To see the other types of publications on this topic, follow the link: Geometry, Analytic. Curves, Plane.

Dissertations / Theses on the topic 'Geometry, Analytic. Curves, Plane'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 22 dissertations / theses for your research on the topic 'Geometry, Analytic. Curves, Plane.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Holanda, Felipe D'Angelo. "Introduction to differential geometry of plane curves." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15052.

Full text
Abstract:
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
A intenÃÃo desse trabalho serà de abordar de forma bÃsica e introdutÃria o estudo da Geometria Diferencial, que por sua vez tem seus estudos iniciados com as Curvas Planas. Serà necessÃrio um conhecimento de CÃlculo Diferencial, Integral e Geometria AnalÃtica para melhor compreensÃo desse trabalho, pois como seu prÃprio nome nos transparece Geometria Diferencial vem de uma junÃÃo do estudo da Geometria envolvendo CÃlculo. Assim abordaremos subtemas como curvas suaves, vetor tangente, comprimento de arco passando por fÃrmulas de Frenet, curvas evolutas e involutas e finalizaremos com alguns teoremas importantes, como o teorema fundamental das curvas planas, teorema de Jordan e o teorema dos quatro vÃrtices. O que, basicamente representa, o capÃtulo 1, 4 e 6 do livro IntroduÃÃo Ãs Curvas Planas de HilÃrio Alencar e Walcy Santos.
The intention of this work is to address in basic form and introductory study of Differential Geometry, which in turn has started his studies with Planas curves. It will require a knowledge of Differential Calculus, Integral and Analytic Geometry for better understanding of this work, because as its name says in Differential Geometry comes from the joint study of geometry involving Calculation. So we discuss sub-themes as smooth curves, tangent vector, arc length through formulas of Frenet, evolutas curves and involute and conclude with some important theorems, as the fundamental theorem of plane curves, Jordan 's theorem and the theorem of four vertices. What basically is, Chapter 1, 4 and 6 of the book Introduction to Plane Curves HilÃrio Alencar and Walcy Santos.
APA, Harvard, Vancouver, ISO, and other styles
2

Nichols, Margaret E. "Intersection Number of Plane Curves." Oberlin College Honors Theses / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1385137385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Neovius, Sofia. "René Descartes’ Foundations of Analytic Geometry and Classification of Curves." Thesis, Uppsala universitet, Algebra och geometri, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sheppardson, Laura. "Disjoint paths in planar graphs." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/29862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Collins, John P. "Gluing Bridgeland's stability conditions and Z₂-equivariant sheaves on curves /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cohen, Camron Alexander Robey. "CURVING TOWARDS BÉZOUT: AN EXAMINATION OF PLANE CURVES AND THEIR INTERSECTION." Oberlin College Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin159345184740689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fowler, Thomas George. "Unique coloring of planar graphs." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jaramillo, Puentes Andrés. "Rigid isotopy classification of real quintic rational plane curves." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066116/document.

Full text
Abstract:
Afin d’étudier les classes d'isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP, nous associons à chaque quintique avec un point double réel marque une courbe trigonale dans la surface de Hirzebruch Sigma3 et le dessin reel nodal correspondant dans CP/(z mapsto bar{z}). Les dessins sont des versions réelles, proposées par S. Orevkov dans cite{Orevkov}, des dessins d'enfants de Grothendieck. Un dessin est un graphe contenu dans une surface topologique, muni d'une certaine structure supplémentaire. Dans cette thèse, nous étudions les propriétés combinatoires et les recompositions des dessins correspondants aux courbes trigonales nodales C subset Sigma dans les surfaces réglées réelles Sigma . Les dessins uninodaux sur une surface a bord quelconque et les dessins nodaux sur le disque peuvent être décomposés en blocs correspondant aux dessins cubiques sur le disque D2 , ce qui conduit a une classification des ces dessins. La classification des dessins considérés mène à une classification à isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP
In order to study the rigid isotopy classes of nodal rational curves of degree $5$ in $\RPP$, we associate to every real rational quintic curve with a marked real nodal point a trigonal curve in the Hirzebruch surface $\Sigma_3$ and the corresponding nodal real dessin on~$\CP/(z\mapsto\bar{z})$. The dessins are real versions, proposed by S. Orevkov~\cite{Orevkov}, of Grothendieck's {\it dessins d'enfants}. The {\it dessins} are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves~$C\subset \Sigma$ in real ruled surfaces~$\Sigma$. Uninodal dessins in any surface with non-empty boundary and nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk~$\mathbf{D}^2$, which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in~$\RPP$
APA, Harvard, Vancouver, ISO, and other styles
9

