To see the other types of publications on this topic, follow the link: Géométrie arithmétique.

Dissertations / Theses on the topic 'Géométrie arithmétique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Géométrie arithmétique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Richard, Rodolphe. "Sur quelques questions d'équidistribution en géométrie arithmétique." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00438515.

Full text
Abstract:
Nous démontrons un résultat d'équidistribution sur les courbes modulaires: les orbites galoisiennes d'invariants modulaires a l'intérieur d'une même classe d'isogénie non~CM se répartissent le long de la mesure de Poincaré sur la courbe modulaire. Un corollaire est que la hauteur des points considérés diverge, retrouvant là un résultat de Szpiro et Ullmo. Pour obtenir cet énoncé nous combinons des propriétés galoisiennes (le théorème de Serre sur l'action du groupe de Galois sur les points de division) et des propriétés ergodiques (le théorème de Ratner sur les flots unipotents dans les espaces de réseaux, ou plutôt l'équidistribution des points de Hecke). Nous généralisons notre méthode dans le cadre des variétés de Shimura. Dans ce cadre, en~revanche, l'un de nos ingrédients repose sur une forme de la conjecture de Mumford-Tate. Cela nous amène à étudier, dans une seconde partie, des raffinements de l'équidistribution des points de Hecke. Apparaissent alors certaines questions de divergence dans les espaces de réseaux. La méthode de linéarisation de Dani-Margulis ramène cette question à un énoncé géométrique. Nous apportons une réponse à cette question. Dans le cas réel, il s'agit d'une collaboration avec Nimish Shah. Dans le cas p-adique, nous sommes amenés à utiliser la géométrie ultramétrique récemment développée par Berkovich, en relation avec la théorie de Bruhat-Tits, et plus particulièrement des résultats recents de B. Remy, A. Thuillier et A. Werner. Nous sommes amenés en particulier à démontrer - des propriétés de décomposition des immeubles inspirées des théorème de décomposition de Mostow sur les espaces symétriques; - des propriétés de convexité sur les immeubles de fonctions analytiques, au sens ultramétrique, sur le groupe associé. Nous illustrons enfin comment nos résultats, en combinaison avec les travaux de D. Kleinbock et G. Tomanov, et le théorème de Ratner, s'appliquent à l'étude de problèmes S-arithmétiques dans les espaces de réseaux.
APA, Harvard, Vancouver, ISO, and other styles
2

Pion, Sylvain. "De la géométrie algorithmique au calcul géométrique." Phd thesis, Université de Nice Sophia-Antipolis, 1999. http://tel.archives-ouvertes.fr/tel-00011258.

Full text
Abstract:
Dans cette thèse, nous définissons des méthodes efficaces et génériques
dans le but de résoudre les problèmes de robustesse que pose la géométrie algorithmique,
en se concentrant principalement sur l'évaluation exacte des prédicats
géométriques.
Nous avons exploré des méthodes basées sur l'arithmétique
modulaire, ce qui nous a conduits à mettre au point des algorithmes simples
et efficaces de reconstruction du signe dans cette représentation des
nombres.
Nous avons également mis au point de nouveaux types de filtres
arithmétiques qui permettent d'accélérer
le calcul des prédicats exacts, en contournant le coût des solutions
traditionnelles basées sur des calculs multi-précision génériques.
Nos méthodes sont basées sur l'utilisation de l'arithmétique
d'intervalles, qui permet une
utilisation souple et efficace, combinée à un outil de génération
automatique de code des prédicats.
Ces solutions sont maintenant disponibles dans la bibliothèque
d'algorithmes géométriques CGAL.
APA, Harvard, Vancouver, ISO, and other styles
3

PION, SYLVAIN. "De la geometrie algorithmique au calcul geometrique." Nice, 1999. http://www.theses.fr/1999NICE5375.

Full text
Abstract:
Dans cette these, nous definissons des methodes efficaces et generiques dans le but de resoudre les problemes de robustesse que pose la geometrie algorithmique, en se concentrant principalement sur l'evaluation exacte des predicats geometriques. Nous avons explore des methodes basees sur l'arithmetique modulaire, ce qui nous a conduit a mettre au point des algorithmes simples et efficaces de reconstruction du signe dans cette representation des nombres. Nous avons egalement mis au point de nouveaux types de filtres arithmetiques qui permettent d'accelerer le calcul des predicats exacts, en contournant le cout des solutions traditionnelles basees sur des calculs multiprecision generiques. Nos methodes sont basees sur l'utilisation de l'arithmetique d'intervalles, qui permet une utilisation souple et efficace, combine a un outil de generation automatique de code des predicats. Ces solutions sont maintenant disponibles dans la bibliotheque d'algorithmes geometriques cgal.
APA, Harvard, Vancouver, ISO, and other styles
4

Montagnon, Claude. "Généralisation de la théorie arithmétique des D-modules à la géométrie logarithmique." Rennes 1, 2002. https://tel.archives-ouvertes.fr/tel-00002545.

Full text
Abstract:
Nous commençons par définir les faisceaux d'opérateurs différentiels de niveau m sur un log-schéma fin (X,M) au-dessus d'un Zp-log-schéma. Nous donnons une description de ces faisceaux D et de leur structure en coordonnées locales dans le cas log-lisse, analogue à celle donnée par Berthelot dans le cas non logarithmique. Nous étudions ensuite l'action du morphisme de Frobenius sur les D-modules, montrant tout d'abord que F* induit une élévation du niveau. Par contre le théorème de descente démontré par Berthelot pour des schémas usuels est généralement en défaut pour des log-schémas. Nous reprenons donc les travaux de Lorenzon, qui associe à un log-schéma une algèbre canonique A, et nous établissons une équivalence de catégories entre (A x D)-modules et (B x D)-modules indexés par Mgp/O*. Nous déduisons enfin de cette équivalence la finitude de la dimension cohomologique des faisceaux D, lorsque X est un schéma lisse sur un corps et M est défini par un diviseur à croisements normaux.
APA, Harvard, Vancouver, ISO, and other styles
5

Arène, Christophe. "Géométrie et arithmétique explicites des variétés abéliennes et applications à la cryptographie." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22069/document.

Full text
Abstract:
Les principaux objets étudiés dans cette thèse sont les équations décrivant le morphisme de groupe sur une variété abélienne, plongée dans un espace projectif, et leurs applications en cryptographie. Notons g sa dimension et k son corps de définition. Ce mémoire est composé de deux parties. La première porte sur l'étude des courbes d'Edwards, un modèle pour les courbes elliptiques possédant un sous-groupe de points k-rationnels cyclique d'ordre 4, connues en cryptographie pour l'efficacité de leur loi d'addition et la possibilité qu'elle soit définie pour toute paire de points k-rationnels (loi d'addition k-complète). Nous en donnons une interprétation géométrique et en déduisons des formules explicites pour le calcul du couplage de Tate réduit sur courbes d'Edwards tordues, dont l'efficacité rivalise avec les modèles elliptiques couramment utilisés. Cette partie se conclut par la génération, spécifique au calcul de couplages, de courbes d'Edwards dont les tailles correspondent aux standards cryptographiques actuellement en vigueur. Dans la seconde partie nous nous intéressons à la notion de complétude introduite ci-dessus. Cette propriété est cryptographiquement importante car elle permet d'éviter des attaques physiques, comme les attaques par canaux cachés, sur des cryptosystèmes basés sur les courbes elliptiques ou hyperelliptiques. Un précédent travail de Lange et Ruppert, basé sur la cohomologie des fibrés en droite, permet une approche théorique des lois d'addition. Nous présentons trois résultats importants : tout d'abord nous généralisons un résultat de Bosma et Lenstra en démontrant que le morphisme de groupe ne peut être décrit par strictement moins de g+1 lois d'addition sur la clôture algébrique de k. Ensuite nous démontrons que si le groupe de Galois absolu de k est infini, alors toute variété abélienne peut être plongée dans un espace projectif de manière à ce qu'il existe une loi d'addition k-complète. De plus, l'utilisation des variétés abéliennes nous limitant à celles de dimension un ou deux, nous démontrons qu'une telle loi existe pour leur plongement projectif usuel. Finalement, nous développons un algorithme, basé sur la théorie des fonctions thêta, calculant celle-ci dans P^15 sur la jacobienne d'une courbe de genre deux donnée par sa forme de Rosenhain. Il est désormais intégré au package AVIsogenies de Magma
The main objects we study in this PhD thesis are the equations describing the group morphism on an abelian variety, embedded in a projective space, and their applications in cryptograhy. We denote by g its dimension and k its field of definition. This thesis is built in two parts. The first one is concerned by the study of Edwards curves, a model for elliptic curves having a cyclic subgroup of k-rational points of order 4, known in cryptography for the efficiency of their addition law and the fact that it can be defined for any couple of k-rational points (k-complete addition law). We give the corresponding geometric interpretation and deduce explicit formulae to calculate the reduced Tate pairing on twisted Edwards curves, whose efficiency compete with currently used elliptic models. The part ends with the generation, specific to pairing computation, of Edwards curves with today's cryptographic standard sizes. In the second part, we are interested in the notion of completeness introduced above. This property is cryptographically significant, indeed it permits to avoid physical attacks as side channel attacks, on elliptic -- or hyperelliptic -- curves cryptosystems. A preceeding work of Lange and Ruppert, based on cohomology of line bundles, brings a theoretic approach of addition laws. We present three important results: first of all we generalize a result of Bosma and Lenstra by proving that the group morphism can not be described by less than g+1 addition laws on the algebraic closure of k. Next, we prove that if the absolute Galois group of k is infinite, then any abelian variety can be projectively embedded together with a k-complete addition law. Moreover, a cryptographic use of abelian varieties restricting us to the dimension one and two cases, we prove that such a law exists for their classical projective embedding. Finally, we develop an algorithm, based on the theory of theta functions, computing this addition law in P^15 on the Jacobian of a genus two curve given in Rosenhain form. It is now included in AVIsogenies, a Magma package
APA, Harvard, Vancouver, ISO, and other styles
6

Potemine, Igor. "Arithmétique des corps globaux de fonctions et géométrie des schémas modulaires de Drinfeld." Grenoble 1, 1997. http://www.theses.fr/1997GRE10030.

Full text
Abstract:
La these est consacree a l'arithmetique des motifs purs de type de drinfeld-anderson pour les corps globaux de fonctions, ainsi qu'a la geometrie des schemas modulaires grossiers de drinfeld et a la construction explicite des corps de classes pour les corps globaux totalement imaginaires en caracteristique positive. Dans le premier chapitre, on donne un theoreme de classification pour les motifs purs de drinfeld-anderson sur une cloture algebrique d'un corps fini et on demontre des resultats sur leur fonctions l analogues aux theoremes de deligne et au theoreme de hasse et weil pour les courbes. On prouve egalement une conjecture globale de goss pour les fonctions l des faisceaux purs de drinfeld-anderson en s'appuyant sur un theoreme de taguchi-wan. Ensuite, on decrit explicitement les schemas grossiers des modules rationnels de drinfeld et on construit les modeles minimaux terminaux de ces schemas en utilisant les resultats de danilov et reid pour les varietes toriques. Dans le troisieme chapitre, on applique cette construction a la theorie du corps de classes. Plus precisement, on developpe une theorie de multiplication complexe des modules rationnels de drinfeld de rang arbitraire et on construit l'extension abelienne maximale d'un corps global totalement imaginaire de fonctions en utilisant un systeme de j-invariants fondamentaux et un systeme de fonctions de type de weber. On considere enfin quelques applications algorithmiques entre autres, un analogue de l'algorithme des courbes elliptiques de lenstra.
APA, Harvard, Vancouver, ISO, and other styles
7

Guilbot, Robin. "Quelques aspects combinatoires et arithmétiques des variétés toriques complètes." Phd thesis, Université Paul Sabatier - Toulouse III, 2012. http://tel.archives-ouvertes.fr/tel-00832228.

Full text
Abstract:
Dans cette thèse nous étudions deux aspects distincts des variétés toriques, l'un purement géométrique, sur C, et l'autre de nature arithmétique, sur des corps quasi algébriquement clos (corps C1). Les courbes extrémales qui engendrent le cône de Mori d'une variété torique projective sont des courbes primitives (V. Batyrev). En 2009, D. Cox et C. von Renesse ont conjecturé que les courbes primitives engendrent le cône de Mori de toute variété torique dont l'éventail est à support convexe, de dimension maximale. Nous présentons une famille de contre-exemples à cette conjecture et en proposons une nouvelle formulation basée sur la notion de contractibilité locale, généralisant la notion de contractibilité de C. Casagrande. Grâce aux couloirs, outils combinatoires que nous introduisons, nous montrons comment écrire une classe de 1-cycle donnée comme combinaison linéaire à coefficients entiers de classes de courbes toriques. Les couloirs nous permettent de donner une décomposition explicite de toute classe qui n'est pas contractible (couloirs droits) ainsi que de certaines classes contractibles (couloirs circulaires). Les corps C1 sont les corps sur lesquels l'existence de points rationnels dans une variété Y est assurée par le plongement en petit degré de Y dans un espace projectif (par définition) ou dans un espace projectif pondéré (d'après un théorème facile de Kollar). Pour un diviseur ample dans une variété torique dont l'éventail est simplicial et complet, nous montrons qu'il existe encore une notion de petit degré qui assure l'existence de points rationnels. Ceci nous permet notamment de montrer l'existence de points rationnels sur une large classe de variétés rationnellement connexes.
APA, Harvard, Vancouver, ISO, and other styles
8

Cadoret, Anna. "Théorie de Galois inverse et arithmétique des espaces de Hurwitz." Lille 1, 2004. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2004/50376-2004-Cadoret.pdf.

