Dissertations / Theses on the topic 'Géométrie symplectique et de Poisson'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Géométrie symplectique et de Poisson.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Baguis, Pierre. "Procédures de réduction et d'induction en géométrie symplectique et de poisson : applications." Aix-Marseille 2, 1997. http://www.theses.fr/1997AIX22087.
Full textAlamiddine, Iman. "Géométrie de systèmes Hamiltoniens intégrables : le cas du système de Gelfand-Ceitlin." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/538/.
Full textThe Gelfand-Ceitlin system has been discovered by V. Guillemin and S. Sternberg in 1983. It is a well known geometry, its singularities are yet poorly understood. The aim of this thesis is to study the geometry and topology of integrable Hamiltonian systems and the relationship between the theory of Lie and symplectic geometry and Poisson geometry. We study the Gelfand Ceitlin system on a generic coadjoint orbit of the group SU(3). To describe this system geometrically, we studied the topology of the ambient variety. We calculate its invariants (the cohomology groups, the homotopy groups). We study the problem of convexity in relation with this system. The singularities study of this system shows that all singularities are elliptic non-degenerate, except for only one. We describe carefully the behaviour of the system in the neighbourhood of this singularity, we give a simple model for degenerated singularity that we prove by a theorem which establishes a unique symplectomorphisme between the degenerate singularity and the model of geodesic flows on the sphere S3
Distexhe, Julie. "Triangulating symplectic manifolds." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/287522/3/toc.pdf.
Full textIn this thesis, we study symplectic structures in a piecewise linear (PL) setting. The central question is to determine whether a smooth symplectic manifold can be triangulated symplectically, in the sense that there exists a triangulation $h :K -> M$ such that $h^*omega$ is a piecewise constant symplectic form on $K$. We first focus on a simpler related problem, and show that any smooth volume form $Omega$ on $M$ can be triangulated. This means that there always exists a triangulation $h :K -> M$ such that $h^*Omega$ is a piecewise constant volume form. In particular, symplectic surfaces admit symplectic triangulations. Given a closed symplectic manifold $(M,omega)$, we then prove that there exists triangulations $h :K -> M$ for which the piecewise smooth form $h^*omega$ has maximal rank along all the simplices of $K$. This result allows to approximate arbitrarily closely any closed symplectic manifold by a PL one. Finally, we investigate the case of a symplectic submanifold $M$ of an ambient space which is itself symplectically triangulated, and give the construction of a cobordism between $M$ and a piecewise smooth approximation of $M$, triangulated by a symplectic complex.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Meyer, Julien. "Quantisation of the Laplacian and a Curved Version of Geometric Quantisation." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/235181.
Full textOption Mathématique du Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Lassoued, Hichem. "Résolutions symplectiques et de contact de variétés de Poisson et de Jacobi." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0211.
Full textPoisson and Jacobi structures can be singular in two ways: the structure can be singular (we then say: singularity of the first type), but the variety itself can also have singularities (we then say: singularity of the second type). In both cases, solving the singularity consists in finding a smooth object equipped a symplectic or contact structure that projects onto the singular object under consideration. Several works deal with these different types of singularities. For those of the second type, Hironaka type methods have been proposed in the framework of algebraic geometry. For those of the first type, in a framework of differential geometry, it is well known that it is possible to turn the Poisson structure and the Jacobi structure into a symplectic structure and a contact structure if we allow to double the dimension. The aim of this thesis is to give some milestones for a coherent theory of the resolution of the two types of singularities for Poisson and Jacobi varieties. We want, however, 1) not to increase the dimension and 2) to remain within the framework of differential geometry – i.e. we work with smooth functions. The first of its milestones is a negative result: we show that there are no reasonable resolutions of singularities of the first type when the singular locus is of codimension one. We also give examples that show that in codimension two such a resolution can exist. We do this for both Poisson and Jacobi structures. The last two chapters are devoted to solving the second type of singularity. We begin by suggesting a new point of view on known results on the Du Val singularity which are quotients of R^2 by finite groups of Sl (2, R). Finally, when using Du Val's symplectic resolutions, we give in the last chapter an example of a proper symplectic resolution of a singular Poisson object: the quotient of R ^ 2 by an infinite subgroup of Gl (2, R)
Salnikov, Vladimir. "Modèles sigma jaugés et géométrie graduée." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10137.