Duran, James Joseph. "Differential geometry of surfaces and minimal surfaces." CSUSB ScholarWorks, 1997. https://scholarworks.lib.csusb.edu/etd-project/1542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beltrami, Reginaldo Silva. "Algumas técnicas utilizando o software GeoGebra no processo de resolução de problemas geométricos do ensino básico: situações de máximos e mínimos e lugares geométricos." Universidade Federal de Roraima, 2016. http://www.bdtd.ufrr.br/tde_busca/arquivo.php?codArquivo=342.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Tendo em vista as mudanças ocorridas ao longo do tempo, provenientes dos avanços tecnológicos e contidas em todos os setores, a vida humana tem sido atingida significativamente. Particularmente, procura-se fazer uso dessas novas tecnologias, objetivando motivar a aprendizagem do indivíduo e nos métodos utilizados na educação. E no que diz respeito a consolidação no processo pedagógico, os softwares de matemática dinâmica têm como objetivo auxiliar os modelos tradicionais de ensino e contribuir para a evolução do cenário educacional. No Ensino Básico, espera-se que os alunos saibam utilizar essas ferramentas tecnológicas para uma melhor compreensão ou visualização de problemas geométricos. Dessa forma, o principal objetivo desta dissertação é apresentar algumas técnicas que contribuam como facilitadoras do entendimento de problemas geométricos relacionados à geometria plana com abordagem em situações variáveis, utilizando funções reais, o conceito de lugar geométrico e o software GeoGebra. Por fim, apresenta-se um acervo de dez problemas geométricos relacionados mais intimamente com os conceitos de lugar geométrico, de máximo e de mínimo, nos quais servirão como referencial para os professores e alunos que desejam explorar essa poderosa ferramenta chamada GeoGebra.
In view of the changes over time, from the technological advances and contained in all sectors, human life has been affected significantly. In particular, one seeks to make use of these new technologies, aiming to motivate learning of the individual and the methods used in education. And, with regard to consolidation in the educational process, the dynamic software are designed to help traditional models of education and contribute to the development of the educational setting. In basic education, it is expected that students know how to use these technological tools for better understanding and visualization of geometric problems. Thus, the main objective of this dissertation is to present some techniques that contribute to facilitating the understanding of geometric problems related to the flat geometry approach to changing situations using real functions, the concept of locus and GeoGebra software. Finally, we present a collection of ten related geometric problems more closely with the concepts of locus, maximum and minimum, in which will serve as a reference for teachers and students who wish to explore this powerful tool called GeoGebra.
APA, Harvard, Vancouver, ISO, and other styles
11

Rimmasch, Gretchen. "Complete Tropical Bezout's Theorem and Intersection Theory in the Tropical Projective Plane." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2507.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Terra, Neto Platão Gonçalves. "Possibilidades na conversão entre registros de geometria plana." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/151181.

Full text
Abstract:
Nesta pesquisa, que consiste de um estudo de caso, elaboramos uma sequência didática que prevê atividades que devem ser resolvidas de duas maneiras distintas. Uma das maneiras utiliza conceitos de Geometria Plana – como Teorema de Pitágoras e semelhanças – e a outra maneira utiliza conceitos de Geometria Analítica – como equações de reta e cálculos de área via determinantes. Para analisar os dados coletados, com a aplicação desta sequência, a Teoria de Registros de Representação Semiótica foi utilizada. Duval (2009), autor da teoria, trata sobre a importância dos registros em Ensino de Matemática, sobre a conversão de um registro em outro e sobre a necessidade de utilização de mais de um registro como um meio de entender o modo matemático de pensar. Como meio de dar um suporte a nossa pesquisa, em nossa revisão bibliográfica, procuramos produções recentes, nas quais foram utilizadas a mesma teoria sob o aspecto da conversão, e analisamos também se os livros didáticos de Matemática, do terceiro ano do Ensino Médio, contemplam atividades que incentivem a utilização de mais de um registro para resolução de atividades. Esta sequência foi aplicada em uma turma de alunos do terceiro ano, de uma escola de Ensino Médio Técnico integrado e sua estrutura foi inspirada na Investigação Matemática de Ponte (2006). Nesta pesquisa, os registros, majoritariamente utilizados pelos alunos, foram os de Geometria Plana – Figural – e de Geometria Analítica – Gráfico – e verificamos que os alunos conseguiram, quando solicitados, articular a utilização destes dois tipos de registro.
In this case study we elaborate a didactic sequence that predicts activities that should be solved in two different ways. One of them uses the concepts of plane geometry – such as the Pythagorean theorem and similarities – and the other uses the concepts of analytic geometry – such as the equations of a line and area calculations. To analyze the data assembled with the application of this sequence we used The Theory of Registers of Semiotic Representation. Duval (2009), the author of this theory, addresses the importance of registers in Mathematics Teaching, the conversion of one register to another, and the need to use more than one register as a way to understand the mathematical way of thinking. To support our research, we looked in our bibliographical review for recent articles that made use of the same theory under the conversion aspect, and we also analyzed whether third year high school mathematics textbooks offer activities that encourage the use of more than one register in the solution of activities. This sequence was applied in a class of third-year students, from an integrated technical high school and its structure was inspired by Ponte’s Mathematical Investigation (2006). In this research, the registers most used by the students were those of plane geometry – figure – and of analytic geometry – graph – and we verified that the students, on request, achieved to articulate the use of these two types of registers.
APA, Harvard, Vancouver, ISO, and other styles
13