Full text
Abstract:
Cette these aborde le probleme de Galois inverse regulier via l'arithmetique des espaces de Hurwitz. La premiere partie - en français - comporte des preliminaires et une presentation detaillee des resultats. La deuxieme partie - en anglais - rassemble trois articles et un quatrieme chapitre original. Le chapitre 3 donne une methode basee sur les caracteres pour compter les (G-)revêtements avec invariants fixes de corps des modules/de définition réel. Cela permet en particulier d'exhiber de nombreuses familles infinies de groupes admettant des G-revêtements non définis sur leur corps des modules et de réaliser les groupes prodihedraux régulièrement sur le corps des nombres algébriques totalement réels avec diviseur de ramification rationnel. On prouve au chapitre 4 un théorème « a la Conway-Parker» pour les espaces de Hurwitz et les tours modulaires mais avec, en outre, une interprétation modulaire en terme de points de branchement. Combiné aux methodes de recollement p-adiques, au principe local-global et aux variétés de descentes, ce théorème permet de montrer, par exemple, que tout groupe fini G admettant deux classes de conjugaison A, B telles que G== et G= pour tout a dans A, b dans B peut etre réalisé régulièrement sur l'extension totalement p-adique (p ne divisant pas l'ordre de G) d'un corps cyclotomique k avec tous ses points de branchement k-rationnels sauf éventuellement un
Le chapitre 5 montre qu'un groupe profini extension d'un groupe fini par un groupe pronilpotent projectif de rang fini ne peut etre le groupe de Galois d'une extension régulière de corps des modules un corps de nombres; on y montre aussi que la strong torsion conjecture pour les variétés abéliennes implique une conjecture de Fried pour les tours modulaires. Le chapitre 6 enfin, contient deux résultats sur les courbes de Hurwitz standard: une formule générique permettant de calculer leur genre et une methode de genre zéro basée sur le principe de Hasse pour r = 4
APA, Harvard, Vancouver, ISO, and other styles
9

Le, Guillou-Kouteynikoff Odile. "Algèbre et arithmétique au XVIe siècle : l'oeuvre de Guillaume Gosselin." Paris 7, 2011. http://www.theses.fr/2011PA070110.

Full text
Abstract:
Ce travail sur l'œuvre de Gosselin consiste en une traduction de latin en français de son Algèbre, ou De Arte Magna ( 1577) et de sa Leçon pour l "étude et l'enseignement des mathématiques, la Praelectio ( I 583), et en un commentaire mathématique et historique de l'ensemble de son œuvre qui inclut, sous le titre de Arithmetique de Nicolas Tartaglia (1578), une traduction d'italien en français, arrangée, d'une partie du General trattato de Tartaglia. Gosselin construit l'autonomie du numérique par rapport au géométrique en tissant des liens forts entre l'arithmétique et l'algèbre, dans sa façon d'élaborer les objets et les règles de l'algèbre à partir des objets et des règles de l'arithmétique, dans sa façon aussi de théoriser par l'algèbre des règles arithmétiques anciennes. Pour la résolution des équations, comme dans tous les registres qu'il aborde, Gosselin énonce des règles simples et générales qu' il démontre grâce à des règles algébriques que, de façon originale et sûre, il fonde sur des propositions euclidiennes. Il aborde avec enthousiasme les Arithmétiques de Diophante parues en latin en 1575, et s'approprie les méthodes diophantiennes pour résoudre par l'algèbre la question arithmétique des congruences quadratiques. Dans la Praelectio Gosselin dresse de façon synthétique un plan d'étude et d'enseignement commun à la géométrie, à l'arithmétique élémentaire, et à l'algèbre alors renommée « arithmétique subtile » dans le cadre de la séparation aristotélicienne de la mathématique en les deux seuls genres du continu et du discret Gosselin manifeste encore sa maîtrise du champ numérique dans ses résolutions par combinaisons linéaires des systèmes à plusieurs inconnues
This thesis on the work of Gosselin consista of a translation from Latin to French of his Algebra or De Arte Magna (1577), and his Lesson in studying and teaching mathematics, the Praelectio (1583), together with a mathematical and historical commentary on his writings, which include a translation and adaptation, from Italian to French, of a part of the General Trattato of Tartaglia, the title of which is Arithmetique de Nicolas Tartaglia (1578). Gosselin constructed the independence of number in relation to geometry, and made strong links between arithmetic and algebra, not only basing the objects and rules of algebra on the objects and rules of arithmetic, but also demonstrating the ancient rules of arithmetic by means of algebra. In solving equations, as in ail the Copies he handles, Gosselin gives general and simple rules and demonstrates them, making use of algebraic identities based on his reading of Euclid's Elements. He studied with enthusiasm the Arithmetica of Diophantus published in Latin in 1575, and appropriated Diophantine methods to salve arithmetic questions about quadratic congruences using algebra. In the Praelectio Gosselin presents a plan for studying and teaching geometry, elementary arithmetic, and algebra, now re-named 'subtle arithmetic' in keeping with Aristotle's division of mathematics into two kinds, continuous and discreet Gosselin also demonstrates his numerical skills in his solution of Systems of equations in several unknowns using linear combinations
APA, Harvard, Vancouver, ISO, and other styles
10

Munoz, Bertrand Ruben. "Coefficients en cohomologie de De Rham-Witt surconvergente." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC205.

Full text
Abstract:
Deligne a défini dans les années 70 le complexe de De Rham-Witt, qui permit à Illusie de prouver un théorème de comparaison avec la cohomologie cristalline. Ce résultat fut ensuite étendu par Etesse aux coefficients. En 2004, Bloch démontra que le théorème de comparaison cohomologique étendu aux coefficients d'Etesse possédait une interprétation plus profonde : sous certaines conditions, on obtient en fait une équivalence de catégories entre des cristaux et des connexions de De Rham Witt.Plus récemment, Davis, Langer et Zink ont introduit un complexe de De Rham-Witt surconvergent et démontré des théorèmes de comparaison avec les cohomologies de Monsky-Washnitzer et rigide. Ces derniers furent ensuite étendus aux coefficients par Ertl, qui démontra notamment un quasi-isomorphisme de cohomologie avec les isocristaux surconvergents.On peut alors légitimement se demander si les résultats de Bloch possèdent une variante surconvergente : c'est-à-dire que l'on aimerait pouvoir obtenir une interprétation des isocristaux surconvergents pour la cohomologie de De Rham-Witt surconvergente. On peut y parvenir en considérant des connexions de De Rham-Witt surconvergentes comme définies par Ertl, pour lesquelles on peut raisonnablement espérer retrouver les mêmes opérations cohomologiques que pour les F-isocristaux.Cette question fut la motivation de cette thèse, et le théorème principal de ce travail y répond en partie positivement. Pour y parvenir, il est nécessaire d'expliciter la structure locale du complexe de De Rham-Witt surconvergent, et de redéfinir la notion de surconvergence afin de pouvoir mieux contrôler la convergence des produits de différentielles de De Rham-Witt
Under a few assumptions, we prove an equivalence of category between a subcategory of F-isocristals on a smooth algebraic variety and overcongergent integrable De Rham-Witt connections. We do so by giving an equivalent definition of overconvergence, and by studying the explicit local structure of the De Rham-Witt complex
APA, Harvard, Vancouver, ISO, and other styles
11

Guillot, Gaétan. "Approximation de sous-espaces vectoriels de ℝⁿ par des sous-espaces rationnels." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM009.

Full text
Abstract:
Pour A un sous-espace vectoriel de ℝⁿ de dimension d et B un sous-espace rationnel de dimension e, on définit min(d,e) angles ψ_j(A,B) pour j dans {1,.., min(d,e)} qui rendent compte de la proximité entre A et B. On étudie alors l'exposant diophantien µₙ(A|e)_j défini comme la borne supérieure des µ >0 tels qu'il existe une infinités d'espaces B de dimension e pour lesquels ψ_j(A,B) est inférieur à H(B)^(- µ), où H(B) est la hauteur de l'espace rationnel B . On montre d'abord une formule permettant de calculer, sous certaines hypothèses, µₙ(A|e)_j dans le cas où A est une somme directe de droites de ℝⁿ. Ensuite on construit plusieurs sous-espaces vectoriels de ℝⁿ de dimension d, dont on peut prescrire les valeurs prises par µₙ(A|e)_j pour divers choix de (e,j). De ces constructions, on déduit enfin des résultats sur l'indépendance algébrique de familles de fonctions de la forme µₙ(.|e)_j
For A a vector subspace of ℝⁿ with dimension d and B a rational subspace with dimension e, we define min(d,e) angles ψ_j(A,B) for j in {1,.., min(d,e)} that capture the proximity between A and B. We then study the Diophantine exponent µₙ(A|e)_j, defined as the supremum of µ > 0 such that there exist infinitely many spaces B of dimension e for which ψ_j(A,B) is less than H(B)^(-µ), where H(B) is the height of the rational space B. We first present a formula allowing the computation, under certain assumptions, of µₙ(A|e)_j when A is a direct sum of lines in ℝⁿ. Then, we construct several vector subspaces of ℝⁿ with dimension d for which we can prescribe the values taken by µₙ(A|e)_j for various choices of (e,j). From these constructions, we finally obtain results on the algebraic independence of families of functions of the form µₙ(.|e)_j
APA, Harvard, Vancouver, ISO, and other styles
12

Guilbot, Robin. "Quelques aspects combinatoires et arithmétiques des variétés toriques complètes." Phd thesis, Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1905/.

Full text
Abstract:
Dans cette thèse nous étudions deux aspects distincts des variétés toriques, l'un purement géométrique, sur C, et l'autre de nature arithmétique, sur des corps quasi algébriquement clos (corps C1). Les courbes extrémales qui engendrent le cône de Mori d'une variété torique projective sont des courbes primitives (V. Batyrev). En 2009, D. Cox et C. Von Renesse ont conjecturé que les courbes primitives engendrent le cône de Mori de toute variété torique dont l'éventail est à support convexe, de dimension maximale. Nous présentons une famille de contre-exemples à cette conjecture et en proposons une nouvelle formulation basée sur la notion de contractibilité locale, généralisant la notion de contractibilité de C. Casagrande. Grâce aux couloirs, outils combinatoires que nous introduisons, nous montrons comment écrire une classe de 1-cycle donnée comme combinaison linéaire à coefficients entiers de classes de courbes toriques. Les couloirs nous permettent de donner une décomposition explicite de toute classe qui n'est pas contractible (couloirs droits) ainsi que de certaines classes contractibles (couloirs circulaires). Les corps C1 sont les corps sur lesquels l'existence de points rationnels dans une variété Y est assurée par le plongement en petit degré de Y dans un espace projectif (par définition) ou dans un espace projectif pondéré (d'après un théorème facile de Kollar). Pour un diviseur ample dans une variété torique dont l'éventail est simplicial et complet, nous montrons qu'il existe encore une notion de petit degré qui assure l'existence de points rationnels. Ceci nous permet notamment de montrer l'existence de points rationnels sur une large classe de variétés rationnellement connexes
In this thesis we study two distinct aspects of toric varieties, one purely geometric, over C, and the other of arithmetic nature, over quasi algebraically closed fields (C1 fields). Extremal curves, which generate the Mori cone of a projective toric variety, are primitive curves (V. Batyrev). In 2009, D. Cox and C. Von Renesse conjectured that the classes of primitive curves generate the Mori cone of any toric variety whose fan has full dimensional convex support. We present a family of counterexamples to this conjecture and propose a new formulation based on the notion of local contractibility, generalizing the contractibility defined by C. Casagrande. Using the corridors, a combinatorial tool that we introduce, we show how to write any given 1-cycle class as a linear combination with integer coefficients of toric curve classes. Corridors enable us to give an explicit decomposition of any class that is not contractible (straights corridors) as well as contractible classes in some particular cases (circular corridors). C1 fields are those over which the existence of rational points on a variety Y is ensured by any small degree embedding of Y in a projective space (by definition) or in a weighted projective space (according to an easy theorem of Kollar). For an ample divisor in a toric variety whose fan is simplicial and complete, we show that there is also a notion of small degree which ensures the existence of rational points. This way, we show the existence of rational points on a large class of rationally connected varieties
APA, Harvard, Vancouver, ISO, and other styles
13

Stehlé, Damien. "Algorithmique de la réduction de réseaux et application à la recherche de pires cas pour l'arrondi de fonctions mathématiques." Nancy 1, 2005. http://docnum.univ-lorraine.fr/public/SCD_T_2005_0148_STEHLE.pdf.

Full text
Abstract:
Les réseaux euclidiens sont un outil très puissant dans plusieurs domaines de l'algorithmique, en cryptographie et en théorie algorithmique des nombres par exemple. L'objet du présent mémoire est dual : nous améliorons les algorithmes de réduction des réseaux, et nous développons une nouvelle application dans le domaine de l'arithmétique des ordinateurs. En ce qui concerne l'aspect algorithmique, nous étudions le cas des petites dimensions et décrivons une nouvelle variante de l'algorithme LLL. Du point de vue de l'application nous utilisons la méthode de Coppersmith permettant de trouver les petites racines de polynômes modulaires, pour calculer les pires cas pour l'arrondi des fonctions mathématiques, quand la fonction et la précision sont donnés. Nous adaptons notre technique aux mauvais cas simultanés pour deux fonctions. Ces deux méthodes sont des pré-calculs coûteux, qui une fois effectués permettent d'accélérer les implantations des fonctions élémentaires en précision fixe
Euclidean lattices are a powerful tool for several algorithmic topics, among which are cryptography and algorithmic number theory. The contributions of this thesis are twofold : we improve lattice basis reduction algorithms, and we introduce a new application of lattice reduction, in computer arithmetic. Concerning lattices, we consider both small dimensions and arbitrary dimensions, for which we improve the classical LLL algorithm. Concerning the application, we make use of Coppersmith's method for computing the small roots of multivariate modular polynomials, in order to find the worst cases for the rounding of mathematical functions, when the function, the rounding mode and the precision are fixed. We also generalise our technique to find input numbers that are simultaneously bad for two functions. These two methods are expensive pre-computations, but once performed, they help speeding up the implementations of elementary mathematical functions in fixed precision
APA, Harvard, Vancouver, ISO, and other styles
14

Rodriguez, Aurélien. "Construction d'une version Arakelov d'un groupe faible de cobordisme arithmétique." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066003.