Full textIn this thesis we study some geometric constructions appearing naturally in the context of sigma models, their gauging and supersymmetrization. The thesis consists of three parts. The first part (chapters 1 and 2) contains facts coming from classical differential geometry and graded geometry, they are needed to understand the main results of the thesis. We review the geometric constructions related to Poisson and symplectic manifolds. We generalize these notions to Dirac and n-plectic manifolds and establish the links with Courant algebroids. The main language used in the thesis for mathematical description of the sigma models is the graded geometry - we thus define the basis of calculus on supermanifolds and graded manifolds, as well as describe the notions of Q-structures and multigraded manifolds. The main goal of the second part (chapters 3 and 4) is to interpret geometrically the gauge invariance of some sigma models. We establish the relation of the symmetries of the Dirac sigma model, and as a particular case of the (twisted) Poisson sigma model, with the subalgebra of sections of Courant algebroid. We generalize the notion of equivariant cohomology, that permits to recover the sigma models with a prescribed group of gauge symmetries. In particular we construct the necessary groups for the mentioned sigma models. The third part (chapter 5) addresses the graded extension of the sigma models (like in supersymmetrization). It is in fact related to the geometric structures that can be defined on the space of maps between multigraded manifolds
Grouy, Thibaut. "Radon-type transforms on some symmetric spaces." Doctoral thesis, Universite Libre de Bruxelles, 2019. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/285815.
Full textIn this thesis, we study Radon-type transforms on some symmetric spaces. A Radon-type transform associates to any compactly supported continuous function on a manifold $M$ its integrals over a class $Xi$ of submanifolds of $M$. The problem we address is the inversion of such a transform, that is determining the function in terms of its integrals over the submanifolds in $Xi$. We first present the solution to this inverse problem which is due to Sigurdur Helgason and François Rouvière, amongst others, when $M$ is an isotropic Riemannian symmetric space and $Xi$ a particular orbit of totally geodesic submanifolds of $M$ under the action of a Lie transformation group of $M$. The associated Radon transform is qualified as totally geodesic.On semisimple pseudo-Riemannian symmetric spaces, we consider an other Radon-type transform, which associates to any compactly supported continuous function its orbital integrals, that is its integrals over the orbits of the isotropy subgroup of the transvection group. The inversion of orbital integrals, which is given by a limit-formula, has been obtained by Sigurdur Helgason on Lorentzian symmetric spaces with constant sectional curvature and by Jeremy Orloff on any rank-one semisimple pseudo-Riemannian symmetric space. We solve the inverse problem for orbital integrals on Cahen-Wallach spaces, which are model spaces of solvable indecomposable Lorentzian symmetric spaces.In the last part of the thesis, we are interested in Radon-type transforms on symplectic symmetric spaces with Ricci-type curvature. The inversion of orbital integrals on these spaces when they are semisimple has already been obtained by Jeremy Orloff. However, when these spaces are not semisimple, the orbital integral operator is not invertible. Next, we determine the orbits of symplectic or Lagrangian totally geodesic submanifolds under the action of a Lie transformation group of the starting space. In this context, the technique of inversion that has been developed by Sigurdur Helgason and François Rouvière, amongst others, only works for symplectic totally geodesic Radon transforms on Kählerian symmetric spaces with constant holomorphic curvature. The inversion formulas for these transforms on complex hyperbolic spaces are due to François Rouvière. We compute the inversion formulas for these transforms on complex projective spaces.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Weber, Patrick. "Cohomology groups on hypercomplex manifolds and Seiberg-Witten equations on Riemannian foliations." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/252914.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Künzle, Alfred F. "Une capacité symplectique pour ensembles convexes et quelques applications." Paris 9, 1990. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1990PA090024.
Full textVichery, Nicolas. "Homogénéisation symplectique et Applications de la théorie des faisceaux à la topologie symplectique." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00780016.
Full textMaspfuhl, Oliver. "Théorie de jauge et variétés de Poisson." Paris 6, 2003. http://www.theses.fr/2003PA066209.
Full textDiatta, André. "Géométrie de Poisson et de contact des espaces homogènes." Montpellier 2, 2000. http://www.theses.fr/2000MON20068.
Full textGama, Nicolas. "Géométrie des nombres et cryptanalyse de NTRU." Paris 7, 2008. http://www.theses.fr/2008PA077199.
Full textPublic-key cryptography, invented by Diffie and Hellman in 1976, is now part of everyday life: credit cards, game consoles and electronic commerce are using public key schemes. The security of certain cryptosystems, like NTRU, is based on problems arising from the geometry of numbers, including the shortest vector problem or the closest vector problem in Euclidean lattices. While these problems are mostly NP-hard, it is still possible to compute good approximations in practice. In this thesis, we study approximation algorithms for these lattice reduction problems, which operate either in proved polynomial time, or more generally in reasonable time. We first analyze the functioning of these algorithms from a theoretical point of view, which allows us to build for example, the best proved algorithm for its complexity and the quality of its results. But we also study the practical aspects, through a lot of simulations, which allows us to highlight an important difference between properties of complexity and quality that we can prove, and those (much better) that can be achieved in practice. These simulations also allow us to correctly predict the actual behavior of lattice reduction algorithms. We study these algorithms first in the general case, and then we show how to make specialized versions for the very particular lattices drawn from NTRU cryptosystem
Andreadis, Ioannis, and Fernand Pelletier. "Contribution à l'étude des singularités en géométrie symplectique et pseudo-riemannienne en dimension infinie." Chambéry, 1995. http://www.theses.fr/1995CHAMS002.