Tewari, Ayush Kumar [Verfasser], Michael [Akademischer Betreuer] Joswig, Michael [Gutachter] Joswig, Hannah [Gutachter] Markwig, and Dhruv [Gutachter] Ranganathan. "Realizability of tropical plane curves and tropical incidence geometry / Ayush Kumar Tewari ; Gutachter: Michael Joswig, Hannah Markwig, Dhruv Ranganathan ; Betreuer: Michael Joswig." Berlin : Technische Universität Berlin, 2021. http://d-nb.info/1226217400/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Moreno, Ávila Carlos Jesús. "Global geometry of surfaces defined by non-positive and negative at infinity valuations." Doctoral thesis, Universitat Jaume I, 2021. http://hdl.handle.net/10803/672247.

Full text
Abstract:
We consider plane divisorial valuations of Hirzebruch surfaces and introduce the concepts of non-positivity and negativity at infinity. We prove that the surfaces given by valuations of the last types have nice global and local geometric properties. Moreover, non-positive at infinity divisorial valuations are those divisorial valuations of Hirzebruch surfaces providing rational surfaces with minimal generated cone of curves. Non-positivity and negativity at infinity are also extended to the class of real valuations of the projective plane and the Hirzebruch surfaces. Finally, we compute the Seshadri-type constants for pairs formed by a big divisor and a divisorial valuation of a Hirzebruch surface and obtain the vertices of the Newton-Okounkov bodies of pairs as above under the non-positivity at infinity property.
Introducimos los conceptos de no positividad y negatividad en el infinito para valoraciones planas divisoriales de una superficie de Hirzebruch. Probamos que las superficies dadas por valoraciones con las características anteriores poseen interesantes propiedades globales y locales. Además, las valoraciones divisoriales no positivas en el infinito son aquellas valoraciones divisoriales de superficies de Hirzebruch que dan lugar a superficies racionales tales que su cono de curvas está generado por un número mínimo de generadores. Los conceptos de no positividad y negatividad en el infinito también se extienden a valoraciones reales del plano proyectivo y de superficies de Hirzebruch. Por último, calculamos explícitamente las constantes de tipo Seshadri para pares formados por divisores big y valoraciones divisoriales de superficies de Hirzebruch y obtenemos los vértices de los cuerpos de Newton-Okounkov para pares como los anteriores bajo la condición de no positividad en el infinito.
Programa de Doctorat en Ciències
APA, Harvard, Vancouver, ISO, and other styles
15

Sanchez, Luis Florial Espinoza. "Singularidades de curvas na geometria afim." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-07102010-145223/.