Full text
Abstract:
Dans cette thèse nous construisons un groupe faible de cobordisme arithmétique dans le contexte de la géométrie d'Arakelov. Nous introduisons des versions faibles des groupes de K-théorie arithmétique et de Chow arithmétique, et en dégageons une notion de théorie homologique orientée de type arithmétique. Nous construisons alors un groupe universel parmi ces théories homologiques et prouvons ses principales propriétés structurelles
In this thesis we construct a weak group of arithmetic cobordism in the context of Arakelov geometry. We introduce weak versions of arithmetic K-theory and arithmetic Chow groups, that give rise to the notion of oriented homological theory of arithmetic type. We then build a universal such homological theory, and prove its main structural features
APA, Harvard, Vancouver, ISO, and other styles
15

Wagener, Benjamin. "Géométrie Arithmétique sur les variétés Abéliennes : minoration explicite de la hauteur de Faltings et borne sur la torsion." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC305/document.

Full text
Abstract:
Ce travail comporte essentiellement deux conclusions. D'une part nous déterminons une minoration de la hauteur de Faltings d'une variété abélienne quelconque sur un corps de nombres faisant intervenir de nouveaux invariants non archimédiens. Il s'agit de la première partie de ce travail dans lequel nous introduisons systématiquement ces invariants. Ils sont liés à la géométrie non archimédienne aux places de mauvaise réduction des variétés abéliennes.Dans une deuxième partie nous donnons une évaluation approximative de ces invariants nous permettant d'établir une minoration de la hauteur de Faltings faisant intervenir le nombre de composantes de la fibre spéciale du modèle de Néron des variétés abéliennes aux places de mauvaise réduction.On déduit de ces estimations un corollaire qui fournit une borne sur le cardinal du groupe des points rationnels de torsion des variétés abéliennes faisant essentiellement intervenir la hauteur de Faltings. Cette borne est jusqu'à présent la meilleure connue
This thesis leads essentially to two conclusions. On the one hand we determine a lower bound for the Faltings height of abelian varieties over number fields in which enter new non-archimedean invariants. It consists in the first part of this work in which we introduce systematically this invariants. They are directly linked to the non-archimedean geometry of abelian varities at places of bad reduction.In a second part we provides an approximative evaluation of this invariants which leads to a lower bound on the Faltings heights in terms of the number of components of the special fiber of the Néron model of abelian varieties at places of bad reduction.We deduce from this estimates a corollary that provides an upper bound on the cardinality of the group of rational torsion points of abelian varieties essentially in terms of the Falting height. This bound is the best bound known till now
APA, Harvard, Vancouver, ISO, and other styles
16

Basson, Romain. "Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S019/document.

Full text
Abstract:
L'objet de cette thèse est une description effective des espaces de modules des courbes hyper- elliptiques de genre 3 en caractéristiques positives. En caractéristique nulle ou impaire, on obtient une paramétrisation de ces espaces de modules par l'intermédiaire des algèbres d'invariants pour l'action du groupe spécial linéaire sur les espaces de formes binaires de degré 8, qui sont de type fini. Suite aux travaux de Lercier et Ritzenthaler, les cas des corps de caractéristiques 3, 5 et 7 restaient ouverts. Pour ces derniers, les méthodes classiques de la caractéristique nulle sont inno- pérantes pour l'obtention de générateurs pour les algèbres d'invariants en jeu. Nous nous sommes donc contenté d'exhiber des invariants séparants en caractéristiques 3 et 7. En outre, nos résultats concernant la caractéristique 5 suggèrent l'inadéquation de cette approche pour ce cas. À partir de ces résultats, nous avons pu expliciter la stratification des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristiques 3 et 7 selon les groupes d'automorphismes et implémenté divers algorithmes, dont celui de Mestre, pour la reconstruction d'une courbe à partir de son module, ie la valeur de ses invariants. Pour cette phase de reconstruction, nous nous sommes notamment attaché aux questions arithmétiques, comme l'existence d'une obstruction à être un corps de définition pour le corps de module et, dans le cas contraire, à l'obtention d'un modèle de la courbe sur ce corps minimal. Enfin pour la caractéristique 2, notre approche est différente, dans la mesure où les courbes sont étudiées via leur modèle d'Artin-Schreier. Nous exhibons pour celles-ci des invariants bigradués qui dépendent de la structure arithmétique des points de ramifications des courbes
The aim of this thesis is to provide an explicite description of the moduli spaces of genus 3 hyperelliptic curves in positive characteristic. Over a field of characteristic zero or odd, a parame- terization of these moduli spaces is given via the algebra of invariants of binary forms of degree 8 under the action of the special linear group. After the work of Lercier and Ritzenthaler, the case of fields of characteristic 3, 5 and 7 are still open. However, in these remaining case, the classical methods in characteristic zero do not work in order to provide generators for these algebra of invariants. Hence we provide only separating invariants in characteristic 3 and 7. Furthermore our results in characteristic 5 show this approach is not suitable. From these results, we describe the stratification of the moduli spaces of genus 3 hyperelliptic curves in characteristic 3 and 7 according to the automorphism groups of the curves and imple- ment algorithms to reconstruct a curve from its invariants. For this reconstruction stage, we paid attention to arithmetic issues, like the obstruction to be a field of definition for the field of moduli. Finally, in the characteristic 2 case, we use a different approach, given that the curves are defined by their Artin-Schreier models. The arithmetic structure of the ramification points of these curves stratify the moduli space in 5 cases and we define in each case invariants that characterize the isomorphism class of hyperelliptic curves
APA, Harvard, Vancouver, ISO, and other styles
17

Dissa, Sinaly. "Entre arithmétique et géométrie discrète, une étude épistémologique et didactique du théorème de Bézout et du théorème de Pick." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM008.

Full text
Abstract:
Cette thèse étudie la problématique de changement de registres dans l’enseignement des mathématiques. Plus spécifiquement, nous avons choisi d’étudier les registres de l’arithmétique et de la géométrie avec des interactions des domaines du continu et du discret.Cette thèse montre, en particulier, que les situations adidactiques / didactiques « classiques » ne permettent pas de mettre en œuvre de telles interactions.Nous avons montré, de plus, qu’il y a une forte prégnance du continu dans les conceptions des étudiants et même une résistance à considérer le discret. Nos expérimentations ont été réalisées auprès d’étudiants de Licence mathématiques et de formateurs.Notre première ingénierie aborde l’étude des points entiers d’une droite du plan. Elle a mis en évidence l’obstacle à reconnaître une caractérisation géométrique des solutions de l’équation de Bézout (existence et exhaustivité).Cela montre, que pour franchir cet obstacle de changement de registres, il est nécessaire de proposer un type de situation plus « ouverte » et concernant un problème mathématique épistémologiquement consistant.Dans cette thèse, nous avons étudié la possibilité de faire la dévolution d’un changement de registre arithmétique/géométrie dans le cadre de « Situation Recherche pour la Classe ». C’est un des objectifs de notre seconde ingénierie portant sur l’aire de polygones à sommet entier (en référence au théorème de Pick).Deux pré-expérimentations ont permis de cerner les conditions de prise en compte du registre discret pour une question relevant de la géométrie.Nous avons construit une dernière expérimentation en tenant compte de ces conditions.L’analyse didactique de la situation sur Pick nous permet d’affirmer que, d’une part, le modèle SiRC est adapté à l’ingénierie de situations de changement de registres. D’autre part elle montre aussi que l’arithmétique et la géométrie sont des domaines mathématiques pertinents pour les interactions de registre et le travail sur la preuve et le raisonnement.Parmi les conditions pour une bonne dévolution des changements de registre, la nature de la question joue un rôle essentiel. Nous avons choisi dans l’ingénierie sur le problème de Pick de demander de chercher une « méthode » ou une « formule » sans préciser les variables et les registres concernés.Notre expérimentation a montré que ce type de question a permis le développement de nombreuses stratégies identifiées dans l’analyse mathématique du problème
This thesis studies the problem of changing registers in mathematics education. More specifically,we have chosen to study the registers of the continuous and the discrete with interactions in thefields of arithmetic and geometry.This thesis shows, in particular, that "classic" adidactic / didactic situations do not allow suchinteractions to be implemented.We have shown, moreover, that there is a pervasiveness of the continuous in the conceptions of thestudents and even a resistance to consider the discreet. Our experiments were carried out withundergraduate mathematics students and trainers.Our first engineering deals with the study of whole points of a line of the plane. It highlighted theobstacle to recognizing a geometric characterization of the solutions of the Bézout equation(existence and exhaustiveness).This shows that in order to overcome this obstacle of changing registers, it is necessary to propose amore “open” type of situation concerning an epistemologically consistent mathematical problem.In this thesis, we studied the possibility of devolving a change in arithmetic / geometry register inthe context of "Research Situation for the Class". This is one of the objectives of our secondengineering covering the area of whole vertex polygons (with reference to Pick's theorem).Two pre-experiments made it possible to define the conditions for taking into account the discreteregister for a question relating to geometry.We have built a final experiment taking these conditions into account.The didactic analysis of the situation on Pick allows us to affirm that, on the one hand, the SiRCmodel is suitable for the engineering of situations of change of registers. On the other hand, it alsoshows that arithmetic and geometry are relevant mathematical domains for register interactions andwork on proof and reasoning.Among the conditions for proper devolution of registry changes, the nature of the question plays anessential role. We chose in engineering on the Pick problem to ask to search for a "method" or"formula" without specifying the variables and registers concerned.Our experience has shown that this type of question has enabled the development of many strategiesidentified in the mathematical analysis of the problem
APA, Harvard, Vancouver, ISO, and other styles
18

Savel, Charles. "Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S072/document.

Full text
Abstract:
A une représentation de p-torsion du groupe de Galois absolu d'un corps p-adique, M. Kisin associe un espace de modules, appelé par la suite variété de Kisin par G. Pappas et M. Rapoport. Ces variétés ont été introduites afin de démontrer plusieurs résultats de modularité sur les représentations galoisiennes. Elles se sont révélées utiles également pour construire certains anneaux de déformations voire les calculer. Plus récemment elles ont été utilisées pour munir le champ des représentations galoisiennes de torsion d'une structure algébrique. Par ailleurs ces variétés ressemblent formellement aux variétés de Deligne-Lusztig affines. En particulier leur définition s'étend dans le cadre de la théorie des groupes réductifs. Dans cette thèse, nous étudions la dimension de certaines variétés de Kisin dans le cas de la restriction des scalaires à la Weil du groupe linéaire général GLd. En nous basant sur des méthodes issues du cadre Deligne-Lusztig et en suivant les travaux de E. Viehmann et X. Caruso, nous définissons une stratification de la variété de Kisin. Nous encadrons ensuite la dimension des strates, puis étudions le problème de la maximisation de la dimension sur l'ensemble des strates. Cela permet de démontrer des encadrements pour la dimension des variétés de Kisin considérées. Comme dans le cas des variétés de Deligne-Lusztig affines, la somme des racines positives intervient dans l'encadrement de la dimension
Given a p-torsion representation of the absolute Galois group of a p-adic field, M. Kisin defines a moduli space, which was named Kisin variety afterwards by G. Pappas and M. Rapoport. These varieties were first introduced in order to prove several modularity results on Galois representations. They were also used for constructing certain Galois deformation rings and computing some of them. Besides, they were involved in a recent work aiming at defining an algebraic structure on the stack of torsion Galois representations. It turns out that these varieties are formally similar to affine Deligne-Lusztig varieties. In particular their definition extends to the framework of reductive groups. In this thesis, we study the dimension of some Kisin varieties corresponding to the scalar restriction of the general linear group GLd. Inspired by methods coming from Deligne-Lusztig theory and following works by E. Viehmann and X. Caruso, we define a stratification on the given Kisin variety. Then we bound from below and from above the dimension of the strata, and we address the problem of maximizing the dimension over all strata. This allows us to derive the announced bounds on the dimension. As for affine Deligne-Lusztig varieties, the sum of the positive roots appears in the bounds
APA, Harvard, Vancouver, ISO, and other styles
19

Madore, David. "Hypersurfaces cubiques : équivalence rationnelle, R-équivalence et approximation faible." Phd thesis, Université Paris Sud - Paris XI, 2005. http://tel.archives-ouvertes.fr/tel-00009887.

Full text
Abstract:
Cette thèse présente quelques résultats portant sur l'arithmétique de variétés rationnellement connexes et, plus spécifiquement, des hypersurfaces cubiques, dans trois directions principales : l'équivalence rationnelle, la R-équivalence, et l'approximation faible. Dans la première partie, on décrit de façon explicite la spécialisation de la R-équivalence. La seconde est consacrée à la nullité du groupe de Chow de 0-cycles de degré 0 sur une hypersurface cubique ayant bonne réduction sur les p-adiques. La troisième montre un résultat d'approximation faible aux places de bonne réduction sur les surfaces cubiques sur les corps de fonctions. La quatrième montre la R-trivialité des hypersurfaces cubiques de grande dimension sur les p-adiques. La cinquième partie explicite par un calcul la non-nullité du groupe de Chow de 0-cycles de degré 0 d'une hypersurface cubique de dimension 3 sur un corps de dimension 2. Enfin, on étudie la R-équivalence très libre sur les variétés toriques.
APA, Harvard, Vancouver, ISO, and other styles
20

Winckler, Bruno. "Intersection arithmétique et problème de Lehmer elliptique." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0233/document.

