Dissertations / Theses on the topic 'Géométrie arithmétique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Géométrie arithmétique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Richard, Rodolphe. "Sur quelques questions d'équidistribution en géométrie arithmétique." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00438515.
Full textPion, Sylvain. "De la géométrie algorithmique au calcul géométrique." Phd thesis, Université de Nice Sophia-Antipolis, 1999. http://tel.archives-ouvertes.fr/tel-00011258.
Full textdans le but de résoudre les problèmes de robustesse que pose la géométrie algorithmique,
en se concentrant principalement sur l'évaluation exacte des prédicats
géométriques.
Nous avons exploré des méthodes basées sur l'arithmétique
modulaire, ce qui nous a conduits à mettre au point des algorithmes simples
et efficaces de reconstruction du signe dans cette représentation des
nombres.
Nous avons également mis au point de nouveaux types de filtres
arithmétiques qui permettent d'accélérer
le calcul des prédicats exacts, en contournant le coût des solutions
traditionnelles basées sur des calculs multi-précision génériques.
Nos méthodes sont basées sur l'utilisation de l'arithmétique
d'intervalles, qui permet une
utilisation souple et efficace, combinée à un outil de génération
automatique de code des prédicats.
Ces solutions sont maintenant disponibles dans la bibliothèque
d'algorithmes géométriques CGAL.
PION, SYLVAIN. "De la geometrie algorithmique au calcul geometrique." Nice, 1999. http://www.theses.fr/1999NICE5375.
Full textMontagnon, Claude. "Généralisation de la théorie arithmétique des D-modules à la géométrie logarithmique." Rennes 1, 2002. https://tel.archives-ouvertes.fr/tel-00002545.
Full textArène, Christophe. "Géométrie et arithmétique explicites des variétés abéliennes et applications à la cryptographie." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22069/document.
Full textThe main objects we study in this PhD thesis are the equations describing the group morphism on an abelian variety, embedded in a projective space, and their applications in cryptograhy. We denote by g its dimension and k its field of definition. This thesis is built in two parts. The first one is concerned by the study of Edwards curves, a model for elliptic curves having a cyclic subgroup of k-rational points of order 4, known in cryptography for the efficiency of their addition law and the fact that it can be defined for any couple of k-rational points (k-complete addition law). We give the corresponding geometric interpretation and deduce explicit formulae to calculate the reduced Tate pairing on twisted Edwards curves, whose efficiency compete with currently used elliptic models. The part ends with the generation, specific to pairing computation, of Edwards curves with today's cryptographic standard sizes. In the second part, we are interested in the notion of completeness introduced above. This property is cryptographically significant, indeed it permits to avoid physical attacks as side channel attacks, on elliptic -- or hyperelliptic -- curves cryptosystems. A preceeding work of Lange and Ruppert, based on cohomology of line bundles, brings a theoretic approach of addition laws. We present three important results: first of all we generalize a result of Bosma and Lenstra by proving that the group morphism can not be described by less than g+1 addition laws on the algebraic closure of k. Next, we prove that if the absolute Galois group of k is infinite, then any abelian variety can be projectively embedded together with a k-complete addition law. Moreover, a cryptographic use of abelian varieties restricting us to the dimension one and two cases, we prove that such a law exists for their classical projective embedding. Finally, we develop an algorithm, based on the theory of theta functions, computing this addition law in P^15 on the Jacobian of a genus two curve given in Rosenhain form. It is now included in AVIsogenies, a Magma package
Potemine, Igor. "Arithmétique des corps globaux de fonctions et géométrie des schémas modulaires de Drinfeld." Grenoble 1, 1997. http://www.theses.fr/1997GRE10030.
Full textGuilbot, Robin. "Quelques aspects combinatoires et arithmétiques des variétés toriques complètes." Phd thesis, Université Paul Sabatier - Toulouse III, 2012. http://tel.archives-ouvertes.fr/tel-00832228.
Full textCadoret, Anna. "Théorie de Galois inverse et arithmétique des espaces de Hurwitz." Lille 1, 2004. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2004/50376-2004-Cadoret.pdf.
Full textLe chapitre 5 montre qu'un groupe profini extension d'un groupe fini par un groupe pronilpotent projectif de rang fini ne peut etre le groupe de Galois d'une extension régulière de corps des modules un corps de nombres; on y montre aussi que la strong torsion conjecture pour les variétés abéliennes implique une conjecture de Fried pour les tours modulaires. Le chapitre 6 enfin, contient deux résultats sur les courbes de Hurwitz standard: une formule générique permettant de calculer leur genre et une methode de genre zéro basée sur le principe de Hasse pour r = 4
Le, Guillou-Kouteynikoff Odile. "Algèbre et arithmétique au XVIe siècle : l'oeuvre de Guillaume Gosselin." Paris 7, 2011. http://www.theses.fr/2011PA070110.
Full textThis thesis on the work of Gosselin consista of a translation from Latin to French of his Algebra or De Arte Magna (1577), and his Lesson in studying and teaching mathematics, the Praelectio (1583), together with a mathematical and historical commentary on his writings, which include a translation and adaptation, from Italian to French, of a part of the General Trattato of Tartaglia, the title of which is Arithmetique de Nicolas Tartaglia (1578). Gosselin constructed the independence of number in relation to geometry, and made strong links between arithmetic and algebra, not only basing the objects and rules of algebra on the objects and rules of arithmetic, but also demonstrating the ancient rules of arithmetic by means of algebra. In solving equations, as in ail the Copies he handles, Gosselin gives general and simple rules and demonstrates them, making use of algebraic identities based on his reading of Euclid's Elements. He studied with enthusiasm the Arithmetica of Diophantus published in Latin in 1575, and appropriated Diophantine methods to salve arithmetic questions about quadratic congruences using algebra. In the Praelectio Gosselin presents a plan for studying and teaching geometry, elementary arithmetic, and algebra, now re-named 'subtle arithmetic' in keeping with Aristotle's division of mathematics into two kinds, continuous and discreet Gosselin also demonstrates his numerical skills in his solution of Systems of equations in several unknowns using linear combinations
Munoz, Bertrand Ruben. "Coefficients en cohomologie de De Rham-Witt surconvergente." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC205.
