Academic literature on the topic 'Geometrie combinatorie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometrie combinatorie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geometrie combinatorie"

1

Dress, Andreas W. M., and Walter Wenzel. "Geometric algebra for combinatorial geometries." Advances in Mathematics 77, no. 1 (1989): 1–36. http://dx.doi.org/10.1016/0001-8708(89)90013-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Annamalai, Chinnaraji. "Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions." Journal of Engineering and Exact Sciences 8, no. 7 (2022): 14648–01. http://dx.doi.org/10.18540/jcecvl8iss7pp14648-01i.

Full text
Abstract:
Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineerin
APA, Harvard, Vancouver, ISO, and other styles
3

Biggs, N. L. "GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION: (Algorithms and Combinatorics 2)." Bulletin of the London Mathematical Society 22, no. 2 (1990): 204–5. http://dx.doi.org/10.1112/blms/22.2.204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rau, A. R. P. "Symmetries and Geometries of Qubits, and Their Uses." Symmetry 13, no. 9 (2021): 1732. http://dx.doi.org/10.3390/sym13091732.

Full text
Abstract:
The symmetry SU(2) and its geometric Bloch Sphere rendering have been successfully applied to the study of a single qubit (spin-1/2); however, the extension of such symmetries and geometries to multiple qubits—even just two—has been investigated far less, despite the centrality of such systems for quantum information processes. In the last two decades, two different approaches, with independent starting points and motivations, have been combined for this purpose. One approach has been to develop the unitary time evolution of two or more qubits in order to study quantum correlations; by exploit
APA, Harvard, Vancouver, ISO, and other styles
5

Grünbaum, Branko. "Geometric Realization of Some Triangle-Free Combinatorial Configurations." ISRN Geometry 2012 (July 9, 2012): 1–10. http://dx.doi.org/10.5402/2012/560760.

Full text
Abstract:
The main purpose of this paper is to illustrate the mutual benefit to combinatorics and geometry by considering a topic from both sides. Al-Azemi and Betten enumerate the distinct combinatorial (223) configurations that are triangle free. They find a very large number of such configurations, but when taking into account the automorphism group of each, they find two cases in which there is only a single configuration. On the heuristic assumption that an object that is unique in some sense may well have other interesting properties, the geometric counterparts of these configurations were studied
APA, Harvard, Vancouver, ISO, and other styles
6

Annamalai, Chinnaraji. "COMBINATORIAL OPTIMIZED TECHNIQUE FOR COMPUTATION OF TRADITIONAL COMBINATIONS." jnanabha 50, no. 02 (2020): 128–31. http://dx.doi.org/10.58250/jnanabha.2020.50215.

Full text
Abstract:
This paper presents a computing method and models for optimizing the combination defined in combinatorics. The optimized combination has been derived from the iterative computation of multiple geometric series and summability by specialized approach. The optimized combinatorial technique has applications in science, engineering and management. In this paper, several properties and consequences on the innovative optimized combination has been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s challenges.
APA, Harvard, Vancouver, ISO, and other styles
7

Abe, Takuro, Graham Denham, Eva Maria Feichtner, and Gerhard Röhrle. "Arrangements, Matroids and Logarithmic Vector Fields." Oberwolfach Reports 21, no. 2 (2024): 1615–76. http://dx.doi.org/10.4171/owr/2024/29.

Full text
Abstract:
The focus of this workshop was on the ongoing interaction between geometric aspects of matroid theory with various directions in the study of hyperplane arrangements. A hyperplane arrangement is exactly a linear realization of a (loop-free, simple) matroid. While a matroid is a purely combinatorial object, though, an arrangement is associated with a range of algebraic and geometric constructions that connect closely with the combinatorics of matroids.The meeting brought together researchers involved with complementary angles on the subject, many of whom had not met before, so an important unde
APA, Harvard, Vancouver, ISO, and other styles
8

Annamalai, Chinnaraji, Junzo Watada, Said Broumi, and Vishnu Narayan Mishra. "COMBINATORIAL TECHNIQUE FOR OPTIMIZING THE COMBINATION." Journal of Engineering and Exact Sciences 6, no. 2 (2020): 0189–92. http://dx.doi.org/10.18540/jcecvl6iss2pp0189-0192.