Full text
Abstract:
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son résultat diophantien principal utilise des méthodes d’intersectionarithmétique pour retrouver un résultat de Laurent, qui démontrait la conjecturede Lehmer pour les courbes elliptiques à multiplications complexes à un exposant" près, tout en explicitant complètement sa dépendance en divers paramètres liésà la courbe elliptique ; une telle démarche peut être motivée par la conjecture deLang, qui présage une minoration possible de la hauteur canonique proportionnelle,essentiellement, à la hauteur de Faltings de la courbe.Notre dissertation commence toutefois par une partie dédiée à l’explicitation duthéorème de densité de Chebotarev, qui reprend les grandes lignes d’un travail deLagarias et Odlyzko, et s’avère être cruciale dans notre approche du problème deLehmer elliptique. On obtient également des majorations des zéros de Siegel et de lanorme du plus petit idéal premier entrant en jeu dans le théorème de Chebotarev
In this thesis we consider the problem of lower bounds for the canonical height onelliptic curves, aiming for the conjecture of Lehmer. Our main diophantine result isan explicit version of a theorem of Laurent (who proved this conjecture for ellipticcurves with CM up to a " exponent) using arithmetic intersection, enlightening thedependence with parameters linked to the elliptic curve ; such a result can be motivatedby the conjecture of Lang, hoping for a lower bound proportional to, roughly,the Faltings height of the curve.Nevertheless, our dissertation begins with a part dedicated to a completely explicitversion of the density theorem of Chebotarev, along the lines of a previous workdue to Lagarias and Odlyzko, which will be crucial to investigate the elliptic Lehmerproblem. We also obtain upper bounds for Siegel zeros, and for the smallest primeideal whose Frobenius is in a fixed conjugacy class
APA, Harvard, Vancouver, ISO, and other styles
21

Tavenas, Sébastien. "Bornes inférieures et supérieures dans les circuits arithmétiques." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2014. http://tel.archives-ouvertes.fr/tel-01066752.

Full text
Abstract:
La complexité arithmétique est l'étude des ressources nécessaires pour calcu- ler des polynômes en n'utilisant que des opérations arithmétiques. À la fin des années 70, Valiant a défini (de manière semblable à la complexité booléenne) des classes de polynômes. Les polynômes, ayant des circuits de taille polyno- miale, considérés faciles forment la classe VP. Les sommes exponentielles de ces derniers correpondent alors à la classe VNP. L'hypothèse de Valiant est la conjecture que VP ̸= VNP.Bien que cette conjecture soit encore grandement ouverture, cette dernière semble toutefois plus accessible que son homologue booléen. La structure algé- brique sous-jacente limite les possibilités de calculs. En particulier, un résultat important du domaine assure que les polynômes faciles peuvent aussi être cal- culés efficacement en paralèlle. De plus, quitte à autoriser une augmentation raisonnable de la taille, il est possible de les calculer avec une profondeur de calcul bornée par une constante. Comme ce dernier modèle est très restreint, de nombreuses bornes inférieures sont connues. Nous nous intéresserons en premier temps à ces résultats sur les circuits de profondeur constante.Bürgisser a montré qu'une conjecture (la τ-conjecture) qui borne supérieu- rement le nombre de racines de certains polynômes univariés, impliquait des bornes inférieures en complexité arithmétique. Mais, que se passe-t-il alors, si on essaye de réduire, comme précédemment, la profondeur du polynôme consi- déré? Borner le nombre de racines réelles de certaines familles de polynômes permetterait de séparer VP et VNP. Nous étudierons finalement ces bornes su- périeures sur le nombre de racines réelles.
APA, Harvard, Vancouver, ISO, and other styles
22

Jaillon, Philippe. "Proposition d'une arithmétique rationnelle paresseuse et d'un outil d'aide à la saisie d'objets en synthèse d'images." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 1993. http://tel.archives-ouvertes.fr/tel-00822902.

Full text
Abstract:
La solution la plus commune pour résoudre les problèmes de précision liés aux arithmétiques des ordinateurs est l'utilisation d'arithmétiques exactes. Nous proposons dans la première partie de cette thèse une optimisation très puissante des arithmétiques rationnelles : l'arithmétique rationnelle paresseuse. L'originalité de cette arithmétique est de retarder les calculs exacts jusqu'à ce qu'ils deviennent soit inutiles, soit inévitables. Ainsi les calculs exacts qui ne sont pas nécessaires ne sont jamais faits. L'arithmétique paresseuse se présente sous la forme d'une bibliothèque autonome prenant à sa charge les problèmes de précision et qui est indépendante des programmes qui l'utilisent. La deuxième partie de cette thèse présente un outil de modélisation dont le principal intérêt est d'utiliser l'image des objets comme support à leur modélisation sous forme d'arbre de construction. Cet outil est interactif, l'utilisateur pourra de cette manière ne modéliser que ce dont il a besoin et avec le niveau de détails le plus adapté à ses applications. Les extensions que nous proposons dans le domaine de l'incrustation d'images de synthèse dans des images naturelles permettent de traiter correctement l'ombrage de la scène finale en tenant compte de la nature des éclairages, des ombres portées et des reflets.
APA, Harvard, Vancouver, ISO, and other styles
23

Berger, Diego. "Stratification d'Ekedahl-Oort pour les modèles de Pappas-Rapoport des variétés de Shimura." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04746932.

Full text
Abstract:
Dans cette thèse nous étudions la géométrie de la réduction de certainesvariétés de Shimura modulo un nombre premier p. Plus précisément on considèrela réduction modulo p des modèles entiers des variétés de Shimura de type PELconstruits par Pappas et Rapoport. Dans le cas d’une donnée PEL de type Hilbert,on montre que la stratification induite par le polygone de Hodge est une bonnestratification (l’adhérence d’une strate est une union disjointe de strates). Ensuitenous calculons les G-orbites de la fibre spéciale du modèle local de Pappas-Raporport dans le cas Hilbert, où G est le groupe associé à la donnée PEL.Ces orbites induisent une bonne stratification de la fibre spéciale de la variétéde Shimura, que l’on appelle stratification de Kottwitz-Rapoport (analogue à lastratification de Kottwitz-Rapoport des modèles entiers de Kottwitz). Dans untravail récent, Xu Shen et Yuqiang Zheng ont défini une stratification d’Ekedahl-Oort des modèles entiers de Pappas-Rapoport. Dans le cas Hilbert nous montronsque « l’intersection » de leur stratification avec la straitification de Kottwitz-Rapoport est une bonne stratification.Dans la seconde partie de cette thèse nous nous intéressons aux modèleslocaux dans le contexte de la théorie de Hodge p-adique. Nous définissons unplongement en niveau entier des modèles locaux de Pappas-Rapoport dans unecertaine Grassmannienne affine de type Beilinson-Drinfeld, analogue au plongementdéfinit Scholze et Weinstein pour les modèles entiers de Kottwitz
In this thesis we study the geometry of the reduction of certain Shimuravarieties modulo a prime number p. More precisely, we consider the reductionmodulo p of the integer models of PEL-type Shimura varieties constructed byPappas and Rapoport. In the case of Hilbert-type PEL data, we show that thestratification induced by the Hodge polygon is a good stratification (the adherenceof a stratum is a disjoint union of strata). Next, we compute the G-orbits of thespecial fiber of the Pappas-Raporport local model in the Hilbert case, whereG is the group associated with the PEL datum. These orbits induce a goodstratification of the special fiber of the Shimura variety, which we call Kottwitz-Rapoport stratification (analogous to the Kottwitz-Rapoport stratification ofinteger Kottwitz models). In a recent work, Xu Shen and Yuqiang Zheng havedefined an Ekedahl-Oort stratification of integer Pappas-Rapoport models. Inthe Hilbert case we show that “the intersection” of their stratification with theKottwitz-Rapoport straitification is a good stratification.In the second part of this thesis, we focus on local models in the context ofp-adic Hodge theory. We define an integer-level embedding of Pappas-Rapoportlocal models into a certain affine Grassmannian of Beilinson-Drinfeld type, analogousto the embedding defined by Scholze and Weinstein for Kottwitz local models
APA, Harvard, Vancouver, ISO, and other styles
24

Huang, Zhizhong. "Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM036/document.

Full text
Abstract:
L'étude de la distribution des points rationnels sur les variétés algébriques est un sujet classique de la géométrie diophantienne. Le programme proposé par V. Batyrev et Y. Manin dans des années 90 donne une prédiction sur l'ordre de croissance tandis que sa version ultérieure dûe à E. Peyre conjecture l'existence d'une distribution globale. Dans cette thèse nous nous proposons une étude de la distribution locale des points rationnels de hauteur bornée sur les variétés algébriques. Ceci envisage une description plus fine que celle globale en dénombrant les points le plus proche d'un point fixé. Nous nous plaçons sur le cadre récent du travail de D. McKinnon et M. Roth qui met en évidence que la géométrie de la variété gouverne l'approximation diophantienne sur elle et nous reprenons les résultats de S. Pagelot. L'ordre de croissance espéré et l'existence d'une mesure asymptotique sur certaines surfaces toriques sont démontrés, alors que démontrons-nous un résultat totalement différent pour une autre surface sur laquelle il n'y pas de mesure asymptotique et les meilleurs approximants génériques s'obtiennent sur des courbes rationnelles nodales. Ces deux phénomènes sont de nature radicalement différente au point de vu de l'approximation diophantienne
The study of the distribution of rational points on algebraic varieties is a classic subject of Diophantine geometry. The program proposed by V. Batyrev and Y. Manin in the 1990s gives a prediction on the order of growth whereas its later version due to E. Peyre conjectures the existence of a global distribution. In this thesis we propose a study of the local distribution of rational points of bounded height on algebraic manifolds. This aims at giving a description finer than the global one by counting the points closest to a fixed point. We set ourselves on the recent framework of the work of D. McKinnon and M. Roth who prefers that the geometry of the variety governs the Diophantine approximation on it and we take up the results of S. Pagelot. The expected order of growth and the existence of an asymptotic measure on some toric surfaces are demonstrated, while we demonstrate a totally different result for another surface on which there is no asymptotic measure and the best generic approximates are obtained on nodal rational curves. These two phenomena are of a radically different nature from the point of view of the Diophantine approximation
APA, Harvard, Vancouver, ISO, and other styles
25

Delsinne, Emmanuel. "Autour du problème de Lehmer relatif dans un tore." Phd thesis, Université de Caen, 2007. http://tel.archives-ouvertes.fr/tel-00259956.

Full text
Abstract:
Le problème de Lehmer consiste à minorer la hauteur de Weil d'un nombre algébrique en fonction de son degré sur Q. Si la question originelle de Lehmer reste aujourd'hui sans réponse, la conjecture optimale correspondante a été démontrée à un epsilon près. Par ailleurs, ce problème admet plusieurs généralisations. D'une part, on peut formuler le même type de conjecture en remplaçant le corps des rationnels par une extension abélienne d'un corps de nombres. D'autre part, on peut généraliser ces énoncés en dimension supérieure. Il s'agit alors de minorer la hauteur normalisée d'un point ou d'une sous-variété d'un tore ; dans ce cas, on substitue au degré un invariant plus fin : l'indice d'obstruction. Il est ensuite naturel de chercher à combiner ces deux généralisations : c'est le problème de Lehmer relatif dans un tore.

Dans cette thèse, nous considérons tout d'abord le problème de Lehmer relatif unidimensionnel. Nous donnons une minoration pour la hauteur d'un nombre algébrique en fonction de son degré sur une extension abélienne d'un corps de nombres. Il s'agit d'une amélioration d'un théorème d'Amoroso et Zannier, obtenue à l'aide d'une démonstration techniquement plus simple. De plus, nous explicitons la dépendance de la borne inférieure en le corps de base. Puis nous abordons le problème de Lehmer relatif en dimension supérieure et minorons la hauteur d'une hypersurface en fonction de son indice d'obstruction sur une extension abélienne de Q. Enfin, nous obtenons un résultat analogue pour un point, sous réserve que celui-ci satisfasse une hypothèse technique. Nous montrons ainsi les conjectures les plus fines à un epsilon près.
APA, Harvard, Vancouver, ISO, and other styles
26

Motte, François. "De la géométrie à l’arithmétique en théorie inverse de Galois." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I049/document.

Full text
Abstract:
Nous contribuons à la conjecture de Malle sur le nombre d'extensions galoisiennes finies E d'un corps de nombres K donné, de groupe de Galois G et dont la norme du discriminant est bornée par y. Nous établissons une minoration de ce nombre pour tout groupe fini G et sur tout corps de nombres K contenant un certain corps de nombres K'. Pour ce faire, on part d'une extension galoisienne régulière F/K(T) que l'on spécialise. On démontre une version forte du théorème d'Irréductibilté de Hilbert qui compte le nombre d'extensions spécialisées et pas seulement le nombre de points de spécialisation. Nous arrivons aussi à prescrire le comportement local en certains premiers des extensions spécialisées. En conséquence, on déduit de nouveaux résultats sur le problème local-global de Grunwald, en particulier pour certains groupes non résolubles. Afin d'arriver à nos fins, nous démontrons des résultats en géométrie diophantienne sur la recherche de points entiers sur des courbes algébriques
We contribute to the Malle conjecture on the number of finite Galois extensions E of some number field K of Galois group G and of discriminant of norm bounded by y. We establish a lower bound for every group G and every number field K containing a certain number field K'. To achieve this goal, we start from a regular Galois extension F/K(T) that we specialize. We prove a strong version of the Hilbert Irreducibility Theorem which counts the number of specialized extensions and not only the specialization points. We can also prescribe the local behaviour of the specialized extensions at some primes. Consequently, we deduce new results on the local-global Grunwald problem, in particular for some non-solvable groups. To reach our goals, we prove some results in diophantine geometry about the number of integral points on an algebraic curve
APA, Harvard, Vancouver, ISO, and other styles
27

Sagnier, Aurélien. "Un site arithmétique de type connes-consani pour les corps quadratiques imaginaires de nombre de classes 1." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC190/document.