Full textMelani, Valerio. "Poisson and coisotropic structures in derived algebraic geometry." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC299/document.
Full textIn this thesis, we define and study Poisson and coisotropic structures on derived stacks in the framework of derived algebraic geometry. We consider two possible presentations of Poisson structures of different flavour: the first one is purely algebraic, while the second is more geometric. We show that the two approaches are in fact equivalent. We also introduce the notion of coisotropic structure on a morphism between derived stacks, once again presenting two equivalent definitions: one of them involves an appropriate generalization of the Swiss Cheese operad of Voronov, while the other is expressed in terms of relative polyvector fields. In particular, we show that the identity morphism carries a unique coisotropic structure; in turn, this gives rise to a non-trivial forgetful map from n-shifted Poisson structures to (n-1)-shifted Poisson structures. We also prove that the intersection of two coisotropic morphisms inside a n-shifted Poisson stack is naturally equipped with a canonical (n-1)-shifted Poisson structure. Moreover, we provide an equivalence between the space of non-degenerate coisotropic structures and the space of Lagrangian structures in derived geometry, as introduced in the work of Pantev-Toën-Vaquié-Vezzosi
Uribe, Vargas Eduardo Ricardo. "Singularités symplectiques et de contact en géométrie différentielle des courbes et des surfaces." Paris 7, 2001. http://www.theses.fr/2001PA077154.
Full textRacanière, Sébastien. "Cohomologie équivariante des espaces SU(n)2g et de leurs réductions quasi-Hamiltoniennes." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. https://publication-theses.unistra.fr/public/theses_doctorat/2002/RACANIERE_Sebastien_2002.pdf.
Full textA well known fact about reduction in a Hamiltonian space is that its restriction map is surjective. In a quasi-Hamiltonian setting, things are more complicated. In this thesis, we study the case of the space SU(n)2̂g. Its reduction at an element in the center of SU(n) is isomorphic to a moduli space of semi-stable holomorphic vector bundles over a Riemann surface of genus g. Firstly, we study the reduction at a regular value of the moment map, namely a generator of the center of SU(n). We describe its restriction map in terms of natural multiplicative generators of the equivariant cohomology of SU(n)2̂g and of the moduli space's cohomology. Secondly, we look at the reduction at the identity matrix of SU(n). Here the restriction map is injective. After a study of a family of generalised Morse-Bott functions on SU(n)2̂g, we propose a geometric interpretation of the injectivity of the restriction map in the cases n=2 or 3
Farouk, Anas El. "Méthodes de réduction, conservant les structures, pour le calcul des valeurs et vecteurs propres d'une matrice structurée." Littoral, 2006. http://www.theses.fr/2006DUNK0147.
Full textThe first part of this thesis deals with QR-like factorization for the symplectic case. Thus, the symplectic Gram-Schmidt (SGS) algorithm and its modified versions are studied in detail. In particular, the error analysis for the algorithm allowed us to obtain bounds for the error in the SR factorizationand for the loss of orthogonality. We also introduced and studied the symplectic Householder transformations. A Houselder type method for the factorization SR is introduced and studied following an algebraic and geometric approches. Results on the error are obtained. Finally, a link with the modified SGS and the SR factorization via Householder transvections is established. The second part is devoted to the introduction and the study of Krylov-like methods, structure preserving, for the eigenvalue problem. Two Arnoldi's methods are highlighted. One used the SGS in the orthogonalization process while the other performs the factorization via symplectic transvections. Finally, symplectic Lanczos type methods are introduced and studied. Unlike the classical methods, all these methods are structured-preserving for Hamiltonian, skew-Hamiltonian and symplectic matrices. The last chapter is devoted to numerical experiments
Pillet, Basile. "Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S021/document.
Full textThe purpose of this thesis is to construct geometric objects on a manifold C parametrizing rational curves in the twistor space of a hyperkähler manifold. We shall establish a correspondence between the complex geometry of the twistor space and some differential properties of C (differential operators and curvature of a complex riemannian structure inherited from the base hyperkähler manifold). The first chapters gather some classical results of the theory of hyperkähler manifolds and their twistor spaces. In the chapters 4, 5 and 6, we construct an equivalence of categories between bundles on the twistor space which are trivial on each line and bundles with a connexion of C satisfying certain curvature conditions. The chapter 7 extends this correspondence on the cohomological level whereas the chapter 8 explores its infinitesimal version ; it links curvature of the connexion with thickening (in the sense of LeBrun) of the bundle along the lines
Cazassus, Guillem. "Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30043/document.