Full text
Abstract:
This paper presents an innovative computing method and models for optimizing the combination defined in combinatorics. The optimized combination has been derived from the iterative computation of multiple geometric series and summability by specialized approach. The optimized combinatorial technique has applications in science, engineering and management. In this paper, several properties and consequences on the innovative optimized combination has been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s challenges.
APA, Harvard, Vancouver, ISO, and other styles
9

CAVİCCHİOLİ, Alberto, and Fulvia SPAGGİARİ. "All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds." International Electronic Journal of Geometry 15, no. 2 (2022): 192–201. http://dx.doi.org/10.36890/iejg.1102753.

Full text
Abstract:
In this paper we show that Dehn surgeries on the oriented components of the Whitehead link yield tetrahedron manifolds of Heegaard genus $\le 2$. As a consequence, the eight homogeneous Thurston 3-geometries are realized by tetrahedron manifolds of Heegaard genus $\le 2$. The proof is based on techniques of Combinatorial Group Theory, and geometric presentations of manifold fundamental groups.
APA, Harvard, Vancouver, ISO, and other styles
10

Kuijken, Elisabeth. "A Geometric Construction of Partial Geometries with a Hermitian Point Graph." European Journal of Combinatorics 23, no. 6 (2002): 701–6. http://dx.doi.org/10.1006/eujc.2002.0558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Geometrie combinatorie"

1

Lange, Carsten. "Combinatorial curvatures, group actions, and colourings: aspects of topological combinatorics." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=973473487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Milicevic, Luka. "Topics in metric geometry, combinatorial geometry, extremal combinatorics and additive combinatorics." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoon, Young-jin. "Characterizations of Some Combinatorial Geometries." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc277894/.

Full text
Abstract:
We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non
APA, Harvard, Vancouver, ISO, and other styles
4

Salaün, Isabelle. "Deux problèmes de géométrie combinatoire : unimodalité de deux suites en théorie des matroïdes ; polyèdres : polyèdre régulier à vingt-quatre sommets de l'espace euclidien à quatre dimensions." Paris 6, 1988. http://www.theses.fr/1988PA066524.

Full text
Abstract:
On considère la suite des nombres de fermes de rang fixe (nombres de Whitney) et la suite des nombres d'indépendants de cardinal fixe d'un matroide. On obtient des résultats partiels concernant l'unimodalité conjecturée de ces suites (1972). On traite de matroides orientés. On étudie les polyèdres réguliers dans les espaces euclidiens a trois et quatre dimensions. On montre, en particulier, que le polyèdre régulier à vingt-quatre sommets de l'espace à quatre dimensions n'a qu'une classe d'orientations.
APA, Harvard, Vancouver, ISO, and other styles
5

Philippe, Eva. "Geometric realizations using regular subdivisions : construction of many polytopes, sweep polytopes, s-permutahedra." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS079.

Full text
Abstract:
Cette thèse concerne trois problèmes de réalisations géométriques de structures combinatoires par des polytopes et des subdivisions polyédrales. Un polytope est l'enveloppe convexe d'un ensemble fini de points dans un espace euclidien R^d. Il est muni d'une structure combinatoire donnée par ses faces. Une subdivision est une collection de polytopes dont les faces s'intersectent correctement et dont l'union est convexe. Elle est régulière si elle peut être obtenue en prenant les faces inférieures d'un relèvement de ses sommets dans une dimension de plus.Nous présentons d'abord une nouvelle cons
APA, Harvard, Vancouver, ISO, and other styles
6

Borenstein, Evan. "Additive stucture, rich lines, and exponential set-expansion." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29664.

Full text
Abstract:
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2009.<br>Committee Chair: Croot, Ernie; Committee Member: Costello, Kevin; Committee Member: Lyall, Neil; Committee Member: Tetali, Prasad; Committee Member: Yu, XingXing. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
7

Hipp, James W. (James William) 1956. "The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc330849/.

Full text
Abstract:
We show that the maximum size of a geometry of rank n excluding the (q + 2)-point line, the 3-wheel W_3, and the 3-whirl W^3 as minor is (n - 1)q + 1, and geometries of maximum size are parallel connections of (q + 1)-point lines. We show that the maximum size of a geometry of rank n excluding the 5-point line, the 4-wheel W_4, and the 4-whirl W^4 as minors is 6n - 5, for n ≥ 3. Examples of geometries having rank n and size 6n - 5 include parallel connections of the geometries V_19 and PG(2,3).
APA, Harvard, Vancouver, ISO, and other styles
8

Bus, Norbert. "The use of geometric structures in graphics and optimization." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1117/document.