Full text
Abstract:
Nous construisons, pour les corps quadratiques imaginaires avec nombre de classes 1, un site arithmétique de type Connes-Consani. La principale difficulté ici est que les constructions de Connes et Consani et une partie de leurs résultats reposent sur la relation d'ordre naturellement présente sur les nombres réels qui est compatible avec les opérations arithmétiques basiques. Bien sûr rien de la sorte n'existe pas dans le cas des corps quadratiques imaginaires avec nombre de classes 1. Nous définissons ce que nous appelons le site arithmétique pour de tels corps de nombres, puis nous calculons les points de ces sites arithmétiques et nous les exprimons en termes de l'espace des classes d'adèles considéré par Connes pour donner une interprétation spectrale des zéros des fonctions L de Hecke. On obtient alors que pour un corps quadratique imaginaire avec nombre de classes 1, les points de notre site arithmétique sont reliés aux zéros de la fonction zêta de Dedekind du corps de nombres considéré et aux zéros de certaines fonctions L de Hecke. Nous étudions ensuite la relation entre le spectre de l'anneau des entiers du corps de nombres et le site arithmétique. Enfin nous construisons le carré du site arithmétique
We construct, for imaginary quadratic number fields with class number 1, an arithmetic site of Connes-Consani type. The main difficulty here is that the constructions of Connes and Consani and part of their results strongly rely on the natural order existing on real numbers which is compatible with basic arithmetic operations. Of course nothing of this sort exists in the case of imaginary quadratic number fields with class number 1. We first define what we call arithmetic site for such number fields, we then calculate the points of those arithmetic sites and we express them in terms of the ad\`eles class space considered by Connes to give a spectral interpretation of zeroes of Hecke L functions of number fields. We get therefore that for a fixed imaginary quadratic number field with class number 1, that the points of our arithmetic site are related to the zeroes of the Dedekind zeta function of the number field considered and to the zeroes of some Hecke L functions. We then study the relation between the spectrum of the ring of integers of the number field and the arithmetic site. Finally we construct the square of the arithmetic site
APA, Harvard, Vancouver, ISO, and other styles
28

Paugam, Frédéric. "Groupe de Mumford-Tate, représentations galoisiennes et bonne réduction de variétés abéliennes." Rennes 1, 2002. http://www.theses.fr/2002REN10141.

Full text
Abstract:
Soit A une variete abelienne definie sur un corps de nombres K. La conjecture de Morita affirme que si le groupe de Mumford-Tate de A ne contient pas d'unipotents sur Q alors A a potentiellement bonne reduction partout. On ameliore les resultats de Morita dans le cas PEL. L'amelioration est donnee par un critere de bonne reduction lambda-adique. On construit un equivalent p-adique de l'exponentielle de la monodromie l-adique grace a la theorie des representations p-adiques semi-stables. On utilise cette monodromie pour donner un critere de bonne reduction des varietes abeliennes: si l'image des points l-adiques de la representation naturelle du groupe de Mumford-Tate ne contient pas d'unipotents d'echelon 2 alors la variete abelienne a potentiellement bonne reduction en tout premier de son corps de definition. On utilise la classification des representations de groupes de Mumford-Tate pour exprimer ce critere en termes combinatoire. On montre ensuite que ce nouveau critere est constructif grace a la theorie des varietes de Shimura. On montre que nos resultats se prolongent aux varietes de Shimura de meme donnee de Shimura adjointe.
APA, Harvard, Vancouver, ISO, and other styles
29

Tang, Shun. "Le théorème de concentration et la formule des points fixes de Lefschetz en géométrie d'Arakelov." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00574296.

Full text
Abstract:
Dans les années quatre-vingts dix du siècle dernier, R. W. Thomason a démontréun théorème de concentration pour la K-théorie équivariante algébrique sur lesschémas munis d'une action d'un groupe algébrique G diagonalisable. Comme d'habitude,un tel théorème entraîne une formule des points fixes de type Lefschetz qui permetde calculer la caractéristique d'Euler-Poincaré équivariante d'un G-faisceau cohérent surun G-schéma propre en termes d'une caractéristique sur le sous-schéma des points fixes.Le but de cette thèse est de généraliser les résultats de R.W. Thomason dans le contextede la géométrie d'Arakelov. Dans ce travail, nous considérons les schémas arithmétiquesau sens de Gillet-Soulé et nous tout d'abord démontrons un analogue arithmétiquedu théorème de concentration pour les schémas arithmétiques munis d'une action duschéma en groupe diagonalisable associé à Z/nZ. La démonstration résulte du théorèmede concentration algébrique joint à des arguments analytiques. Dans le dernier chapitre,nous formulons et démontrons deux types de formules de Lefschetz arithmétiques. Cesdeux formules donnent une réponse positive à deux conjectures énoncées par K. Köhler,V. Maillot et D. Rössler.
APA, Harvard, Vancouver, ISO, and other styles
30

Pigeon, David. "Les D-modules arithmétiques dans le cas des p-bases et un algorithme pour le calcul de fonctions zêta." Caen, 2014. http://www.theses.fr/2014CAEN2013.

Full text
Abstract:
La théorie des D-modules arithmétiques a été dévéloppée par Pierre Berthelot, sur des idées maîtresses de Mebkhout et Grothendieck qui avaient été les premiers à voir en les D-modules une nouvelle approche cohomologique. Le premier but de ma thèse était de généraliser les descriptions locales des D-modules arithmétiques dans le cas lisse, trouvées par Pierre Berthelot. Nous voulons intégrer des cas récents étudiés en particulier par Richard Crew où il étudie des schémas formellement lisses. Pour cela, nous généralisons la notion de relativement parfait aux cas des schémas formels et obtenons dans ce cadre une description analogue au cas lisse. Dans un second temps, nous donnons un algorithme qui permet de calculer la fonction zêta de certaines variétés qui sont l’extension d’une variété où l’on sait déjà calculer la fonction zêta
The theory of arithmetic D-modules was developed by Pierre Berthelot, based on the main ideas of Grothendieck and Mebkhout, who were the first to see the D-modules as a new cohomological approach. The primary aim of my thesis was to generalize the local descriptions of arithmetic D-modules in the smooth case, found by Pierre Berthelot. We want to integrate recent case studies, in particular from Richard Crew, where he studies formally smooth schemes. For that purpose, we generalize the notion of relatively perfect to the cases of formal schemes and obtain in this context a similar description to the smooth case. In a second step, we give an algorithm which allows calculating the zeta function of certain varieties, which are the extension of a variety that is already known to calculate the zeta function
APA, Harvard, Vancouver, ISO, and other styles
31

Quertier, Tony. "Résolution de systèmes de deux équations quadratiques." Caen, 2016. http://www.theses.fr/2016CAEN2027.

Full text
Abstract:
Soient q0 et q1 deux formes quadratiques homogènes, à coefficients entiers, à n variables. Notons Vq0,q1 la variété projective définie par l’intersection des deux quadriques associées à q0 et q1. En 1959, Mordell a démontré le principe de Hasse pour n ≥ 13, puis en 1964 Swinnerton-Dyer l’a démontré pour n ≥ 11. En 2006, Wittenberg réussit à améliorer ce résultat dans sa thèse, en prouvant que, si l’on suppose l’hypothèse de Schinzel et la finitude des groupes de Tate-Shafarevich alors le principe de Hasse est vrai pour n ≥ 6. Dans cette thèse, nous allons étudier si la variété Vq0,q1 a des points sur le corps des réels et sur les corps p-adiques. Si c’est le cas, nous proposons différents algorithmes pour calculer explicitement une solution rationnelle de q0 =q1 =0
Let q0 and q1 be two homogenous quadratic forms, with integral coeffi- cients, in n variables. Denote by Vq0,q1 the projective variety defined by the intersection of the quadrics associated to q0 and q1. In 1959, Mordell proved that the Hasse principle holds for n ≥ 13, then in 1964 Swinnerton-Dyer proved it for n ≥ 11. In 2006, Wittenberg improved this result in his the- sis, proving that, if we assume Schinzel’s hypothesis and finiteness of the Tate-Shafarevich groups then the Hasse principle holds for n ≥ 6. In this thesis, we study if the variety Vq0,q1 has some points over number real field and p-adic fields. If so, we give different algorithmes to compute explicitly a rational solution of q0 = q1 = 0
APA, Harvard, Vancouver, ISO, and other styles
32

Le, Rudulier Cécile. "Points algébriques de hauteur bornée." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S073/document.

Full text
Abstract:
L'étude de la répartition des points rationnels ou algébriques d'une variété algébrique selon leur hauteur est un problème classique de géométrie diophantienne. Dans cette thèse, nous nous intéresserons au cardinal asymptotique de l'ensemble des points algébriques de degré fixé et de hauteur bornée d'une variété lisse de Fano définie sur un corps de nombres, lorsque la borne sur la hauteur tend vers l'infini. En particulier nous montrerons que cette question peut-être reliée à la conjecture de Batyrev-Manin-Peyre, c'est-à-dire le cas des points rationnels, sur un schéma de Hilbert ponctuel. Nous en déduisons ainsi la distribution des points algébriques de degré fixé d'une courbe rationnelle. Lorsque la variété de départ est une surface lisse de Fano, notre étude montre que les schémas de Hilbert associés fournissent, sous certaines conditions, de nouveaux contre-exemples à la conjecture de Batyrev-Manin-Peyre. Néanmoins, pour deux surfaces que nous étudions en détail, les schémas de Hilbert associés vérifient une version légèrement affaiblie de la conjecture de Batyrev-Manin-Peyre
The study of the distribution of rational or algebraic points of an algebraic variety according to their height is a classic problem in Diophantine geometry. In this thesis, we will be interested in the asymptotic cardinality of the set of algebraic points of fixed degree and bounded height of a smooth Fano variety defined over a number field, when the bound on the height tends to infinity. In particular, we show that this can be connected to the Batyrev-Manin-Peyre conjecture, i.e. the case of rational points, on some ponctual Hilbert scheme. We thus deduce the distribution of algebraic points of fixed degree on a rational curve. When the variety is a smooth Fano surface, our study shows that the associated Hilbert schemes provide, under certain conditions, new counterexamples to the Batyrev-Manin-Peyre conjecture. However, in two cases detailed in this thesis, the associated Hilbert schemes satisfie a slightly weaker version of the Batyrev-Manin-Peyre conjecture
APA, Harvard, Vancouver, ISO, and other styles
33

Turchetti, Danièle. "Contributions to arithmetic geometry in mixed characteristic : lifting covers of curves, non-archimedean geometry and the l-modular Weil representation." Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0022/document.

Full text
Abstract:
Dans cette thèse on étudie certains phénomènes d'interactions entre caractéristique positive et caractéristique nulle. Dans un premier temps on s'occupe du problème de relèvement locale d'actions de groupes. On y montre des conditions nécessaires pour l'existence de relèvement de certains actions du groupe Z/pZ x Z/pZ. Pour une action d'un groupe fini quelconque, on y étudie les arbres de Hurwitz, en montrant que chaque arbre de Hurwitz admet un plongement dans le disque unitaire fermé de Berkovich et que ses données de Hurwitz peuvent être décrites de façon analytique. Dans une deuxième partie nous construisons un analogue de la représentation de Weil à coefficients dans un anneau intègre, et nous montrons que cela satisfait les mêmes propriétés que dans le cas de coefficients complexes
In this thesis, we study the interplay between positive and zero characteristic. In a first instance, we deal with the local lifting problem of lifting actions of curves. We show necessary conditions for the existence of liftings of some actions of Z/pZ x Z/pZ. Then, for an action of a general finite group, we study the associated Hurwitz tree, showing that every Hurwitz tree has a canonical metric embedding in the Berkovich closed unit disc, and that the Hurwitz data can be described analytically.In the last chapter, we define an analog of the Weil representation with coefficients in an integral domain, showing that such representation satisfies the same properties than in the case with complex coefficients
APA, Harvard, Vancouver, ISO, and other styles
34

Gunawan, Albert. "Gauss's theorem on sums of 3 squares sheaves, and Gauss composition." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0020/document.