Full textUnder a few assumptions, we prove an equivalence of category between a subcategory of F-isocristals on a smooth algebraic variety and overcongergent integrable De Rham-Witt connections. We do so by giving an equivalent definition of overconvergence, and by studying the explicit local structure of the De Rham-Witt complex
Guillot, Gaétan. "Approximation de sous-espaces vectoriels de ℝⁿ par des sous-espaces rationnels." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM009.
Full textFor A a vector subspace of ℝⁿ with dimension d and B a rational subspace with dimension e, we define min(d,e) angles ψ_j(A,B) for j in {1,.., min(d,e)} that capture the proximity between A and B. We then study the Diophantine exponent µₙ(A|e)_j, defined as the supremum of µ > 0 such that there exist infinitely many spaces B of dimension e for which ψ_j(A,B) is less than H(B)^(-µ), where H(B) is the height of the rational space B. We first present a formula allowing the computation, under certain assumptions, of µₙ(A|e)_j when A is a direct sum of lines in ℝⁿ. Then, we construct several vector subspaces of ℝⁿ with dimension d for which we can prescribe the values taken by µₙ(A|e)_j for various choices of (e,j). From these constructions, we finally obtain results on the algebraic independence of families of functions of the form µₙ(.|e)_j
Guilbot, Robin. "Quelques aspects combinatoires et arithmétiques des variétés toriques complètes." Phd thesis, Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1905/.
Full textIn this thesis we study two distinct aspects of toric varieties, one purely geometric, over C, and the other of arithmetic nature, over quasi algebraically closed fields (C1 fields). Extremal curves, which generate the Mori cone of a projective toric variety, are primitive curves (V. Batyrev). In 2009, D. Cox and C. Von Renesse conjectured that the classes of primitive curves generate the Mori cone of any toric variety whose fan has full dimensional convex support. We present a family of counterexamples to this conjecture and propose a new formulation based on the notion of local contractibility, generalizing the contractibility defined by C. Casagrande. Using the corridors, a combinatorial tool that we introduce, we show how to write any given 1-cycle class as a linear combination with integer coefficients of toric curve classes. Corridors enable us to give an explicit decomposition of any class that is not contractible (straights corridors) as well as contractible classes in some particular cases (circular corridors). C1 fields are those over which the existence of rational points on a variety Y is ensured by any small degree embedding of Y in a projective space (by definition) or in a weighted projective space (according to an easy theorem of Kollar). For an ample divisor in a toric variety whose fan is simplicial and complete, we show that there is also a notion of small degree which ensures the existence of rational points. This way, we show the existence of rational points on a large class of rationally connected varieties
Stehlé, Damien. "Algorithmique de la réduction de réseaux et application à la recherche de pires cas pour l'arrondi de fonctions mathématiques." Nancy 1, 2005. http://docnum.univ-lorraine.fr/public/SCD_T_2005_0148_STEHLE.pdf.
Full textEuclidean lattices are a powerful tool for several algorithmic topics, among which are cryptography and algorithmic number theory. The contributions of this thesis are twofold : we improve lattice basis reduction algorithms, and we introduce a new application of lattice reduction, in computer arithmetic. Concerning lattices, we consider both small dimensions and arbitrary dimensions, for which we improve the classical LLL algorithm. Concerning the application, we make use of Coppersmith's method for computing the small roots of multivariate modular polynomials, in order to find the worst cases for the rounding of mathematical functions, when the function, the rounding mode and the precision are fixed. We also generalise our technique to find input numbers that are simultaneously bad for two functions. These two methods are expensive pre-computations, but once performed, they help speeding up the implementations of elementary mathematical functions in fixed precision
Rodriguez, Aurélien. "Construction d'une version Arakelov d'un groupe faible de cobordisme arithmétique." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066003.
Full textIn this thesis we construct a weak group of arithmetic cobordism in the context of Arakelov geometry. We introduce weak versions of arithmetic K-theory and arithmetic Chow groups, that give rise to the notion of oriented homological theory of arithmetic type. We then build a universal such homological theory, and prove its main structural features
Wagener, Benjamin. "Géométrie Arithmétique sur les variétés Abéliennes : minoration explicite de la hauteur de Faltings et borne sur la torsion." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC305/document.
Full textThis thesis leads essentially to two conclusions. On the one hand we determine a lower bound for the Faltings height of abelian varieties over number fields in which enter new non-archimedean invariants. It consists in the first part of this work in which we introduce systematically this invariants. They are directly linked to the non-archimedean geometry of abelian varities at places of bad reduction.In a second part we provides an approximative evaluation of this invariants which leads to a lower bound on the Faltings heights in terms of the number of components of the special fiber of the Néron model of abelian varieties at places of bad reduction.We deduce from this estimates a corollary that provides an upper bound on the cardinality of the group of rational torsion points of abelian varieties essentially in terms of the Falting height. This bound is the best bound known till now
Basson, Romain. "Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S019/document.