Full text
Abstract:
Les données du monde réel ont manifestement une composante géométrique importante et suggère les patterns géométriques signifiants. Les méthodes qui utilisent la nature géométrique des données sont activement développés dans plusieurs domaines scientifiques, comme, par exemple, la géométrie algorithmique, la géométrie discrète, la synthèse d'images, la vision par ordinateur. Dans le travail présent, nous utilisons les structures géométriques afin de modéliser des algorithmes efficaces pour deux domaines, celui de synthèse d'images et de l'optimisation combinatoire. Dans la première partie il s
APA, Harvard, Vancouver, ISO, and other styles
9

Jambu, Michel. "Arrangements d'hyperplans : topologie, geometrie et combinatoire." Nantes, 1989. http://www.theses.fr/1989NANT2040.

Full text
Abstract:
La plupart des proprietes topologiques du complement d'une famille finie d'hyperplans de c#n sont codees dans le treillis des intersections de ces hyperplans: la cohomologie de ce complement est decrite a l'aide des circuits brises: les treillis associes aux arrangements de type fibre sont hyperresolubles et l'algebre d'holonomie de lie du complement admet une factorisation comme espace vectoriel, definie par une chaine maximale modulaire ce qui permet de donner une demonstration tres simple de la propriete lcs
APA, Harvard, Vancouver, ISO, and other styles
10

Ahlman, Ove. "Combinatorial geometries in model theory." Thesis, Uppsala University, Department of Mathematics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-112523.

Full text
Abstract:
<p>Model theory and combinatorial pregeometries are closely related throughthe so called algebraic closure operator on strongly minimal sets. Thestudy of projective and ane pregeometries are especially interestingsince they have a close relation to vectorspaces. In this thesis we willsee how the relationship occur and how model theory can concludea very strong classi cation theorem which divides pregeometries withcertain properties into projective, ane and degenerate (trivial) cases.</p><br><p>Modellteori är ett ämne som är starkt relaterat till studien av kombinatoriska pregeometrier, detta g
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Geometrie combinatorie"

1

András, Szilárd. Elementary combinatorial geometry: Problems and solutions. Gil, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), SpringerLink (Online, ed. Geometric Etudes in Combinatorial Mathematics. Alexander Soifer 2010, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Batten, Lynn Margaret. Combinatorics of finite geometries. Cambridge University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neil, White, ed. Combinatorial geometries. Cambridge University Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1945-, White Neil, ed. Combinatorial geometries. Cambridge University Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Orlik, Peter. Introduction to arrangements. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Athanasiadis, Christos A., Victor V. Batyrev, Dimitrios I. Dais, Martin Henk, and Francisco Santos, eds. Algebraic and Geometric Combinatorics. American Mathematical Society, 2006. http://dx.doi.org/10.1090/conm/423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roux, Brigitte Le. Combinatorial Inference in Geometric Data Analysis. Chapman and Hall/CRC, Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1911-, Ledermann Walter, and Vajda Steven 1901-, eds. Handbook of applicable mathematics. Wiley, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Volkmar, Welker, ed. Algebraic combinatorics: Lectures of a summer school, Nordfjordeid, Norway, June, 2003. Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Geometrie combinatorie"

1

Matoušek, Jiří. "Combinatorial Discrepancy." In Geometric Discrepancy. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-03942-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garrett, Paul. "Combinatorial Geometry." In Buildings and Classical Groups. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5340-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Herman, Jiří, Radan Kučera, and Jaromír Šimša. "Combinatorial Geometry." In Counting and Configurations. Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3925-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Croft, Hallard T., Kenneth J. Falconer, and Richard K. Guy. "Combinatorial Geometry." In Unsolved Problems in Geometry. Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0963-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hendricks, John S., Martyn T. Swinhoe, and Andrea Favalli. "Basic Concepts." In Monte Carlo N-Particle Simulations for Nuclear Detection and Safeguards. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04129-7_2.

Full text
Abstract:
AbstractThis guide for MCNP students and practitioners begins with the simplest possible example: neutrons in a single spherical surface void sphere. Examples are provided for running MCNP and plotting its geometries. Modifications to the starting geometry demonstrate the full combinatorial solid geometry capability of MCNP. Further problem input examples explain materials capabilities and physics options. Standard source capabilities enable modeling of almost any radiation particle source. Output tally and plotting options provide a full description of physical processes in a problem and what
APA, Harvard, Vancouver, ISO, and other styles
6

Miller, Ezra, and Victor Reiner. "What is geometric combinatorics?—An overview of the graduate summer school." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barvinok, Alexander. "Lattice points, polyhedra, and complexity." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fomin, Sergey, and Nathan Reading. "Root systems and generalized associahedra." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Forman, Robin. "Topics in combinatorial differential topology and geometry." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haiman, Mark, and Alexander Woo. "Geometry of 𝑞 and 𝑞,𝑡-analogs in combinatorial enumeration." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/05.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geometrie combinatorie"