Full text
Abstract:
Le théorème de Gauss sur les sommes de 3 carrés relie le nombre de points entiers primitifs sur la sphère de rayon la racine carrée de n au nombre de classes d'un ordre quadratique imaginaire. En 2011, Edixhoven a esquissée une preuve du théorème de Gauss en utilisant une approche de la géométrie arithmétique. Il a utilisé l'action du groupe orthogonal spécial sur la sphère et a donné une bijection entre l'ensemble des SO3(Z)-orbites de tels points, si non vide, avec l'ensemble des classes d'isomorphisme de torseurs sous le stabilisateur. Ce dernier ensemble est un groupe, isomorphe au groupe des classes d'isomorphisme de modules projectifs de rang 1 sur l'anneau Z[1/2, √- n], ce qui donne une structure d'espace affine sur l'ensemble des SO3(Z)-orbites sur la sphère. Au chapitre 3 de cette thèse, nous donnons une démonstration complète du théorème de Gauss suivant les travaux d'Edixhoven. Nous donnons aussi une nouvelle preuve du théorème de Legendre sur l'existence d'une solution entière primitive de l'équation x2 + y2 + z2 = n en utilisant la théorie des faisceaux. Nous montrons au chapitre 4 comment obtenir explicitement l'action, donnée par la méthode des faisceaux, du groupe des classes sur l'ensemble des SO3(Z)-orbites sur la sphère en termes de SO3(Q)
Gauss's theorem on sums of 3 squares relates the number of primitive integer points on the sphere of radius the square root of n with the class number of some quadratic imaginary order. In 2011, Edixhoven sketched a different proof of Gauss's theorem by using an approach from arithmetic geometry. He used the action of the special orthogonal group on the sphere and gave a bijection between the set of SO3(Z)-orbits of such points, if non-empty, with the set of isomorphism classes of torsors under the stabilizer group. This last set is a group, isomorphic to the group of isomorphism classes of projective rank one modules over the ring Z[1/2, √- n]. This gives an affine space structure on the set of SO3(Z)-orbits on the sphere. In Chapter 3 we give a complete proof of Gauss's theorem following Edixhoven's work and a new proof of Legendre's theorem on the existence of a primitive integer solution of the equation x2 + y2 + z2 = n by sheaf theory. In Chapter 4 we make the action given by the sheaf method of the Picard group on the set of SO3(Z)-orbits on the sphere explicit, in terms of SO3(Q)
De stelling van Gauss over sommen van 3 kwadraten relateert het aantal primitieve gehele punten op de bol van straal de vierkantswortel van n aan het klassengetal van een bepaalde imaginaire kwadratisch orde. In 2011 schetste Edixhoven een ander bewijs van deze stelling van Gauss metbehulp van aritmetische meetkunde. Hij gebruikte de actie van de special orthogonale groep op de bol en gaf een bijectie tussen de verzameling van SO3(Z)-banen van dergelijke punten, als die niet leeg is, met de verzameling van isomor_e klassen van torsors onder de stabilisator groep. Deze laatste verzameling is een groep, isomorf met de groep van isomor_e klassen van projectieve rang _e_en modulen over de ring Z[1/2, √- n]. Dit geeft een a_ene ruimte structuur op de verzameling van SO3(Z)-banen op de bol. In Hoofdstuk 3 geven we een volledig bewijs van de stelling van Gauss zoals geschetst door Edixhoven, en een nieuw bewijs van Legendre's stelling over het bestaan van een primitieve gehele oplossing van de vergelijking x2 +y2 +z2 = n met schoven theorie. In hoofdstuk 4 maken we de werking gegeven door de schoven theorie van de Picard groep op de verzameling van SO3(Z)-banen op de bol expliciet, in termen van SO3(Q)
APA, Harvard, Vancouver, ISO, and other styles
35

Martin, Florent. "Constructibilité dans les espaces de Berkovich." Paris 6, 2013. http://www.theses.fr/2013PA066221.

Full text
Abstract:
Dans cette thèse, on s'intéresse à des problèmes de constructibilité en géométrie analytique non archimédienne sur un corps non archimédien k. On étudie certaines parties (semi-analytiques, sous-analytiques. . . ) du point de vue des espaces k-analytiques alors qu'elles n'étaient jusqu'à présent considérées qu'au niveau des points rigides. \par On étudie notamment les parties sous-analytiques (et sous-analytiques surconvergentes) en utilisant des points non rigides fournis par les espaces de Berkovich. Cela nous permet d'obtenir de nouvelles preuves de résultats antérieurs, d'établir de nouvelles propriétés et de clarifier une erreur concernant le comportement local des parties sous-analytiques surconvergentes qui n'avait jusque là pas été relevée. \par begin{comment}En utilisant des points non-rigides des espaces de Berkovich, on donne des contre-exemples à des résultats antérieurs sur les parties sou-analytiques surconvergents, et on explique comment la compacité des espaces k-affinoïdes permet des preuves antérieures concernant les parties sous-analytiques surconvergentes. On démontre également de nouvelles propriétés sur la dimension des espaces sous-analytiques. \par \end{comment}On donne également des théorèmes de finitude pour la cohomologie à support compact de germes H^q_c((\X^\an,S) , \Q_l) où S est une partie semi-algébrique localement fermée de l'analytifiée d'une k-variété algébrique \X. Enfin, on généralise des résultats concernant des applications de tropicalisation d'espaces k-analytiques compacts
In this thesis, we study constructibility problems in non-Archimedean analytic geometry over a non-Archimedean field k. We study some subsets (semianalytic, subanalytic. . . ) in the framework of k-analytic spaces, whereas until now they had only been consider as subsets of rigid k-spaces. \par We especially study subanalytic (and overconvergent subanalytic) sets using non-rigid points of Berkovich spaces. With this, we give new proofs of prior results, establish some new properties and clarify a mistake concerning the local behaviour of overconvergent subanalytic sets which had not been noticed until now. \par We also give finiteness results for compactly supported cohomology of germs H^q_c((\X^\an,S) , \Q_l) where S is a locally closed semi-algebraic subset of the analytification of some algebraic k-variety \X. Finally, we generalize some results about tropicalization maps of compactk-analytic spaces
APA, Harvard, Vancouver, ISO, and other styles
36

Tang, Shun. "Le théorème de concentration et la formule des points fixes de Lefschetz en géométrie d’Arakelov." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112015/document.

Full text
Abstract:
Dans les années quatre-vingts dix du siècle dernier, R. W. Thomason a démontréun théorème de concentration pour la K-théorie équivariante algébrique sur lesschémas munis d’une action d’un groupe algébrique G diagonalisable. Comme d’habitude,un tel théorème entraîne une formule des points fixes de type Lefschetz qui permetde calculer la caractéristique d’Euler-Poincaré équivariante d’un G-faisceau cohérent surun G-schéma propre en termes d’une caractéristique sur le sous-schéma des points fixes.Le but de cette thèse est de généraliser les résultats de R.W. Thomason dans le contextede la géométrie d’Arakelov. Dans ce travail, nous considérons les schémas arithmétiquesau sens de Gillet-Soulé et nous tout d’abord démontrons un analogue arithmétiquedu théorème de concentration pour les schémas arithmétiques munis d’une action duschéma en groupe diagonalisable associé à Z/nZ. La démonstration résulte du théorèmede concentration algébrique joint à des arguments analytiques. Dans le dernier chapitre,nous formulons et démontrons deux types de formules de Lefschetz arithmétiques. Cesdeux formules donnent une réponse positive à deux conjectures énoncées par K. Köhler,V. Maillot et D. Rössler
In the nineties of the last century, R. W. Thomason proved a concentrationtheorem for the algebraic equivariant K-theory on the schemes which are endowed withan action of a diagonalisable group scheme G. As usual, such a concentration theoreminduces a fixed point formula of Lefschetz type which can be used to calculate theequivariant Euler-Poincaré characteristic of a coherent G-sheaf on a proper G-schemein terms of a characteristic on the fixed point subscheme. It is the aim of this thesis togeneralize R. W. Thomason’s results to the context of Arakelov geometry. In this work,we consider the arithmetic schemes in the sense of Gillet-Soulé and we first prove anarithmetic analogue of the concentration theorem for the arithmetic schemes endowedwith an action of the diagonalisable group scheme associated to Z/nZ. The proof is acombination of the algebraic concentration theorem and some analytic arguments. Inthe last chapter, we formulate and prove two kinds of arithmetic Lefschetz formulae.These two formulae give a positive answer to two conjectures made by K. Köhler, V.Maillot and D. Rössler
APA, Harvard, Vancouver, ISO, and other styles
37

Hachami, Saïd. "Périodes hermitiennes des courbes et application à une formule de chowla-selberg." Nancy 1, 1988. http://www.theses.fr/1988NAN10142.

Full text
Abstract:
La nouvelle démonstration de la formule de chowla-selberg dans le cas P = 7 consiste à exhiber une application méromorphe entre la courbe de fermat X**(7) + Y**(7) + Z**(7) = 0 de P::(2)(C) et une courbe elliptique. Un calcul direct que D. Barlet a effectué précédemment en liaison avec le calcul de la forme hermitienne cannonique des singularités isolées des surfaces de fermat X**(A) + Y**(B) + Z**(C) dans C**(3) montraient qu'une période hermitienne convenable sur la courbe X**(7) + Y**(7) + Z**(7) coincidait avec le membre de droite de la formule de chowla-selberg pour P = 7 (à des constantes triviales près). La construction élaborée permet de relier directement cette période hermitienne à l'aide du parallélogramme d'une courbe elliptique
APA, Harvard, Vancouver, ISO, and other styles
38

Tian, Yisheng. "Arithmétique des groupes algébriques au-dessus du corps des fonctions d'une courbe sur un corps p-adique." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM006.

Full text
Abstract:
Dans cette thèse, on considère l'arithmétique des groupes linéaires sur les corps de fonctions p-adiques. On divise la thèse en plusieurs parties.Dans la première partie, on rappelle une obstruction cohomologique au principe de Hasse pour les torseurs sous un tore [HS16] et une obstruction à l'approximation faible pour les tores [HSS15] Par la suite, on compare les obstructions ci-dessus de deux manières différentes. En particulier, on montre que l'obstruction au principe de Hasse pour les torseurs sous un tore peut être décrite par un groupe de cohomologie non ramifée.Dans la deuxième partie, on établit quelques théorèmes de dualité arithmétique et on déduit une suite exacte de type Poitou-Tate pour les complexes courts de tores. Plus tard, on parvient à trouver un défaut d'approximation faible pour certains groupes réductifs connexes en utilisant un morceau de la suite de Poitou-Tate.Dans la dernière partie, on considère un théorème de Borel-Serre de finitude en cohomologie galoisienne. Le premier ingrédient est que la finitude du noyau de l'application locale-globalepour les groupes linéaires découlera de celle des groupes géométriquement simples simplementconnexes. Par la suite, on montre que ce noyau est un ensemble fini pour une liste de groupes géométriquement simples simplement connexes
This thesis deals with the arithmetic of linear groups over p-adic function fields. We divide the thesis into several parts.In the first part, we recall a cohomological obstruction to the Hasse principle for torsors under tori [HS16] and another obstruction to weak approximation for tori [HSS15] Subsequently we compare the two obstructions in two different manners. In particular, we show that the obstruction to the Hasse principle for torsors under tori can be described by an unramifed cohomology group.In the second part, we establish some arithmetic duality theorems and deduce a Poitou-Tate style exact sequence for a short complex of tori. Later on, we manage to find a defect to weak approximation for certain connected reductive groups using a piece of the Poitou-Tate sequence.In the last part, we consider a Borel-Serre style finiteness theorem in Galois cohomology. The first ingredient is that the finiteness of the kernel of the global-to-local map for linear groups will follow from that of absolutely simple simply connected groups. Subsequently, we show the kernel is a finite set for a list of absolutely simple simply connected groups
APA, Harvard, Vancouver, ISO, and other styles
39

Xu, Daxin. "Correspondances de Simpson p-adique et modulo pⁿ." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS133/document.

Full text
Abstract:
Cette thèse est consacrée à deux variantes arithmétiques de la correspondance de Simpson. Dans la première partie, on compare la correspondance de Simpson p-adique à un analogue p-adique de la correspondance de Narasimhan et Seshadri pour les courbes sur les corps p-adiques dû à Deninger et Werner. Narasimhan et Seshadri ont établi une correspondance entre les fibrés vectoriels stables de degré zéro et les représentations unitaires du groupe fondamental topologique pour une courbe complexe propre et lisse. Par transport parallèle, Deninger et Werner ont associé fonctoriellement à chaque fibré vectoriel sur une courbe p-adique dont la réduction est fortement semi-stable de degré 0 une représentation p-adique du groupe fondamental de la courbe. Ils se sont posés quelques questions: si leur foncteur est pleinement fidèle ; si la cohomologie des systèmes locaux fournis par leur foncteur admet une filtration de Hodge-Tate ; et si leur construction est compatible avec la correspondance de Simpson p-adique développée par Faltings. On répond positivement à ces questions. La seconde partie est consacrée à la construction d'un relèvement de la transformée de Cartier d'Ogus-Vologodsky modulo pⁿ. Soient W l'anneau des vecteurs de Witt d'un corps parfait de caractéristique p>0, X un schéma formel lisse sur W, X' le changement de base de X par l'endomorphisme de Frobenius de W, X'_2 la réduction modulo p² de X' et Y la fibre spéciale de X. On relève la transformée de Cartier d'Ogus-Vologodsky relative à X'_2. Plus précisément, on construit un foncteur de la catégorie des O_{X'}-modules de pⁿ-torsion à p-connexion intégrable dans la catégorie des O_X-modules de pⁿ-torsion à connexion intégrable, chacune étant soumise à des conditions de nilpotence appropriées. S'il existe un relèvement F: X -> X' du morphisme de Frobenius relatif de Y, notre foncteur est compatible avec le foncteur de Shiho induit par F. Comme application de la transformée de Cartier modulo pⁿ, on donne une nouvelle interprétation des modules de Fontaine relatifs introduits par Faltings et du calcul de leur cohomologie
This thesis is devoted to two arithmetic variants of Simpson's correspondence. In the first part, I compare the p-adic Simpson correspondence with a p-adic analogue of the Narasimhan-Seshadri's correspondence for curves over p-adic fields due to Deninger and Werner. Narasimhan and Seshadri established a correspondence between stable bundles of degree zero and unitary representations of the topological fundamental group for a complex smooth proper curve. Using parallel transport, Deninger and Werner associated functorially to every vector bundle on a p-adic curve whose reduction is strongly semi-stable of degree 0 a p-adic representation of the fundamental group of the curve. They asked several questions: whether their functor is fully faithful; whether the cohomology of the local systems produced by this functor admits a Hodge-Tate filtration; and whether their construction is compatible with the p-adic Simpson correspondence developed by Faltings. We answer positively these questions. The second part is devoted to the construction of a lifting of the Cartier transform of Ogus-Vologodsky modulo pⁿ. Let W be the ring of the Witt vectors of a perfect field of characteristic p, X a smooth formal scheme over W, X' the base change of X by the Frobenius morphism of W, X'_2 the reduction modulo p² of X' and Y the special fiber of X. We lift the Cartier transform of Ogus-Vologodsky relative to X'_2 modulo pⁿ. More precisely, we construct a functor from the category of pⁿ-torsion O_{X'}-modules with integrable p-connection to the category of pⁿ-torsion O_X-modules with integrable connection, each subject to a suitable nilpotence condition. Our construction is based on Oyama's reformulation of the Cartier transform of Ogus-Vologodsky in characteristic p. If there exists a lifting F: X -> X' of the relative Frobenius morphism of Y, our functor is compatible with a functor constructed by Shiho from F. As an application, we give a new interpretation of relative Fontaine modules introduced by Faltings and of the computation of their cohomology
APA, Harvard, Vancouver, ISO, and other styles
40

Xie, Song-Yan. "Sur l’amplitude des fibrés cotangents d’intersections complètes." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS116/document.