Full textSymplectic instanton homology is an invariant for closed oriented three-manifolds, defined by Manolescu and Woodward, which conjecturally corresponds to a symplectic version of a variant of Floer's instanton homology. In this thesis we study the behaviour of this invariant under connected sum, Dehn surgery, and four-dimensional cobordisms. We prove a Künneth-type formula for the connected sum: let Y and Y' be two closed oriented three-manifolds, we show that the symplectic instanton homology of their connected sum is isomorphic to the direct sum of the tensor product of their symplectic instanton homology, and a shift of their torsion product. We define twisted versions of this homology, and then prove an analog of the Floer exact sequence, relating the invariants of a Dehn surgery triad. We use this exact sequence to compute the rank of the groups associated to branched double covers of quasi-alternating links, some plumbings of disc bundles over spheres, and some integral Dehn surgeries along certain knots. We then define invariants for four dimensional cobordisms as maps between the symplectic instanton homology of the two boundaries. We show that among the three morphisms in the surgery exact sequence, two are such maps, associated to the handle-attachment cobordisms. We also give a vanishing criteria for such maps associated to blow-ups
Eid, Salah. "Martingales et géométrie borélienne des probabilités." Paris 7, 2008. http://www.theses.fr/2008PA070071.
Full textThe main purpose of this thesis is to set up the link between the works donc by De Moivre, Poisson, Mondesir, Catalan, Bertrand, Ehrenfest, Markov, Borel, Ville and Levy with the theory of martingales. We have been interested in the different contexts in which these works have been developed. These contexts can be theoretical, historical, epistemological, philosophical and social
Boutat, Driss. "Feuilletages isodrastiques et phase de Berry-Weinstein pour le mouvement des sous-variétés lagrangiennes : cas des surfaces symplectiques." Lyon 1, 1993. http://www.theses.fr/1993LYO10147.
Full textBen, Yahia Hamed. "Intégralité classique et quantique de quelques systèmes dynamiques." Paris 7, 2008. http://www.theses.fr/2008PA077048.
Full textThis thesis is devoted to the study of the integrability of some dynamical Systems. In a first job, we've got a new family (enumerable) of integrable Systems on the sphere S ^2 wich genralizes the Neumann System. In a second job, on metrics called muticenter with integrable géodésie flow, we've show that they do belong to the Bianchi A metrics. Among them, those for Bianchi Vl_0 and Vll_0 seemed to be non-diagonal, but we've prove that in those two cases, apropriates coordinates changes allow to diagonalize them. Finally, for the Bianchi II metric we have highlighted the existence, in classical level, of a new W-algebra for conserved observables. Those two works, have been published in journals, but we've include in the thesis, two other works for which we have not obtain general solutions and that will lead to publications. -Construction of multi-center metrics in the Bianchi B classes. -Construction, in dimension 2, of all Stäckel Systems that do have an extra conserved quadratic quatity. In the first case we have been able to solve the problem for Bianchi B III, and for the second we have only been able to get particular solutions
Turki, Yahya. "Hamiltoniens, lagrangiens et sous-ensembles coïsotropes associés aux structures de Poisson." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0079.
Full textIn this thesis, we study cotangents paths. In chapter 1 we introduce for every Hamiltonian a Lagrangian on paths valued in the cotangent space whose stationary points projects onto Hamiltonian vector fields. We show that the remaining components of those stationary points tell whether the bivector field is Poisson or at least defines an integrable distribution - a class of bivector fields generalizing twisted Poisson structures that we study in detail. In chapter 2, we establish a local function version of a result due to Klimčík and Strobl then Cattaneo and Felder claiming that a bivector field on a manifold $M$ is Poisson if and only if cotangent paths form a coisotropic submabifold of the infinite dimensional symplectic manifold of paths valued in $T^*M$. Our purpose in chapter 2 is to prove this result without using the Banach manifold setting used by Cattaneo and Felder, which fails in the periodic case because cotangent loops do not form a Banach sub-manifold. Instead, we use local functions on the path space, a point of view that allows to speak of a coisotropic set
Liu, Gang. "Restriction des séries discrètes de SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel." Poitiers, 2011. http://nuxeo.edel.univ-poitiers.fr/nuxeo/site/esupversions/dab97901-6f8a-472a-8233-561a354976b7.