Full textThe aim of this thesis is to provide an explicite description of the moduli spaces of genus 3 hyperelliptic curves in positive characteristic. Over a field of characteristic zero or odd, a parame- terization of these moduli spaces is given via the algebra of invariants of binary forms of degree 8 under the action of the special linear group. After the work of Lercier and Ritzenthaler, the case of fields of characteristic 3, 5 and 7 are still open. However, in these remaining case, the classical methods in characteristic zero do not work in order to provide generators for these algebra of invariants. Hence we provide only separating invariants in characteristic 3 and 7. Furthermore our results in characteristic 5 show this approach is not suitable. From these results, we describe the stratification of the moduli spaces of genus 3 hyperelliptic curves in characteristic 3 and 7 according to the automorphism groups of the curves and imple- ment algorithms to reconstruct a curve from its invariants. For this reconstruction stage, we paid attention to arithmetic issues, like the obstruction to be a field of definition for the field of moduli. Finally, in the characteristic 2 case, we use a different approach, given that the curves are defined by their Artin-Schreier models. The arithmetic structure of the ramification points of these curves stratify the moduli space in 5 cases and we define in each case invariants that characterize the isomorphism class of hyperelliptic curves
Dissa, Sinaly. "Entre arithmétique et géométrie discrète, une étude épistémologique et didactique du théorème de Bézout et du théorème de Pick." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM008.
Full textThis thesis studies the problem of changing registers in mathematics education. More specifically,we have chosen to study the registers of the continuous and the discrete with interactions in thefields of arithmetic and geometry.This thesis shows, in particular, that "classic" adidactic / didactic situations do not allow suchinteractions to be implemented.We have shown, moreover, that there is a pervasiveness of the continuous in the conceptions of thestudents and even a resistance to consider the discreet. Our experiments were carried out withundergraduate mathematics students and trainers.Our first engineering deals with the study of whole points of a line of the plane. It highlighted theobstacle to recognizing a geometric characterization of the solutions of the Bézout equation(existence and exhaustiveness).This shows that in order to overcome this obstacle of changing registers, it is necessary to propose amore “open” type of situation concerning an epistemologically consistent mathematical problem.In this thesis, we studied the possibility of devolving a change in arithmetic / geometry register inthe context of "Research Situation for the Class". This is one of the objectives of our secondengineering covering the area of whole vertex polygons (with reference to Pick's theorem).Two pre-experiments made it possible to define the conditions for taking into account the discreteregister for a question relating to geometry.We have built a final experiment taking these conditions into account.The didactic analysis of the situation on Pick allows us to affirm that, on the one hand, the SiRCmodel is suitable for the engineering of situations of change of registers. On the other hand, it alsoshows that arithmetic and geometry are relevant mathematical domains for register interactions andwork on proof and reasoning.Among the conditions for proper devolution of registry changes, the nature of the question plays anessential role. We chose in engineering on the Pick problem to ask to search for a "method" or"formula" without specifying the variables and registers concerned.Our experience has shown that this type of question has enabled the development of many strategiesidentified in the mathematical analysis of the problem
Savel, Charles. "Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S072/document.
Full textGiven a p-torsion representation of the absolute Galois group of a p-adic field, M. Kisin defines a moduli space, which was named Kisin variety afterwards by G. Pappas and M. Rapoport. These varieties were first introduced in order to prove several modularity results on Galois representations. They were also used for constructing certain Galois deformation rings and computing some of them. Besides, they were involved in a recent work aiming at defining an algebraic structure on the stack of torsion Galois representations. It turns out that these varieties are formally similar to affine Deligne-Lusztig varieties. In particular their definition extends to the framework of reductive groups. In this thesis, we study the dimension of some Kisin varieties corresponding to the scalar restriction of the general linear group GLd. Inspired by methods coming from Deligne-Lusztig theory and following works by E. Viehmann and X. Caruso, we define a stratification on the given Kisin variety. Then we bound from below and from above the dimension of the strata, and we address the problem of maximizing the dimension over all strata. This allows us to derive the announced bounds on the dimension. As for affine Deligne-Lusztig varieties, the sum of the positive roots appears in the bounds
Madore, David. "Hypersurfaces cubiques : équivalence rationnelle, R-équivalence et approximation faible." Phd thesis, Université Paris Sud - Paris XI, 2005. http://tel.archives-ouvertes.fr/tel-00009887.
Full textWinckler, Bruno. "Intersection arithmétique et problème de Lehmer elliptique." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0233/document.
Full textIn this thesis we consider the problem of lower bounds for the canonical height onelliptic curves, aiming for the conjecture of Lehmer. Our main diophantine result isan explicit version of a theorem of Laurent (who proved this conjecture for ellipticcurves with CM up to a " exponent) using arithmetic intersection, enlightening thedependence with parameters linked to the elliptic curve ; such a result can be motivatedby the conjecture of Lang, hoping for a lower bound proportional to, roughly,the Faltings height of the curve.Nevertheless, our dissertation begins with a part dedicated to a completely explicitversion of the density theorem of Chebotarev, along the lines of a previous workdue to Lagarias and Odlyzko, which will be crucial to investigate the elliptic Lehmerproblem. We also obtain upper bounds for Siegel zeros, and for the smallest primeideal whose Frobenius is in a fixed conjugacy class
Tavenas, Sébastien. "Bornes inférieures et supérieures dans les circuits arithmétiques." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2014. http://tel.archives-ouvertes.fr/tel-01066752.
Full textJaillon, Philippe. "Proposition d'une arithmétique rationnelle paresseuse et d'un outil d'aide à la saisie d'objets en synthèse d'images." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 1993. http://tel.archives-ouvertes.fr/tel-00822902.
Full textBerger, Diego. "Stratification d'Ekedahl-Oort pour les modèles de Pappas-Rapoport des variétés de Shimura." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04746932.
Full textIn this thesis we study the geometry of the reduction of certain Shimuravarieties modulo a prime number p. More precisely, we consider the reductionmodulo p of the integer models of PEL-type Shimura varieties constructed byPappas and Rapoport. In the case of Hilbert-type PEL data, we show that thestratification induced by the Hodge polygon is a good stratification (the adherenceof a stratum is a disjoint union of strata). Next, we compute the G-orbits of thespecial fiber of the Pappas-Raporport local model in the Hilbert case, whereG is the group associated with the PEL datum. These orbits induce a goodstratification of the special fiber of the Shimura variety, which we call Kottwitz-Rapoport stratification (analogous to the Kottwitz-Rapoport stratification ofinteger Kottwitz models). In a recent work, Xu Shen and Yuqiang Zheng havedefined an Ekedahl-Oort stratification of integer Pappas-Rapoport models. Inthe Hilbert case we show that “the intersection” of their stratification with theKottwitz-Rapoport straitification is a good stratification.In the second part of this thesis, we focus on local models in the context ofp-adic Hodge theory. We define an integer-level embedding of Pappas-Rapoportlocal models into a certain affine Grassmannian of Beilinson-Drinfeld type, analogousto the embedding defined by Scholze and Weinstein for Kottwitz local models
Huang, Zhizhong. "Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM036/document.
Full textThe study of the distribution of rational points on algebraic varieties is a classic subject of Diophantine geometry. The program proposed by V. Batyrev and Y. Manin in the 1990s gives a prediction on the order of growth whereas its later version due to E. Peyre conjectures the existence of a global distribution. In this thesis we propose a study of the local distribution of rational points of bounded height on algebraic manifolds. This aims at giving a description finer than the global one by counting the points closest to a fixed point. We set ourselves on the recent framework of the work of D. McKinnon and M. Roth who prefers that the geometry of the variety governs the Diophantine approximation on it and we take up the results of S. Pagelot. The expected order of growth and the existence of an asymptotic measure on some toric surfaces are demonstrated, while we demonstrate a totally different result for another surface on which there is no asymptotic measure and the best generic approximates are obtained on nodal rational curves. These two phenomena are of a radically different nature from the point of view of the Diophantine approximation
Delsinne, Emmanuel. "Autour du problème de Lehmer relatif dans un tore." Phd thesis, Université de Caen, 2007. http://tel.archives-ouvertes.fr/tel-00259956.
Full textDans cette thèse, nous considérons tout d'abord le problème de Lehmer relatif unidimensionnel. Nous donnons une minoration pour la hauteur d'un nombre algébrique en fonction de son degré sur une extension abélienne d'un corps de nombres. Il s'agit d'une amélioration d'un théorème d'Amoroso et Zannier, obtenue à l'aide d'une démonstration techniquement plus simple. De plus, nous explicitons la dépendance de la borne inférieure en le corps de base. Puis nous abordons le problème de Lehmer relatif en dimension supérieure et minorons la hauteur d'une hypersurface en fonction de son indice d'obstruction sur une extension abélienne de Q. Enfin, nous obtenons un résultat analogue pour un point, sous réserve que celui-ci satisfasse une hypothèse technique. Nous montrons ainsi les conjectures les plus fines à un epsilon près.
Motte, François. "De la géométrie à l’arithmétique en théorie inverse de Galois." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I049/document.
Full textWe contribute to the Malle conjecture on the number of finite Galois extensions E of some number field K of Galois group G and of discriminant of norm bounded by y. We establish a lower bound for every group G and every number field K containing a certain number field K'. To achieve this goal, we start from a regular Galois extension F/K(T) that we specialize. We prove a strong version of the Hilbert Irreducibility Theorem which counts the number of specialized extensions and not only the specialization points. We can also prescribe the local behaviour of the specialized extensions at some primes. Consequently, we deduce new results on the local-global Grunwald problem, in particular for some non-solvable groups. To reach our goals, we prove some results in diophantine geometry about the number of integral points on an algebraic curve
Sagnier, Aurélien. "Un site arithmétique de type connes-consani pour les corps quadratiques imaginaires de nombre de classes 1." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC190/document.
Full textWe construct, for imaginary quadratic number fields with class number 1, an arithmetic site of Connes-Consani type. The main difficulty here is that the constructions of Connes and Consani and part of their results strongly rely on the natural order existing on real numbers which is compatible with basic arithmetic operations. Of course nothing of this sort exists in the case of imaginary quadratic number fields with class number 1. We first define what we call arithmetic site for such number fields, we then calculate the points of those arithmetic sites and we express them in terms of the ad\`eles class space considered by Connes to give a spectral interpretation of zeroes of Hecke L functions of number fields. We get therefore that for a fixed imaginary quadratic number field with class number 1, that the points of our arithmetic site are related to the zeroes of the Dedekind zeta function of the number field considered and to the zeroes of some Hecke L functions. We then study the relation between the spectrum of the ring of integers of the number field and the arithmetic site. Finally we construct the square of the arithmetic site
Paugam, Frédéric. "Groupe de Mumford-Tate, représentations galoisiennes et bonne réduction de variétés abéliennes." Rennes 1, 2002. http://www.theses.fr/2002REN10141.
Full textTang, Shun. "Le théorème de concentration et la formule des points fixes de Lefschetz en géométrie d'Arakelov." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00574296.
Full textPigeon, David. "Les D-modules arithmétiques dans le cas des p-bases et un algorithme pour le calcul de fonctions zêta." Caen, 2014. http://www.theses.fr/2014CAEN2013.
Full textThe theory of arithmetic D-modules was developed by Pierre Berthelot, based on the main ideas of Grothendieck and Mebkhout, who were the first to see the D-modules as a new cohomological approach. The primary aim of my thesis was to generalize the local descriptions of arithmetic D-modules in the smooth case, found by Pierre Berthelot. We want to integrate recent case studies, in particular from Richard Crew, where he studies formally smooth schemes. For that purpose, we generalize the notion of relatively perfect to the cases of formal schemes and obtain in this context a similar description to the smooth case. In a second step, we give an algorithm which allows calculating the zeta function of certain varieties, which are the extension of a variety that is already known to calculate the zeta function
Quertier, Tony. "Résolution de systèmes de deux équations quadratiques." Caen, 2016. http://www.theses.fr/2016CAEN2027.