Full text
Abstract:
Dans la première partie de cette thèse, nous établissons la Conjectured'amplitude de Debarre : Le fibré cotangent T_X* d'une intersection X =H_1 cap ... cap H_c de c >= N/2 hypersurfaces génériques H_i dansP^N de degrés élevés d_1, ..., d_c >> 1 est ample.Tout d'abord, nous élaborons une interprétation géométrique desdifférentielles symétriques sur les espaces projectifs. De cettemanière, nous reconstruisons les différentielles symétriques deBrotbek sur X, lorsque les équations définissantes des hypersurfacesH_1, ..., H_c sont de type Fermat généralisé. De plus, nous dévoilonsdes familles nouvelles de différentielles symétriques de degréinférieur sur toutes les intersections possibles de X avec deshyperplans de coordonnées.Ensuite, nous introduisons ce que nous appelons la Méthode desCoefficients Mobiles ainsi que le Coup du Produit afin d'accomplir unedémonstration de la conjecture d'amplitude de Debarre. De plus, nousobtenons une borne effective inférieure sur les degrés : d_1,...,d_c >=N^N^2. Enfin, grace à des résultats connus au sujet de la conjecturede Fujita, nous établissons que Sym^k T_X* est très ample pour tout k>= 64 (d_1 + ... + d_c)^2.Dans la seconde partie de cette thèse, nous étudions la Conjectured'amplitude généralisée de Debarre stipulant que sur un corpsalgébriquement clos K de caractéristique quelconque, sur une variétéK-projective lisse P de dimension N munie de c >= N/2 fibrés endroites très amples L_1, ..., L_c, pour tous degrés élevés d_1,...,d_c >= d_* >> 1, pour c hypersurfaces génériques H_i dans lessystèmes linéaires L_i^d_i, l'intersection complète X := H_1 cap ... capH_c possède un fibré cotangent T_X* qui est ample.Sur de telles intersections X, nous construisons ce que nous appelonsdes `formes différentielles symétriques de Brotbek généralisées', etnous établissons que si L_1, ..., L_c sont presque proportionnelsmutuellement, alors la conjecture d'amplitude généralisée de Debarreest valide. Notre méthode est effective, et dans le cas où L_1 = ... =L_c, nous obtenons la meme borne inférieure d_* = N^N^2 que dans lapremière partie.Ces deux travaux sont parus sur arxiv.org
In the first part of this thesis, we establish the Debarre AmplenessConjecture: The cotangent bundle T_X^* of the intersection X = H_1cap ... cap H_c of c >= N/2 generic hypersurfaces H_i in P^N of highdegrees d_1, ..., d_c >> 1 is ample.First of all, we provide a geometric interpretation of symmetricdifferential forms in projective spaces. Thereby, we reconstructBrotbek's symmetric differential forms on X, where the defininghypersurfaces H_1, ..., H_c are generalized Fermat-type. Moreover, weexhibit unveiled families of lower degree symmetric differential formson all possible intersections of X with coordinate hyperplanes.Thereafter, we introduce what we call the `moving coefficients method'and the `product coup' to settle the Debarre Ampleness Conjecture. Inaddition, we obtain an effective lower degree bound: d_1, ...,d_c >=N^{N^2}. Lastly, thanks to known results about the Fujita Conjecture,we establish the very-ampleness of Sym^k T_X^* for all k >= 64 (d_1 +... + d_c)^2.In the second part, we study the General Debarre Ampleness Conjecture,which stipulates that, over an algebraically closed field K with anycharacteristic, on an N-dimensional smooth projective K-variety Pequipped with c >= N/2 very ample line bundles L_1, ..., L_c, for alllarge degrees d_1, ..., d_c >= d_* >> 1, for generic c hypersurfacesH_i in the complete linear system L_i^d_i, the complete intersection X:= H_1 cap ... cap H_c has ample cotangent bundle T_X^*.On such an intersection variety X, we construct what we call`generalized Brotbek's symmetric differential forms', and we establishthat, if L_1,...,L_c are almost proportional mutually, then theGeneral Debarre Ampleness Conjecture holds true. Our method iseffective, and in the case where L_1 = ... = L_c, we obtain the samelower degree bound d_* = N^{N^2} as in the first part.These two works have been posted on arxiv.org
APA, Harvard, Vancouver, ISO, and other styles
41

Randriambololona, Hugues. "Hauteurs pour les sous-schémas et exemples d'utilisation de méthodes arakeloviennes en théorie de l'approximation diophantienne." Phd thesis, Université Paris Sud - Paris XI, 2002. http://tel.archives-ouvertes.fr/tel-00359859.

Full text
Abstract:
Dans cette thèse on définit et étudie un certain nombre de notions dans le cadre de la géométrie d'Arakelov qui, d'une part, possèdent un intérêt intrinsèque et, d'autre part, sont susceptibles d'applications à la théorie de l'approximation diophantienne.

La plus grande partie du texte est consacrée à l'élaboration d'une théorie des hauteurs pour les sous-schémas et à la preuve de «formules de Hilbert-Samuel» pour ces hauteurs. Pour deux classes importantes de sous-schémas (les sous-schémas intègres et les sous-schémas «lisses avec multiplicités») on montre que la hauteur du sous-schéma relativement à une grande puissance d'un fibré en droites positif est asymptotiquement déterminée par la hauteur du cycle associé. La démonstration repose essentiellement sur le «théorème de Hilbert-Samuel arithmétique» de Gillet et Soulé, auquel elle se ramène par l'utilisation de techniques de géométrie analytique hermitienne. On fait ensuite une analyse plus fine du développement asymptotique des hauteurs de certains sous-schémas particuliers. Notamment, dans le cas de la dimension relative zéro, on exprime le terme constant du développement asymptotique en fonction de la ramification du sous-schéma, ce qui résout une question de Michel Laurent sur les hauteurs des matrices d'interpolation.

Enfin, dans une partie indépendante, on expose diverses applications de méthodes arakeloviennes à des problèmes d'approximation diophantienne. En particulier on donne une nouvelle démonstration d'un critère classique d'indépendance algébrique dont l'originalité est qu'elle n'utilise plus de théorie de l'élimination mais uniquement des techniques de théorie de l'intersection arithmétique.
APA, Harvard, Vancouver, ISO, and other styles
42

Pontreau, Corentin. "Minoration de la hauteur normalisée en petite codimension." Phd thesis, Université de Caen, 2005. http://tel.archives-ouvertes.fr/tel-00011840.

Full text
Abstract:
Le point de départ de cette thèse est l'étude du problème de Lehmer en dimension supérieure à deux. Le but ici est de trouver dans le cadre plus général du groupe multiplicatif $G_m^n$, des bornes inférieures pour la hauteur de sous-variétés de petite dimension, ou plutôt de petite codimension.

Dans un premier temps nous regroupons un certain nombre de résultats plus ou moins connus sur les sous-groupes algébriques et le comportement des sous-variétés après multiplication par un entier dans $G_m^n$. Par la suite, nous montrons des minorations de type arithmétique et géométrique pour les sous-variétés de codimension 1 et 2 de $G_m^2$ et $G_m^3$ respectivement. A la différence de ce qui est fait dans les travaux antérieurs de F. Amoroso et S. David, concernant les sous-variétés de codimension différente de 1, nous n'utilisons pas de descente finale pour conclure nos preuves, mais un nouvel argument géométrique. Ceci simplifie grandement la démarche, et apporte de réelles améliorations quantitatives dans ces cas étudiés.

Nous nous intéressons enfin à l'étude des petits points d'une sous-variété. Etant donnée une surface $V$ de $G_m^3$ géométriquement irréductible, nous montrons qu'en dehors d'un nombre fini de translatés de tores exceptionnels inclus dans $V$, dont nous majorons la somme des degrés, tous les points sont de hauteur minorée par une quantité quasi-optimale $\epsilon(V)>0$, essentiellement linéaire en l'inverse du degré de $V$, chose que l'on ne sait pas faire dans le cas général.
APA, Harvard, Vancouver, ISO, and other styles
43

Walkowiak, Yann. "Effectivité dans le théorème d'irréductibilité de Hilbert." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2004. http://tel.archives-ouvertes.fr/tel-00008392.

Full text
Abstract:
Le théorème d'irréductibilité de Hilbert assure l'existence d'une spécialisation conservant l'irréductibilité d'un polynôme à plusieurs variables et à coefficients rationnels. Des versions effectives ont été données par P. Dèbes (1993) puis par U. Zannier et A. Schinzel (1995). Nous proposons ici diverses tentatives d'améliorer ces résultats effectifs : méthode de Dörge, méthode des congruences inspirée par un article de M. Fried et enfin une utilisation des résultats récents de R. Heath-Brown sur les points entiers d'une courbe algébrique. Cette dernière voie va nous permettre d'améliorer significativement les résultats connus. On finira par une application à la recherche d'un algorithme polynomial pour la factorisation d'un polynôme à deux indéterminées.
APA, Harvard, Vancouver, ISO, and other styles
44

Lamarque, Loïc. "Modélisation géométrique et arithmétique par intervalles." Dijon, 2006. http://www.theses.fr/2006DIJOS043.

Full text
Abstract:
Les objets géométriques sont souvent modélisés par des systèmes d'équations et d'inéquations particuliers. Toutefois, tout système d'équations et d'inéquations définit un objet géométrique. Cette thèse s'intéresse à la possibilité de spécifier un objet géométrique par un système de contraintes qui sera résolu par un solveur. Elle explicite aussi les difficultés que rencontre un tel solveur et apporte des débuts de solutions
Geometrical objects are often modelled by systems of equations and inequalities. However, any system of equations ans inequalities defines a geometrical object. This thesis focuses on the possibility of specifying a geometrical object by a system of constraints which will be solved by a solver. It also clarifies the difficulties encountered by such a solver and suggests beginning of solutions
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Chunhui. "Comptage des points rationnels dans les variétés arithmétiques." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC295/document.

Full text
Abstract:
Le comptage des points rationnels est un problème classique en géométrie diophantienne. On s’intéresse à des majorations du nombre des points rationnels de hauteur bornée qui sont valables pour toute hypersurface arithmétique de degré fixé d’un espace projectif. Dans ce but, on construit une famille d’hypersurfaces auxiliaires qui contiennent tous les points rationnels de hauteur bornée mais ne contiennent pas le point générique de l’hypersurface initiale. Plusieurs outils géométriques sont développés ou adaptés dans le cadre de la géométrie d’Arakelov et de la géométrie diophantienne afin d’appliquer la méthode des déterminants par la langage de la géométrie d’Arakelov, notamment une majoration et une minoration explicite uniforme de la fonction de Hilbert-Samuel arithmétrique d’une hypersurface. Pour un schéma projectif réduit de dimension pure sur un anneau d’entiers algébriques, on donne une majoration du nombre des places sur lesquelles la fibre ne soit pas réduite. Cette majoration est utile pour la construction des hypersurfaces auxiliaires mentionnées au-dessus. De plus, la géométrie sur un corps fini joue un rôle important dans ce problème. Dans ce travail, l’un des ingrédients clé dans ce travail est une majoration effective liée à une fonction de comptage des multiplicités des points rationnels dans une hypersurface projective réduite définie sur un corps fini, qui donne une description de la complexité de son lieu singulier. Pour ce problème de comptage de multiplicités, l’outil principal est la théorie d’intersection sur un espace projectif
Counting rational points is a classical problem in Diophantine geometry. We are interested inupper bounds for the number of rational points of bounded height of an arithmetic hypersurface with bounded degree in a projective space. For this propose, we construct a family of auxiliary hypersurfaces which contain all these rational points of bounded height but don’t contain the generic point of this hypersurface. Several tools of Arakelov geometry and Diophantine geometry are developed or adapted in this work in order to apply the determinant method by the approach of Arakelov geometry, especially a uniform explicit upper bound and a uniform explicit lower bound of the arithmetic Hilbert-Samuel function of a hypersurface. For a reduced pure dimensional projective scheme over a ring of algebraic integers, we give an upper bound of the number of places over which the fiber is not reduced any longer. This upper bound is useful for the construction of these auxilary hypersurfaces mentioned above. In addition, the geometry over a finite field plays an important role in this problem. One of the key ingredients in this work is an e_ective upper bound for a counting function of multiplicities of rational points in a reduced projective hypersurface defined over a finite field, which gives a description of the complexity of its singular locus. For this problem of counting multiplicities, the major tool is intersection theory on a projective space
APA, Harvard, Vancouver, ISO, and other styles
46

Lucchini, Arteche Giancarlo. "Groupe de Brauer des espaces homogènes à stabilisateur non connexe et applications arithmétiques." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112207/document.