1

Veljan, Darko. "Two inequalities: a geometric and a combinatorial." In 2nd Croatian Combinatorial Days. University of Zagreb Faculty of Civil Engineering, 2019. http://dx.doi.org/10.5592/co/ccd.2018.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Protrka, Ivana. "An Invitation to Combinatorial Tropical Geometry." In 1st Croatian Combinatorial Days. University of Zagreb Faculty of Civil Engineering, 2017. http://dx.doi.org/10.5592/co/ccd.2016.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Jinhwi, Jungtaek Kim, Hyunsoo Chung, Jaesik Park, and Minsu Cho. "Learning to Assemble Geometric Shapes." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/146.

Full text
Abstract:
Assembling parts into an object is a combinatorial problem that arises in a variety of contexts in the real world and involves numerous applications in science and engineering. Previous related work tackles limited cases with identical unit parts or jigsaw-style parts of textured shapes, which greatly mitigate combinatorial challenges of the problem. In this work, we introduce the more challenging problem of shape assembly, which involves textureless fragments of arbitrary shapes with indistinctive junctions, and then propose a learning-based approach to solving it. We demonstrate the effectiv
APA, Harvard, Vancouver, ISO, and other styles
4

Bretto, Alain, Hocine Cherifi, and Bernard Laget. "Combinatoric digital geometry and image processing." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Robert A. Melter, Angela Y. Wu, and Longin J. Latecki. SPIE, 1996. http://dx.doi.org/10.1117/12.251811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Břehovský, Jiří, Daniela Bímová, and Petra Pirklová. "Using GeoGebra for solving geometric-combinatorial problems." In “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0100871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BOEIRA DORNELAS, BIANCA, and FRANCESCO MATUCCI. "Introduction to Combinatorial and Geometric Group Theory." In XXV Congresso de Iniciação Cientifica da Unicamp. Galoa, 2017. http://dx.doi.org/10.19146/pibic-2017-79172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gao, Limin, Xiaoming Deng, Lei Gao, Ruiyu Li, Ruihui Zeng, and Cunliang Liu. "Multi-Objective Combinatorial Optimization Design Method for the Compressor Splitter." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-44004.

Full text
Abstract:
Considering the present backward situation of the compressor splitter designing level, a multi-objective Combinatorial Optimization Design method is put forward for the splitter design consisting of three core components: the CST parameterized method, the Design of Experiment and the ASA optimization algorithm. In the whole optimization design process, the CST parameterized method is developed for the complex geometry modeling and geometric samples generating of splitter. The Design of Experiment is taken used to qualitatively analyze the multiple design variables and adjust their number and s
APA, Harvard, Vancouver, ISO, and other styles
8

Bombelli, L. "A combinatorial approach to discrete geometry." In A CENTURY OF RELATIVITY PHYSICS: ERE 2005; XXVIII Spanish Relativity Meeting. AIP, 2006. http://dx.doi.org/10.1063/1.2218222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carter, Martha A., and Mark E. Oxley. "Combinatorial geometry and V-C dimension." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by H. John Caulfield and Su-Shing Chen. SPIE, 1996. http://dx.doi.org/10.1117/12.258134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Basu, Saugata. "Combinatorial complexity in O-minimal geometry." In the thirty-ninth annual ACM symposium. ACM Press, 2007. http://dx.doi.org/10.1145/1250790.1250798.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geometrie combinatorie"

1

Chen, W. Y. C., and J. D. Louck. Combinatorics, geometry, and mathematical physics. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/674871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burns, T. J. ORGBUG -- A windows-based combinatorial geometry debugger. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/7368450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burns, T. J. ORGBUG -- A windows-based combinatorial geometry debugger. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10170388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burns, T. J. CGVIEW: A program to generate isometric and perspective views of combinatorial geometries. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5065672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burns, T. J. CGVIEW: A program to generate isometric and perspective views of combinatorial geometries. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10158989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cullen, D. E. TART96: a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/461393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cullen, D. E. TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/572762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cullen, D. E. TART98 a coupled neutron-photon 3-D, combinatorial geometry time dependent Monte Carlo Transport code. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/8435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cullen, D. E. TART 2000: A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/802092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cullen, D. TART2012 An Overview of A Coupled Neutron Photon 3-D, Combinatorial Geometry Time Dependent Monte Carlo Transport Code. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1056631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!