Full textIn this thesis we decompose in irreducibles the restriction of a discrete series representation of SU(2,1) to a maximal exponential solvable or a Borel subgroup and we interpret our results in the framework of the orbit method, hamiltonian geometry and "Spinc" quantization. In particular, we check that admissibility, which means that the restriction decomposes discretely in irreducibles, each one appearing with finite multiplicity, is equivalent to the compacity of the reduced spaces and we show that the multiplicities are related to the quantization of the reduced spaces
Peiffer-Smadja, Amiel. "Homologies lagrangiennes, symplectiques et attachement d'anse." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS370.
Full textIn this PhD thesis, I present a new construction of the wrapped Fukaya complex of a Lagrangian and of the Chekanov algebra of a Legendrian using techniques developed by Cieliebak, Ekholm and Oancea. These constructions behave well under cobordisms and thus are fit to study the symplectic handle attachment procedure. I prove that the wrapped Fukaya complex of the cocore is isomorphic to the Chekanov algebra of the attachment sphere and show that this isomorphism factors through Abouzaid’s Open-Closed map. I then give a strategy in order to deduce from these results two important theorems announced by Bourgeois, Ekholm and Eliashberg concerning the behaviour of symplectic homology under handle attachment and the generation of the Fukaya category. In the last chapter, I define following an idea of A’Campo a geodesic flow on the skeleton of a Brieskorn manifold and relate this flow to the Reeb flow on the link of the singularity in order to try to generalize Viterbo’s isomorphism between the symplectic homology of a cotangent bundle and the homology of a loop space
Cadet, Frédéric. "Déformation et quantification par groupoïde des variétés toriques." Phd thesis, Université d'Orléans, 2001. http://tel.archives-ouvertes.fr/tel-00001848.
Full textMathéus, Frédéric. "Probabilités et géométrie dans certains groupes de type fini." Habilitation à diriger des recherches, Université de Bretagne Sud, 2011. http://tel.archives-ouvertes.fr/tel-00919399.
Full textAlbouy, Olivier. "Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l'information quantique." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00402290.
Full textPuis nous étudions de façon systématique la possibilité de construire de telles bases au moyen des opérateurs de Pauli. 1) L'étude de la droite projective sur (Z_d)^m montre que, pour obtenir des ensembles maximaux de bases décorrélées à l'aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de (Z_d)^2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Z_d)^2),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l'espace des phases discret sont alors développés.
Enfin, nous présentons quelques outils inspirés de l'étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant.
Koufany, Khalid. "Analyse et géométrie des domaines bornés symétriques." Habilitation à diriger des recherches, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00138557.
Full textEn particulier, nous passons en revue des résultats sur l'indice de Maslov, de Souriau et d'Arnold-Leray. Nous étudions aussi certaines propriétés de contractions et de compressions de ces espaces.
Le prolongement de la série discrète holomorphe est une partie importante du programme de Gelfand-Gindikin. Dans ce contexte, nous étudions les espaces de Hardy des fonctions holomorphes sur certains domaines Stein. Nous donnons en particulier le lien qui existe entre ces espaces de Hardy et les espaces de Hardy classiques des fonctions holomorphes sur les espaces hermitiens symétriques.
En dernier lieu, nous étudions la conjecture de Helgason pour la frontière de Shilov des espaces hermitiens symétriques. Plus précisément, nous caractérisons l'image par de la transformation de Poisson des hyperfonctions et des fonctions $L^p$ sur la frontière de Shilov.
Menet, Grégoire. "Cohomologie entière et fibrations lagrangiennes sur certaines variétés holomorphiquement symplectiques singulières." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10050/document.
Full textThe starting point of the thesis was the study of a singular irreducible holomorphically symplectic variety (IHSV) of dimension 4 with orbifold singularities which was constructed by Markushevich—Tikhomirov in 2007 as a compactification of a Lagrangian family of (1,2)-polarized Prym surfaces. This family of Prym surfaces is associated to a linear system of genus-3 curves on a quartic K3 surface endowed with an anti-symplectic involution. In the fist part of the thesis, the Beauville—Bogomolov form (BB) on the second integer cohomology group of this IHSV is computed. The existence of the BB form for an IHSV with singular locus of codimension 4 was proved by Namikawa, but no explicit example of such a form was known. The thesis provides the first concrete examples of BB forms on singular IHSV. The calculation of these BB forms required the development of some tools for computing the integer cohomology of varieties quotiented by automorphism groups of prime order. In the second part of the thesis, the mirror family of dual abelian surfaces for the Markushevich—Tikhomirov IHSV is determined. As it turns out, it is also a family of Prym surfaces associated to a quartic K3 surface with an anti-symplectic involution and hence admits a compactification, which is the mirror of the original IHSV. A very precise geometric description of this duality is given, using Pantazis's bigonal construction. Moreover, it is proved that the mirror symmetry constructed in this way represents a non-trivial birational involution on the moduli space of Markushevich—Tikhomirov IHSV
La, Fuente Gravy Laurent. "Automorphismes hamiltoniens d'un produit star et opérateurs de Dirac Symplectiques." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209411.
Full textde la physique mathématique. Les thèmes que nous développerons mettent en évidence certaines
connexions avec la topologie symplectique d'une part, la géométrie Riemannienne d'autre part.
Dans la partie 1, nous étudions la quantification par déformation formelle d'une variété
symplectique, à l'aide de produits star. Nous définissons le groupe des automorphimes
hamiltoniens d'un produit star formel. En nous inspirant d'idées de Banyaga, nous
identifions ce groupe comme étant le noyau d'un morphisme remarquable sur le groupe
des automorphismes du produit star. Nous relions certaines propriétés géométriques de
ce groupe d'automorphismes hamiltoniens à la topologie du groupe des difféomorphismes
hamiltoniens.
Dans la partie 2, nous étudions les opérateurs de Dirac symplectiques. Les ingrédients
nécessaires à leur construction (algèbre de Weyl, structures $Mp^c$, champs de spineurs
symplectiques, connexions symplectiques,) sont également utilisés en quantification géométrique et en
quantification par déformation formelle. Les opérateurs de Dirac symplectiques sont construits
de manière analogue à l'opérateur de Dirac de la géométrie Riemannienne. Une formule de Weitzenbock
lie les opérateurs de Dirac symplectiques à un opérateur elliptique $mathcal{P}$ d'ordre 2. Nous étudions
les noyaux de ces opérateurs de Dirac symplectiques et leur lien avec le noyau de P.
Sur l'espace hermitien symétrique $CP^n$, nous calculerons le spectre de $mathcal{P}$ et nous
prouverons un théorème de Hodge pour les opérateurs de Dirac-Dolbeault symplectiques.
/
In this thesis we study two topics of symplectic geometry inspired from mathematical physics.
Part 1 is devoted to the study of deformation quantization of symplectic manifolds. More precisely, we consider formal star products on a symplectic manifold. We define the group of Hamiltonian automorphisms of a formal star product. Following ideas of Banyaga, we describe this group as the kernel
of a morphism on the group of automorphisms of the star product. We relate geometric properties of the group of Hamiltonian automorphisms to the topology of the group of Hamiltonian diffeomorphisms.
Part 2 is devoted to the study of symplectic Dirac operators. The construction of those operators relies on many concepts used in geometric quantization and formal deformation quantization such as Weyl algebra, $Mp^c$ structures, symplectic spinors, symplectic connections, The construction of symplectic Dirac operators is analogous to the one of Dirac operators in Riemannian geometry. A Weitzenbock formula relates the symplectic Dirac operators to an elliptic operator $mathcal{P}$ of order 2. We study the kernels of the symplectic Dirac operators and relate them to the kernel of $mathcal{P}$. On the hermitian symmetric space
$CP^n$, we compute the spectrum of $mathcal{P}$ and we prove a Hodge theorem for the symplectic Dirac-Dolbeault operator.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Camere, Chiara. "Stabilité des images inverses des fibrés tangents et involutions des variétés symplectiques." Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00552994.
Full textCalka, Pierre. "De nouveaux résultats sur la géométrie des mosaïques de Poisson-Voronoi et des mosaïques poissoniennes d'hyperplans : étude du modèle de fissuration de Rényi-Widom." Lyon 1, 2002. http://www.theses.fr/2002LYO10194.
Full textZiegler, François. "Méthode des orbites et représentations quantiques." Aix-Marseille 1, 1996. http://www.theses.fr/1996AIX11081.
Full textNguyen, Tien Viet. "Sur la modélisation des réseaux de communication sans fil en utilisant les processus ponctuels non-poisson." Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00958663.
Full textZenaidi, Naim. "Théorèmes de Künneth en homologie de contact." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209005.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Le, Crapper Jérôme. "Critères pour qu'une géodésique de la métrique de Hofer soit minimale." Paris 6, 2004. http://www.theses.fr/2004PA066467.
Full textLemarié, Caroline. "Quelques structures de Poisson et équations de Lax associées au réseau de Toeplitz et au réseau de Schur." Thesis, Poitiers, 2012. http://www.theses.fr/2012POIT2286/document.
Full textThe Toeplitz lattice is a Hamiltonian system whose Poisson structure is known. In this thesis, we reveil the origins of this Poisson structure and we derive from it the associated Lax equations for this lattice. We first construct a Poisson subvariety Hn of GLn(C), which we view as a real or complex Poisson-Lie group whose Poisson structure comes from a quadratic R-bracket on gln(C) for a fixed R-matrix. The existence of Hamiltonians, associated to the Toeplitz lattice for the Poisson structure on Hn, combined with the properties of the quadratic R-bracket allow us to give explicit formulas for the Lax equation. Then, we derive from it the integrability in the sense of Liouville of the Toeplitz lattice. When we view the lattice as being defined over R, we can construct a Poisson subvariety Han of Un which is itself a Poisson-Dirac subvariety of GLR n(C). We then construct a Hamiltonian for the Poisson structure induced on Han, corresponding to another system which derives from the Toeplitz lattice : the modified Schur lattice. Thanks to the properties of Poisson-Dirac subvarieties, we give an explicit Lax equation for the new system and derive from it a Lax equation for the Schur lattice. We also deduce the integrability in the sense of Liouville of the modified Schur lattice
Calka, Pierre. "De nouveaux résultats sur la géométrie des mosaïques de Poisson-Voronoi et des mosaïques poissoniennes d'hyperplans. Etude du modèle de fissuration de Rényi-Widom." Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00448216.
Full textSchaffhauser, Florent. "Représentations décomposables et sous-variétés lagrangiennes des espaces de modules associés aux groupes de surfaces." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00264370.
Full textKessab, Achraf. "Topologie et dimensionnement d'un réseau ad hoc maritime couplé avec un réseau satellitaire." Thesis, Paris, ENST, 2017. http://www.theses.fr/2017ENST0003/document.
Full textIn the first part of this thesis, we tackle the initialization of the network in this hierarchical context. We propose a statistical model enabling a network designer to perceive the requirements in terms of equipments, channel bandwidth, antenna configurations, antenna radiation pattern, achievable data rates for instance. In order to guarantee fully connected MANET, we introduce an analytical tool to estimate the required inter-staff-ships and inter-shipmasters coverage radii. Then we study the multi-hop end-to-end communications and we propose several routing protocols to enhance the delays. Afterwards, we focus on the contribution of the satellite backhaul with a comparative study qualifying the needs in Hybrid Stations “HSs” and a strategy to access to these gateways. In a second part, we emphasis on the radio resource outage occurrence and the dimensioning matter to optimize the allocated bandwidth to the network. We investigate stochastic geometry tools to provide an analytical model enabling to foresee the amount of required radio resources by the active nodes with a certain Quality of Service “QoS” and several Multiple Inputs Multiple Outputs “MIMO” antenna configurations in the maritime context. We consider first the centralized access scheme where all communications are performed via the shipmasters that are in charge of the radio resource management. Then we focus on the distributed access scheme with Aloha Medium Access Control “MAC” protocol where nodes are authorized to access to the shared bandwidth arbitrarily and unilaterally. Simulation and numerical results are provided to evaluate the performances in terms of required bandwidth, aggregate capacity
Richard, Nicolas. "Extrinsic symmetric symplectic spaces." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210064.
Full textPar analogie à la théorie standard des espaces symétriques, nous démontrons un théorème d'équivalence entre les espaces symétriques symplectiques extrinsèques d'une variété qui est elle-même un espace symétrique symplectique.
La définition d'un espace symétrique symplectique extrinsèque fait intervenir l'existence d'affinités globales de la variété ambiante, les ``symétries extrinsèques', qui induisent la structure symétrique de la sous-variété ;ceci mène à poser une question du type :quelles sont les variétés possédant ``beaucoup' de ces affinités~? Une question précise ainsi qu'une réponse sont fournies dans un contexte où la variété ambiante est seulement supposée munie d'une structure
symplectique et d'une connexion symplectiques. Nous considérons également le cas où ces symétries commutent avec un champ $K$ d'endomorphismes symplectiques fixé de la variété, de carré $pmId$. Nous définissons une notion de courbure sectionnelle pour plans $K$-stables et montrons que les espaces à $K$-courbure sectionnelle constantes sont localement symétriques de type Ricci.
Par suite nous étudions les espaces symétriques symplectiques extrinsèques dans un espace vectoriel symplectique. Nous montrons par exemple qu'un tel espace, s'ils est de dimension deux, est forcément intrinsèquement plat (c.-à-d. à courbure intrinsèque nulle), mais que son image n'est pas forcément un plan affin de l'espace vectoriel ambiant. Nous décrivons en fait explicitement tous les espaces
symétriques symplectiques extrinsèques, dans un espace vectoriel, dont la courbure intrinsèque s'annule identiquement. Nous décrivons également une famille d'exemples d'espaces extrinsèques, dont nous montrons qu'elle fournit la totalité des espaces extrinsèques de codimension $2$, dans un espace vectoriel.
Enfin, nous décrivons quelques exemples d'espaces symétriques symplectiques extrinsèques qui sont totalement géodésiques, dans un espace de type Ricci particulier.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Capitanio, Gianmarco. "Familles Tangentielles et solutions de minimax pour l'équation de Hamilton-Jacobi." Phd thesis, Université Paris-Diderot - Paris VII, 2004. http://tel.archives-ouvertes.fr/tel-00008669.
Full textCes deux sujets sont reliés à des thèmes classiques en théorie des singularités, comme la théorie des enveloppes, les singularités des fronts d'onde et des caustiques, la géométrie symplectique et de contact.
Les premiers trois chapitres de la Thèse sont consacrés à l'étude des familles tangentielles, à la classification de leurs singularités stables et simples, et à leurs interprétation dans le cadre de la Géométrie de Contact.
Le dernier chapitre est dédié à l'étude des solutions de minimax pour l'équation de Hamilton--Jacobi, notamment à la classification des leurs singularités génériques de petite codimension.
Wei, Qiaoling. "Solution de viscosité des équations Hamilton-Jacobi et minmax itérés." Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00963780.
Full textArchid, Atika. "Méthodes par blocs adaptées aux matrices structurées et au calcul du pseudo-inverse." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0394/document.
Full textWe study, in this thesis, some numerical block Krylov subspace methods. These methods preserve geometric properties of the reduced matrix (Hamiltonian or skew-Hamiltonian or symplectic). Among these methods, we interest on block symplectic Arnoldi, namely block J-Arnoldi algorithm. Our main goal is to study this method, theoretically and numerically, on using ℝ²nx²s as free module on (ℝ²sx²s, +, x) with s ≪ n the size of block. A second aim is to study the approximation of exp (A)V, where A is a real Hamiltonian and skew-symmetric matrix of size 2n x 2n and V a rectangular matrix of size 2n x 2s on block Krylov subspace Km (A, V) = blockspan {V, AV,...Am-1V}, that preserve the structure of the initial matrix. this approximation is required in many applications. For example, this approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependant partial differential equations (PDEs). We also present a block symplectic structure preserving Lanczos method, namely block J-Lanczos algorithm. Our approach is based on a block J-tridiagonalization procedure of a structured matrix. We propose algorithms based on two normalization methods : the SR factorization and the Rj R factorization. In the last part, we proposea generalized algorithm of Greville method for iteratively computing the Moore-Penrose inverse of a rectangular real matrix. our purpose is to give a block version of Greville's method. All methods are completed by many numerical examples
Wieland, Wolfgang Martin. "The Chiral Structure of Loop Quantum Gravity." Phd thesis, Aix-Marseille Université, 2013. http://tel.archives-ouvertes.fr/tel-00952498.
Full textKeller, Julien. "Equations de type Vortex et métriques canoniques." Phd thesis, Université Paul Sabatier - Toulouse III, 2005. http://tel.archives-ouvertes.fr/tel-00012107.
Full text$$\sqrt\Lambda F_h = \sum_i \widetilde_i\pi^_$$
alors nous prouvons que la suite de métriques équilibrées existe, converge et sa limite est, à un changement conforme, solution de l'équation précédente. De ce résultat nous déduisons, par réduction dimensionnelle, un théorème d'approximation dans le cas des équations Vortex de Bradlow ainsi que leurs généralisations aux équations couplées Vortex.
Keddari, Nassima. "Intersections lagrangiennes pour les sous-variétés monotones et presque monotones." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD030/document.
Full textN the first part of the thesis, we give, under some hypotheses, a lower bound on the intersection number of a closed monotone Lagrangian submanifold L with its image by a generic Hamiltonianisotopy. For monotone Lagrangian submanifolds L which are K(pi, 1) and, in particular with negative sectional curvature, this bound is 1 + beta_1(L), where beta_1 is the first Betti number with coefficients in Z_2. Another consequence, is the non-displaceability of a monotone Lagrangian embedding of RPn x K (where K is a submanifold with negative sectional curvature such that H^1(K, Z) ≠ 0) in some symplectic manifolds. In the second part, given a closed monotone Lagrangian submanifold L, which is not displaceable, we use Floer homology defined on Lagrangians which are C^1 - close to L, to get information about it Maslov number. Besides, if L can be approached by a sequence of displaceable Lagrangians, then, under some topological assumptions on L, the displacement energy of the elements of this sequence converge to infinity
Brugallé, Erwan. "Courbes algébriques réelles et courbes pseudoholomorphes réelles dans les surfaces réglées." Phd thesis, Université Rennes 1, 2004. http://tel.archives-ouvertes.fr/tel-00008652.
Full text