Full text
Abstract:
Dans cette thèse, on s'intéresse au groupe de Brauer non ramifié des espaces homogènes à stabilisateur non connexe et à ses applications arithmétiques. On développe notamment différentes formules de nature algébrique et/ou arithmétique permettant de calculer explicitement, tant sur un corps fini que sur un corps de caractéristique 0, la partie algébrique du groupe de Brauer non ramifié d'un espace homogène G\G' sous un groupe linéaire G' semi-simple simplement connexe à stabilisateur fini G, le tout en donnant des exemples de calculs que l'on peut faire avec ces formules. Pour ce faire, on démontre au préalable (à l'aide d'un théorème de Gabber sur les altérations) un résultat décrivant la partie de torsion première à p du groupe de Brauer non ramifié d'une variété V lisse et géométriquement intègre sur un corps fini ou sur un corps global de caractéristique p au moyen de l'évaluation des éléments de Br(V) sur ses points locaux. Les formules pour un stabilisateur fini sont ensuite généralisées au cas d'un stabilisateur G quelconque via une réduction de la cohomologie galoisienne du groupe G à celle d'un certain sous-quotient fini. Enfin, pour K un corps global et G un K-groupe fini résoluble, on démontre sous certaines hypothèses sur une extension déployant G que l'espace homogène V:=G\G' avec G' un K-groupe semi-simple simplement connexe vérifie l'approximation faible (ces hypothèses assurant la nullité du groupe de Brauer non ramifié algébrique). On utilise une version plus précise de ce résultat pour démontrer ensuite le principe de Hasse pour des espaces homogènes X sous un K-groupe G' semi-simple simplement connexe à stabilisateur géométrique fini et résoluble, sous certaines hypothèses sur le K-lien défini par X
This thesis studies the unramified Brauer group of homogeneous spaces with non connected stabilizer and its arithmetic applcations. In particular, we develop different formulas of algebraic and/or arithmetic nature allowing an explicit calculation, both over a finite field and over a field of characteristic 0, of the algebraic part of the unramified Brauer group of a homogeneous space G\G' under a semisimple simply connected linear group G' with finite stabilizer G. We also give examples of the calculations that can be done with these formulas. For achieving this goal, we prove beforehand (using a theorem of Gabber on alterations) a result describing the prime-to-p torsion part of the unramified Brauer group of a smooth and geometrically integral variety V over a global field of characteristic p or over a finite field by evaluating the elements of Br(V) at its local points. The formulas for finite stabilizers are later generalised to the case where the stabilizer G is any linear algebraic group using a reduction of the Galois cohomology of the group G to that of a certain finite subquotient.Finally, for a global field K and a finite solvable K-group G, we show under certain hypotheses concerning the extension splitting G that the homogeneous space V:=G\G' with G' a semi-simple simply connected K-group has the weak approximation property (the hypotheses ensuring the triviality of the unramified algebraic Brauer group). We use then a more precise version of this result to prove the Hasse principle forhomogeneous spaces X under a semi-simple simply connected K-group G' with finite solvable geometric stabilizer, under certain hypotheses concerning the K-kernel (or K-lien) defined by X
APA, Harvard, Vancouver, ISO, and other styles
47

Antei, Marco. "Extension de torseurs." Thesis, Lille 1, 2008. http://www.theses.fr/2008LIL10056/document.

Full text
Abstract:
La question à laquelle la thèse tente de répondre est la suivante: étant donné un schéma relatif X sur un anneau de valuation discrète R et un G'-torseur y' au dessus de la fibre générique X' de X, existe-t-il un R-schéma en groupes G et un G-torseur Y au dessus de X qui étende le torseur de départ ? On aborde cette question sous l'angle du schéma en groupes fondamental introduit par Nori pour un schéma propre et réduit sur un corps k et généralisé par Gasbarri au cas d'un schéma réduit et irréductible fidèlement plat sur un schéma de Dedekind. On montre que le morphisme naturel f du schéma en groupes fondamental de X' dans la fibre générique du schéma en groupe fondamental de X est toujours surjectif pour la topologie fpqc et que tout torseur peut être étendu ssi f est un isomorphisme. Les deux premiers chapitres de la thèse sont consacrés à l'introduction des outils nécessaires pour accomplir ce programme. En particulier la définition tannakienne du schéma en groupes fondamental et du torseur universel de Nori est revisitée. Dans le troisième chapitre, la preuve des résultats mentionnés ci-dessus est donnée. Le quatrième chapitre est quant à lui consacré à une question connexe : étant donné un morphisme f entre deux schémas Y et X sur un corps k t.q. l'image directe F du faisceau structural de Y est essentiellement fini, est-il possible de définir une clôture galoisienne? On montre que le torseur universel associé à la sous-catégorie tannakienne de la catégorie des fibrés essentiellement finis engendrée par F joue le rôle de clôture galoisienne
The question we try to answer in this thesis is the following: let X be a relative scheme over a discrete valuation ring R and y' a G'-torsor over the generic fibre X' of X. Does it exist an R-group scheme G and a G-torsor Y over X whose generic fibre is isomorphic to the given torsor? We face this problem by means of the fundamental group scheme introduced by Nori for a reduced scheme X complete over a field and then generalized by Gasbarri for an irreducible and reduced scheme faithfully flat over a Dedekind scheme. We prove that the natural morphism f between the fundamental group scheme of X' and the generic fibre of the fundamental group scheme of X is always surjective for the fpqc topology. Moreover we prove that any torsor can be extended iff f is an isomorphism. The firstt two chapters of the thesis are devoted to an introduction of the objects used in the last two chapters. ln particular the tannakian definition of the fundamental group scheme and of the universal torsor of Nori are revisited. ln the third chapter a proof of the results mentioned before is given. The fourth chapter is devoted to a related question: let f be a morphism between two schemes Y and X over a field k.s.t. the direct image F of the structural sheaf of Y is essentially finite, is it possible to defme a Galois cIosure? We prove that the universal torsor associated to the sub-category of the category of essentially finite vector bundles generated by F is the desired Galois closure
APA, Harvard, Vancouver, ISO, and other styles
48

Plessis, Arnaud. "Ramification et points de petite hauteur." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC220/document.

Full text
Abstract:
Dans cette thèse, on s'intéressera aux points de petite hauteur dans le groupe multiplicatif et sur une courbe elliptique.Dans le cas du groupe multiplicatif, on étudiera tout d'abord les corps dont les points de petites hauteurs sont les racines de l'unité.Ensuite, on localisera les points de petite hauteur dans un corps généré par certains groupes de rang fini.Pour cela, on aura besoin d'étudier les groupes de ramification de certaines extensions radicales.Ces résultats vont dans la direction d'une conjecture de Rémond.Il existe aussi un analogue de cette conjecture dans le cas des variétés abéliennes et il semblerait qu'on puisse même l'étendre au cas des variétés semi-abéliennes isotriviales.Cette nouvelle conjecture permet de relier entre eux certains théorèmes déjà présent dans la littérature.Cependant, ces résultats ne concerne que le cas où les points de petite hauteur sont des points de torsion.Pour conclure cette thèse, on donnera un premier exemple de cette conjecture dans le cas où les points de petite hauteur ne sont pas nécessairement des points de torsion
In this thesis, we will focus on points of small height in both multiplicative group and on an elliptic curve.Firstly, in the multiplicative group case, we will study fields whose points of small height are eNSUITE? roots of the unity.In a second time, we will localise the points of small height on a field generated by some groups of finite rank, according to a conjecture of Rémond. To this end, we will study ramification groups concerning radiciel extensions.There also exists an analogue of this conjecture of Rémond on the abelian varieties case and it would seem that we can expand it by including split semi-abelian varieties. This new conjecture allows us to connect some theorems already present in the literature.However, these results only concern the case where the points of small height are torsion points.To conclude this thesis, we will give a first example of this conjecture in the case where points of small height are not necessarily torsion points
APA, Harvard, Vancouver, ISO, and other styles
49

Ballaÿ, François. "Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs." Thesis, Université Clermont Auvergne‎ (2017-2020), 2017. http://www.theses.fr/2017CLFAC034/document.

Full text
Abstract:
Dans cette thèse, nous appliquons des outils issus de la théorie d’Arakelov à l’étude de problèmes de géométrie diophantienne. Une notion centrale dans notre étude est la théorie des pentes des fibrés vectoriels hermitiens, introduite par Bost dans les années 90. Nous travaillons plus précisément avec sa généralisation dans le cadre adélique, inspirée par Zhang et développée par Gaudron. Ce mémoire s’articule autour de deux axes principaux. Le premier consiste en l’étude d’un remarquable théorème de géométrie diophantienne dû à Faltings etWüstholz, qui généralise le théorème du sous-espace de Schmidt. Nous commencerons par retranscrire la démonstration de Faltings et Wüstholz dans le langage de la théorie des pentes. Dans un second temps, nous établirons des variantes effectives de ce théorème, que nous appliquerons pour démontrer une généralisation effective du théorème de Liouville valable pour les points fermés d’une variété projective fixée. Ce résultat fournit en particulier une majoration explicite de la hauteur des points satisfaisant une inégalité analogue à celle du théorème de Liouville classique. Dans la seconde partie de cette thèse, nous établirons de nouvelles mesures d’indépendance linéaire de logarithmes dans un groupe algébrique commutatif, dans le cas dit rationnel.Notre approche utilise les arguments de la méthode de Baker revisitée par Philippon et Waldschmidt, combinés avec des outils de la théorie des pentes. Nous y intégrons un nouvel argument, inspiré par des travaux antérieurs de Bertrand et Philippon, nous permettant de contourner les difficultés introduites par le cas périodique. Cette approche évite le recours à une extrapolation sur les dérivations à la manière de Philippon et Waldschmidt. Nous parvenons ainsi à supprimer une hypothèse technique contraignante dans plusieurs théorèmes de Gaudron, tout en précisant les mesures obtenues
In this thesis, we study diophantine geometry problems on projective varieties and commutative algebraic groups, by means of tools from Arakelov theory. A central notion in this work is the slope theory for hermitian vector bundles, introduced by Bost in the 1990s. More precisely, we work with its generalization in an adelic setting, inspired by Zhang and developed by Gaudron. This dissertation contains two major lines. The first one is devoted to the study of a remarkable theorem due to Faltings and Wüstholz, which generalizes Schmidt’s subspace theorem. We first reformulate the proof of Faltings and Wüstholz using the formalism of adelic vector bundles and the adelic slope method. We then establish some effective variants of the theorem, and we deduce an effective generalization of Liouville’s theorem for closed points on a projective variety defined over a number field. In particular, we give an explicit upper bound for the height of the points satisying a Liouville-type inequality. In the second part, we establish new measures of linear independence of logarithms over a commutative algebraic group. We focus our study on the rational case. Our approach combines Baker’s method (revisited by Philippon and Waldschmidt) with arguments from the slope theory. More importantly, we introduce a new argument to deal with the periodic case, inspired by previous works of Bertrand and Philippon. This method does not require the use of an extrapolation on derivations in the sense of Philippon-Waldschmidt. In this way, we are able to remove an important hypothesis in several theorems of Gaudron establishing lower bounds for linear forms in logarithms
APA, Harvard, Vancouver, ISO, and other styles
50

Lacoste, Cyril. "Dimension géométrique propre et espaces classifiants des groupes arithmétiques." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S010/document.

Full text
Abstract:
Cette thèse a pour objet l'étude des espaces classifiants pour les actions propres d'un groupe discret. La dimension géométrique propre est la plus petite dimension possible pour un tel espace (qui existe toujours). Nous montrons tout d'abord que pour un réseau dans le groupe d'isométries d'un espace symétrique de type non-compact sans facteur euclidien, la dimension géométrique propre est égale à la dimension cohomologique virtuelle. La preuve utilise le fait que si le rang réel de l'espace est supérieur ou égal à 2 et le réseau est irréductible, alors il est arithmétique. Dans ce cas, nous pouvons calculer explicitement la dimension cohomologique virtuelle à l'aide du rang rationnel. Dans un deuxième temps, nous cherchons à construire concrètement des espaces classifiants pour les actions propres de dimension minimale. Nous essayons d'adapter la construction du "rétract bien équilibré" de Soulé et Ash (pour le cas SL(n,Z)) aux groupes arithmétiques Sp(2n,Z) et Aut(SL(n,Z)). Nous montrons qu'en fait cette construction ne s'étend pas
In this thesis we study classifying spaces for proper actions of a discrete group. The proper geometric dimension is the smallest dimension of such a space (which always exists). Firstly we prove that for a lattice in the group of isometries of a symmetric space of the non-compact type without euclidean factors, the proper geometric dimension equals the virtual cohomological dimension. The proof relies on the fact that if the space has real rank at least 2 and if the lattice is irreducible, then it is arithmetic. In this case, the virtual cohomological dimension can be explicitly computed with the rational rank. Secondly we want to construct concretely classifying spaces for proper actions of minimal dimension. We try to adapt the construction of the "well-rounded retract" of Soulé and Ash (in the case SL(n,Z)) for the arithmetic groups Sp(2n,Z) and Aut(SL(n,Z)). We show that in fact this construction does not extend
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography