, Santa Catarina. Each workshop activity includes the following topics: Activity Goals, Activity Sheet, Steps of Construction Activity Background and activity of the solution. After application of the workshop, the data were analyzed through content analysis according to three categories: Drawing Instruments, angles and their implications and Parallel and its Implications. Was observed that most of the students managed to achieve the research objectives, and had an development in their mathematical and geometrical knowledge, which can be perceived through the analysis of questionnaires administered to students, audio recordings, observations made during the workshop and especially through the improvement of the students in the development of the proposed activities.
Arenas, Ruben. "Constructing a Matrix Representation of the Lie Group G2." Scholarship @ Claremont, 2005. https://scholarship.claremont.edu/hmc_theses/166.
Full textHernandez, Gabriel. "Platform design for customizable products as a problem of access in a geometric space." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/16760.
Full textOliveira, Mateus Rodrigues de. "Explorando lugares geométricos através da resolução de problemas." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-26102016-143505/.
Full textThis study reviews the importance of education in special geometric design of the \"Methods of Geometric Places\", applied to the resolution of flat geometric construction problems. The presented approach is traditional, using ruler and compass. In this sense, the work consists of the presentation (concept and construction), several Geometric places that may be considered fundamental to solving elementary geometric design problems, and the presentation of conical constructions as something more elaborate of these loci considered fundamental. For fixing the concepts, each geometric place will feature some application examples and at the end of chapters, some proposed exercises will be presented ( to the reader who is interested iun practing the concepts and addressed buildings). Finalizing will be a brief review of the origins of geometric design and its teaching in Brazil, emphasizing problem solving as an effective method for teaching geometry.