Full textLet q0 and q1 be two homogenous quadratic forms, with integral coeffi- cients, in n variables. Denote by Vq0,q1 the projective variety defined by the intersection of the quadrics associated to q0 and q1. In 1959, Mordell proved that the Hasse principle holds for n ≥ 13, then in 1964 Swinnerton-Dyer proved it for n ≥ 11. In 2006, Wittenberg improved this result in his the- sis, proving that, if we assume Schinzel’s hypothesis and finiteness of the Tate-Shafarevich groups then the Hasse principle holds for n ≥ 6. In this thesis, we study if the variety Vq0,q1 has some points over number real field and p-adic fields. If so, we give different algorithmes to compute explicitly a rational solution of q0 = q1 = 0
Le, Rudulier Cécile. "Points algébriques de hauteur bornée." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S073/document.
Full textThe study of the distribution of rational or algebraic points of an algebraic variety according to their height is a classic problem in Diophantine geometry. In this thesis, we will be interested in the asymptotic cardinality of the set of algebraic points of fixed degree and bounded height of a smooth Fano variety defined over a number field, when the bound on the height tends to infinity. In particular, we show that this can be connected to the Batyrev-Manin-Peyre conjecture, i.e. the case of rational points, on some ponctual Hilbert scheme. We thus deduce the distribution of algebraic points of fixed degree on a rational curve. When the variety is a smooth Fano surface, our study shows that the associated Hilbert schemes provide, under certain conditions, new counterexamples to the Batyrev-Manin-Peyre conjecture. However, in two cases detailed in this thesis, the associated Hilbert schemes satisfie a slightly weaker version of the Batyrev-Manin-Peyre conjecture
Turchetti, Danièle. "Contributions to arithmetic geometry in mixed characteristic : lifting covers of curves, non-archimedean geometry and the l-modular Weil representation." Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0022/document.
Full textIn this thesis, we study the interplay between positive and zero characteristic. In a first instance, we deal with the local lifting problem of lifting actions of curves. We show necessary conditions for the existence of liftings of some actions of Z/pZ x Z/pZ. Then, for an action of a general finite group, we study the associated Hurwitz tree, showing that every Hurwitz tree has a canonical metric embedding in the Berkovich closed unit disc, and that the Hurwitz data can be described analytically.In the last chapter, we define an analog of the Weil representation with coefficients in an integral domain, showing that such representation satisfies the same properties than in the case with complex coefficients
Gunawan, Albert. "Gauss's theorem on sums of 3 squares sheaves, and Gauss composition." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0020/document.
Full textGauss's theorem on sums of 3 squares relates the number of primitive integer points on the sphere of radius the square root of n with the class number of some quadratic imaginary order. In 2011, Edixhoven sketched a different proof of Gauss's theorem by using an approach from arithmetic geometry. He used the action of the special orthogonal group on the sphere and gave a bijection between the set of SO3(Z)-orbits of such points, if non-empty, with the set of isomorphism classes of torsors under the stabilizer group. This last set is a group, isomorphic to the group of isomorphism classes of projective rank one modules over the ring Z[1/2, √- n]. This gives an affine space structure on the set of SO3(Z)-orbits on the sphere. In Chapter 3 we give a complete proof of Gauss's theorem following Edixhoven's work and a new proof of Legendre's theorem on the existence of a primitive integer solution of the equation x2 + y2 + z2 = n by sheaf theory. In Chapter 4 we make the action given by the sheaf method of the Picard group on the set of SO3(Z)-orbits on the sphere explicit, in terms of SO3(Q)
De stelling van Gauss over sommen van 3 kwadraten relateert het aantal primitieve gehele punten op de bol van straal de vierkantswortel van n aan het klassengetal van een bepaalde imaginaire kwadratisch orde. In 2011 schetste Edixhoven een ander bewijs van deze stelling van Gauss metbehulp van aritmetische meetkunde. Hij gebruikte de actie van de special orthogonale groep op de bol en gaf een bijectie tussen de verzameling van SO3(Z)-banen van dergelijke punten, als die niet leeg is, met de verzameling van isomor_e klassen van torsors onder de stabilisator groep. Deze laatste verzameling is een groep, isomorf met de groep van isomor_e klassen van projectieve rang _e_en modulen over de ring Z[1/2, √- n]. Dit geeft een a_ene ruimte structuur op de verzameling van SO3(Z)-banen op de bol. In Hoofdstuk 3 geven we een volledig bewijs van de stelling van Gauss zoals geschetst door Edixhoven, en een nieuw bewijs van Legendre's stelling over het bestaan van een primitieve gehele oplossing van de vergelijking x2 +y2 +z2 = n met schoven theorie. In hoofdstuk 4 maken we de werking gegeven door de schoven theorie van de Picard groep op de verzameling van SO3(Z)-banen op de bol expliciet, in termen van SO3(Q)
Martin, Florent. "Constructibilité dans les espaces de Berkovich." Paris 6, 2013. http://www.theses.fr/2013PA066221.
Full textIn this thesis, we study constructibility problems in non-Archimedean analytic geometry over a non-Archimedean field k. We study some subsets (semianalytic, subanalytic. . . ) in the framework of k-analytic spaces, whereas until now they had only been consider as subsets of rigid k-spaces. \par We especially study subanalytic (and overconvergent subanalytic) sets using non-rigid points of Berkovich spaces. With this, we give new proofs of prior results, establish some new properties and clarify a mistake concerning the local behaviour of overconvergent subanalytic sets which had not been noticed until now. \par We also give finiteness results for compactly supported cohomology of germs H^q_c((\X^\an,S) , \Q_l) where S is a locally closed semi-algebraic subset of the analytification of some algebraic k-variety \X. Finally, we generalize some results about tropicalization maps of compactk-analytic spaces
Tang, Shun. "Le théorème de concentration et la formule des points fixes de Lefschetz en géométrie d’Arakelov." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112015/document.
Full textIn the nineties of the last century, R. W. Thomason proved a concentrationtheorem for the algebraic equivariant K-theory on the schemes which are endowed withan action of a diagonalisable group scheme G. As usual, such a concentration theoreminduces a fixed point formula of Lefschetz type which can be used to calculate theequivariant Euler-Poincaré characteristic of a coherent G-sheaf on a proper G-schemein terms of a characteristic on the fixed point subscheme. It is the aim of this thesis togeneralize R. W. Thomason’s results to the context of Arakelov geometry. In this work,we consider the arithmetic schemes in the sense of Gillet-Soulé and we first prove anarithmetic analogue of the concentration theorem for the arithmetic schemes endowedwith an action of the diagonalisable group scheme associated to Z/nZ. The proof is acombination of the algebraic concentration theorem and some analytic arguments. Inthe last chapter, we formulate and prove two kinds of arithmetic Lefschetz formulae.These two formulae give a positive answer to two conjectures made by K. Köhler, V.Maillot and D. Rössler
Hachami, Saïd. "Périodes hermitiennes des courbes et application à une formule de chowla-selberg." Nancy 1, 1988. http://www.theses.fr/1988NAN10142.
Full textTian, Yisheng. "Arithmétique des groupes algébriques au-dessus du corps des fonctions d'une courbe sur un corps p-adique." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM006.
Full textThis thesis deals with the arithmetic of linear groups over p-adic function fields. We divide the thesis into several parts.In the first part, we recall a cohomological obstruction to the Hasse principle for torsors under tori [HS16] and another obstruction to weak approximation for tori [HSS15] Subsequently we compare the two obstructions in two different manners. In particular, we show that the obstruction to the Hasse principle for torsors under tori can be described by an unramifed cohomology group.In the second part, we establish some arithmetic duality theorems and deduce a Poitou-Tate style exact sequence for a short complex of tori. Later on, we manage to find a defect to weak approximation for certain connected reductive groups using a piece of the Poitou-Tate sequence.In the last part, we consider a Borel-Serre style finiteness theorem in Galois cohomology. The first ingredient is that the finiteness of the kernel of the global-to-local map for linear groups will follow from that of absolutely simple simply connected groups. Subsequently, we show the kernel is a finite set for a list of absolutely simple simply connected groups
Xu, Daxin. "Correspondances de Simpson p-adique et modulo pⁿ." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS133/document.
Full textThis thesis is devoted to two arithmetic variants of Simpson's correspondence. In the first part, I compare the p-adic Simpson correspondence with a p-adic analogue of the Narasimhan-Seshadri's correspondence for curves over p-adic fields due to Deninger and Werner. Narasimhan and Seshadri established a correspondence between stable bundles of degree zero and unitary representations of the topological fundamental group for a complex smooth proper curve. Using parallel transport, Deninger and Werner associated functorially to every vector bundle on a p-adic curve whose reduction is strongly semi-stable of degree 0 a p-adic representation of the fundamental group of the curve. They asked several questions: whether their functor is fully faithful; whether the cohomology of the local systems produced by this functor admits a Hodge-Tate filtration; and whether their construction is compatible with the p-adic Simpson correspondence developed by Faltings. We answer positively these questions. The second part is devoted to the construction of a lifting of the Cartier transform of Ogus-Vologodsky modulo pⁿ. Let W be the ring of the Witt vectors of a perfect field of characteristic p, X a smooth formal scheme over W, X' the base change of X by the Frobenius morphism of W, X'_2 the reduction modulo p² of X' and Y the special fiber of X. We lift the Cartier transform of Ogus-Vologodsky relative to X'_2 modulo pⁿ. More precisely, we construct a functor from the category of pⁿ-torsion O_{X'}-modules with integrable p-connection to the category of pⁿ-torsion O_X-modules with integrable connection, each subject to a suitable nilpotence condition. Our construction is based on Oyama's reformulation of the Cartier transform of Ogus-Vologodsky in characteristic p. If there exists a lifting F: X -> X' of the relative Frobenius morphism of Y, our functor is compatible with a functor constructed by Shiho from F. As an application, we give a new interpretation of relative Fontaine modules introduced by Faltings and of the computation of their cohomology
Xie, Song-Yan. "Sur l’amplitude des fibrés cotangents d’intersections complètes." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS116/document.
Full textIn the first part of this thesis, we establish the Debarre AmplenessConjecture: The cotangent bundle T_X^* of the intersection X = H_1cap ... cap H_c of c >= N/2 generic hypersurfaces H_i in P^N of highdegrees d_1, ..., d_c >> 1 is ample.First of all, we provide a geometric interpretation of symmetricdifferential forms in projective spaces. Thereby, we reconstructBrotbek's symmetric differential forms on X, where the defininghypersurfaces H_1, ..., H_c are generalized Fermat-type. Moreover, weexhibit unveiled families of lower degree symmetric differential formson all possible intersections of X with coordinate hyperplanes.Thereafter, we introduce what we call the `moving coefficients method'and the `product coup' to settle the Debarre Ampleness Conjecture. Inaddition, we obtain an effective lower degree bound: d_1, ...,d_c >=N^{N^2}. Lastly, thanks to known results about the Fujita Conjecture,we establish the very-ampleness of Sym^k T_X^* for all k >= 64 (d_1 +... + d_c)^2.In the second part, we study the General Debarre Ampleness Conjecture,which stipulates that, over an algebraically closed field K with anycharacteristic, on an N-dimensional smooth projective K-variety Pequipped with c >= N/2 very ample line bundles L_1, ..., L_c, for alllarge degrees d_1, ..., d_c >= d_* >> 1, for generic c hypersurfacesH_i in the complete linear system L_i^d_i, the complete intersection X:= H_1 cap ... cap H_c has ample cotangent bundle T_X^*.On such an intersection variety X, we construct what we call`generalized Brotbek's symmetric differential forms', and we establishthat, if L_1,...,L_c are almost proportional mutually, then theGeneral Debarre Ampleness Conjecture holds true. Our method iseffective, and in the case where L_1 = ... = L_c, we obtain the samelower degree bound d_* = N^{N^2} as in the first part.These two works have been posted on arxiv.org
Randriambololona, Hugues. "Hauteurs pour les sous-schémas et exemples d'utilisation de méthodes arakeloviennes en théorie de l'approximation diophantienne." Phd thesis, Université Paris Sud - Paris XI, 2002. http://tel.archives-ouvertes.fr/tel-00359859.
Full textLa plus grande partie du texte est consacrée à l'élaboration d'une théorie des hauteurs pour les sous-schémas et à la preuve de «formules de Hilbert-Samuel» pour ces hauteurs. Pour deux classes importantes de sous-schémas (les sous-schémas intègres et les sous-schémas «lisses avec multiplicités») on montre que la hauteur du sous-schéma relativement à une grande puissance d'un fibré en droites positif est asymptotiquement déterminée par la hauteur du cycle associé. La démonstration repose essentiellement sur le «théorème de Hilbert-Samuel arithmétique» de Gillet et Soulé, auquel elle se ramène par l'utilisation de techniques de géométrie analytique hermitienne. On fait ensuite une analyse plus fine du développement asymptotique des hauteurs de certains sous-schémas particuliers. Notamment, dans le cas de la dimension relative zéro, on exprime le terme constant du développement asymptotique en fonction de la ramification du sous-schéma, ce qui résout une question de Michel Laurent sur les hauteurs des matrices d'interpolation.
Enfin, dans une partie indépendante, on expose diverses applications de méthodes arakeloviennes à des problèmes d'approximation diophantienne. En particulier on donne une nouvelle démonstration d'un critère classique d'indépendance algébrique dont l'originalité est qu'elle n'utilise plus de théorie de l'élimination mais uniquement des techniques de théorie de l'intersection arithmétique.
Pontreau, Corentin. "Minoration de la hauteur normalisée en petite codimension." Phd thesis, Université de Caen, 2005. http://tel.archives-ouvertes.fr/tel-00011840.
Full textDans un premier temps nous regroupons un certain nombre de résultats plus ou moins connus sur les sous-groupes algébriques et le comportement des sous-variétés après multiplication par un entier dans $G_m^n$. Par la suite, nous montrons des minorations de type arithmétique et géométrique pour les sous-variétés de codimension 1 et 2 de $G_m^2$ et $G_m^3$ respectivement. A la différence de ce qui est fait dans les travaux antérieurs de F. Amoroso et S. David, concernant les sous-variétés de codimension différente de 1, nous n'utilisons pas de descente finale pour conclure nos preuves, mais un nouvel argument géométrique. Ceci simplifie grandement la démarche, et apporte de réelles améliorations quantitatives dans ces cas étudiés.
Nous nous intéressons enfin à l'étude des petits points d'une sous-variété. Etant donnée une surface $V$ de $G_m^3$ géométriquement irréductible, nous montrons qu'en dehors d'un nombre fini de translatés de tores exceptionnels inclus dans $V$, dont nous majorons la somme des degrés, tous les points sont de hauteur minorée par une quantité quasi-optimale $\epsilon(V)>0$, essentiellement linéaire en l'inverse du degré de $V$, chose que l'on ne sait pas faire dans le cas général.
Walkowiak, Yann. "Effectivité dans le théorème d'irréductibilité de Hilbert." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2004. http://tel.archives-ouvertes.fr/tel-00008392.
Full textLamarque, Loïc. "Modélisation géométrique et arithmétique par intervalles." Dijon, 2006. http://www.theses.fr/2006DIJOS043.
Full textGeometrical objects are often modelled by systems of equations and inequalities. However, any system of equations ans inequalities defines a geometrical object. This thesis focuses on the possibility of specifying a geometrical object by a system of constraints which will be solved by a solver. It also clarifies the difficulties encountered by such a solver and suggests beginning of solutions
Liu, Chunhui. "Comptage des points rationnels dans les variétés arithmétiques." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC295/document.
Full textCounting rational points is a classical problem in Diophantine geometry. We are interested inupper bounds for the number of rational points of bounded height of an arithmetic hypersurface with bounded degree in a projective space. For this propose, we construct a family of auxiliary hypersurfaces which contain all these rational points of bounded height but don’t contain the generic point of this hypersurface. Several tools of Arakelov geometry and Diophantine geometry are developed or adapted in this work in order to apply the determinant method by the approach of Arakelov geometry, especially a uniform explicit upper bound and a uniform explicit lower bound of the arithmetic Hilbert-Samuel function of a hypersurface. For a reduced pure dimensional projective scheme over a ring of algebraic integers, we give an upper bound of the number of places over which the fiber is not reduced any longer. This upper bound is useful for the construction of these auxilary hypersurfaces mentioned above. In addition, the geometry over a finite field plays an important role in this problem. One of the key ingredients in this work is an e_ective upper bound for a counting function of multiplicities of rational points in a reduced projective hypersurface defined over a finite field, which gives a description of the complexity of its singular locus. For this problem of counting multiplicities, the major tool is intersection theory on a projective space
Lucchini, Arteche Giancarlo. "Groupe de Brauer des espaces homogènes à stabilisateur non connexe et applications arithmétiques." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112207/document.
Full textThis thesis studies the unramified Brauer group of homogeneous spaces with non connected stabilizer and its arithmetic applcations. In particular, we develop different formulas of algebraic and/or arithmetic nature allowing an explicit calculation, both over a finite field and over a field of characteristic 0, of the algebraic part of the unramified Brauer group of a homogeneous space G\G' under a semisimple simply connected linear group G' with finite stabilizer G. We also give examples of the calculations that can be done with these formulas. For achieving this goal, we prove beforehand (using a theorem of Gabber on alterations) a result describing the prime-to-p torsion part of the unramified Brauer group of a smooth and geometrically integral variety V over a global field of characteristic p or over a finite field by evaluating the elements of Br(V) at its local points. The formulas for finite stabilizers are later generalised to the case where the stabilizer G is any linear algebraic group using a reduction of the Galois cohomology of the group G to that of a certain finite subquotient.Finally, for a global field K and a finite solvable K-group G, we show under certain hypotheses concerning the extension splitting G that the homogeneous space V:=G\G' with G' a semi-simple simply connected K-group has the weak approximation property (the hypotheses ensuring the triviality of the unramified algebraic Brauer group). We use then a more precise version of this result to prove the Hasse principle forhomogeneous spaces X under a semi-simple simply connected K-group G' with finite solvable geometric stabilizer, under certain hypotheses concerning the K-kernel (or K-lien) defined by X
Antei, Marco. "Extension de torseurs." Thesis, Lille 1, 2008. http://www.theses.fr/2008LIL10056/document.
Full textThe question we try to answer in this thesis is the following: let X be a relative scheme over a discrete valuation ring R and y' a G'-torsor over the generic fibre X' of X. Does it exist an R-group scheme G and a G-torsor Y over X whose generic fibre is isomorphic to the given torsor? We face this problem by means of the fundamental group scheme introduced by Nori for a reduced scheme X complete over a field and then generalized by Gasbarri for an irreducible and reduced scheme faithfully flat over a Dedekind scheme. We prove that the natural morphism f between the fundamental group scheme of X' and the generic fibre of the fundamental group scheme of X is always surjective for the fpqc topology. Moreover we prove that any torsor can be extended iff f is an isomorphism. The firstt two chapters of the thesis are devoted to an introduction of the objects used in the last two chapters. ln particular the tannakian definition of the fundamental group scheme and of the universal torsor of Nori are revisited. ln the third chapter a proof of the results mentioned before is given. The fourth chapter is devoted to a related question: let f be a morphism between two schemes Y and X over a field k.s.t. the direct image F of the structural sheaf of Y is essentially finite, is it possible to defme a Galois cIosure? We prove that the universal torsor associated to the sub-category of the category of essentially finite vector bundles generated by F is the desired Galois closure
Plessis, Arnaud. "Ramification et points de petite hauteur." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC220/document.
Full textIn this thesis, we will focus on points of small height in both multiplicative group and on an elliptic curve.Firstly, in the multiplicative group case, we will study fields whose points of small height are eNSUITE? roots of the unity.In a second time, we will localise the points of small height on a field generated by some groups of finite rank, according to a conjecture of Rémond. To this end, we will study ramification groups concerning radiciel extensions.There also exists an analogue of this conjecture of Rémond on the abelian varieties case and it would seem that we can expand it by including split semi-abelian varieties. This new conjecture allows us to connect some theorems already present in the literature.However, these results only concern the case where the points of small height are torsion points.To conclude this thesis, we will give a first example of this conjecture in the case where points of small height are not necessarily torsion points
Ballaÿ, François. "Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC034/document.
Full textIn this thesis, we study diophantine geometry problems on projective varieties and commutative algebraic groups, by means of tools from Arakelov theory. A central notion in this work is the slope theory for hermitian vector bundles, introduced by Bost in the 1990s. More precisely, we work with its generalization in an adelic setting, inspired by Zhang and developed by Gaudron. This dissertation contains two major lines. The first one is devoted to the study of a remarkable theorem due to Faltings and Wüstholz, which generalizes Schmidt’s subspace theorem. We first reformulate the proof of Faltings and Wüstholz using the formalism of adelic vector bundles and the adelic slope method. We then establish some effective variants of the theorem, and we deduce an effective generalization of Liouville’s theorem for closed points on a projective variety defined over a number field. In particular, we give an explicit upper bound for the height of the points satisying a Liouville-type inequality. In the second part, we establish new measures of linear independence of logarithms over a commutative algebraic group. We focus our study on the rational case. Our approach combines Baker’s method (revisited by Philippon and Waldschmidt) with arguments from the slope theory. More importantly, we introduce a new argument to deal with the periodic case, inspired by previous works of Bertrand and Philippon. This method does not require the use of an extrapolation on derivations in the sense of Philippon-Waldschmidt. In this way, we are able to remove an important hypothesis in several theorems of Gaudron establishing lower bounds for linear forms in logarithms
Lacoste, Cyril. "Dimension géométrique propre et espaces classifiants des groupes arithmétiques." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S010/document.
Full textIn this thesis we study classifying spaces for proper actions of a discrete group. The proper geometric dimension is the smallest dimension of such a space (which always exists). Firstly we prove that for a lattice in the group of isometries of a symmetric space of the non-compact type without euclidean factors, the proper geometric dimension equals the virtual cohomological dimension. The proof relies on the fact that if the space has real rank at least 2 and if the lattice is irreducible, then it is arithmetic. In this case, the virtual cohomological dimension can be explicitly computed with the rational rank. Secondly we want to construct concretely classifying spaces for proper actions of minimal dimension. We try to adapt the construction of the "well-rounded retract" of Soulé and Ash (in the case SL(n,Z)) for the arithmetic groups Sp(2n,Z) and Aut(SL(n,Z)). We show that in fact this construction does not extend