Full text
Abstract:
Neste trabalho estudamos a geometria da evoluta afim e da curva normal afim associada à uma curva plana sem inflexões a partir do tipo de singularidade das funções suporte afim. O principal resultado estabelece que se \'\\gamma\' é uma curva plana sem inflexões, satisfazendo certas condições genéricas então dois casos podem ocorrer: 1. se p é um ponto da evoluta afim de \'\\gamma\' em \'s IND. 0\' então temos dois casos: se \'\\gamma\' (\'s IND. 0\') é um ponto sextático então, localmente em p, a evoluta afim é difeomorfa a uma cúspide em \'R POT. 2\' ; se não, localmente em p, a evoluta afim é difeomorfa à uma reta em \'R POT. 2\' , 2. se p = \'\\gamma\' (\'s IND. 0\') é um ponto da normal afim de \'\\gamma\' então temos dois casos: se \'\\gamma\'(\'s IND. 0\') é um ponto parabólico de \'\\gamma\' então, localmente em p, a curva normal afim é difeomorfa a uma cúspide em \'R POT. 2\' ; em outro caso, localmente em p, a curva normal afim é difeomorfa à uma reta em \'R POT. 2\'
In this work we study the geometry of the affine evolute and the affine normal curve associated with a plane curve without inflections from the type of singularity of affine support functions. The main result is setting if \'\\gamma\' is a flat curve without inflections, satisfying certain conditions generic then, if p is a point of the affine evolute of \'\\gamma\' at \'s IND. 0\' then two cases: if \'\\gamma\' (\'s IND. 0\') is a sextactic point then locally in p the affine evolute is diffeomorphic to a cusp at \'R POT. 2\', otherwise locally in p the affine evolute is diffeomorphic to a straight in \'R POT. 2\', and second if p = \'\\gamma\' (\'s IND. 0\') is a point of the affine normal curve then two cases: if \'\\gamma\'(\'s IND. 0\') is a parabolic point of \'\\gamma\' then locally in p the affine normal curve is diffeomorphic to a cusp at \'R POT. 2\' , in otherwise locally in p the affine normal curve is diffeomorphic to a line in \'R POT. 2\'
APA, Harvard, Vancouver, ISO, and other styles
16

Soares, Vanessa Ribeiro. "Batalha naval e suas aplicações." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/5909.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2016-08-10T13:40:03Z No. of bitstreams: 2 Dissertação - Vanessa Ribeiro Soares - 2016.pdf: 11844437 bytes, checksum: 03d509603ea96f2647ea2764aea87d17 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-10T13:42:09Z (GMT) No. of bitstreams: 2 Dissertação - Vanessa Ribeiro Soares - 2016.pdf: 11844437 bytes, checksum: 03d509603ea96f2647ea2764aea87d17 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-10T13:42:09Z (GMT). No. of bitstreams: 2 Dissertação - Vanessa Ribeiro Soares - 2016.pdf: 11844437 bytes, checksum: 03d509603ea96f2647ea2764aea87d17 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-30
This work has the purpose contribute to the improvement in some teaching contents of analytic geometry and trigonometry in high school . The content work was based on the National Curriculum Parameters, highlighting de nitions, theorems and properties necessary for the development of student learning. The theme was chosen after a practical experience involving the Naval Battle game in order to reduce the students' di culties. The playful work, as the game, has a practical application that does the student become familiar with the content. That's an interesting way to propose problems and solutions involving the content. Thus becomes something attractive to the student and encourages creativity in nding problems solutions.
O trabalho tem como objetivo contribuir para o aprimoramento no ensino de alguns conteúdos de Geometria Analítica e Trigonometria no Ensino Médio. Dentro dos Parâmetros Curriculares Nacionais, trabalhamos o conteúdo destacando de nições, teoremas e propriedades necessárias para o desenvolvimento de aprendizagem do aluno. O tema foi escolhido depois de uma experiência prática envolvendo o jogo Batalha Naval a m de diminuir as di culdades dos alunos. O trabalho lúdico, como o jogo, tem uma aplicação prática que faz o aluno se familiarizar com os conceitos. É uma forma interessante de propor problemas e soluções envolvendo o conceitos. Assim se torna algo atrativo para o aluno e favorece a criatividade na busca de soluções para os problemas.
APA, Harvard, Vancouver, ISO, and other styles
17

Iavorski, Alessandro. "Cônicas e curvas de Cassini." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/809.

Full text
Abstract:
CAPES
Este trabalho foi desenvolvido com o propósito de servir de material de apoio para professores e alunos de matemática. Apresenta a exploração de algumas curvas como lugar geométrico dos pontos que satisfazem uma determinada propriedade. Apresenta como sugestão de trabalho uma família de curvas chamadas de curvas de Cassini, que são determinadas por uma propriedade similar `a propriedade que define as cônicas. Propõe atividades envolvendo as cônicas e as curvas de Cassini, para que essas atividades possam ser utilizadas em sala de aula e para que possam servir de base para elaboração de outras.
This work was developed with the purpose of serving as a support material for teachers and students of mathematics. Presents the exploration of some curves as locus of points that satisfy a given property. Presents as suggestion of work a family of curves called Cassini curves, which are determined by a property similar to the property that defines the conics. Proposes activities involving the conics and curves of Cassini so that these activities can be used in the classroom and what can be the basis for development of other.
APA, Harvard, Vancouver, ISO, and other styles
18

Mehmeti, Vlere. "Patching on Berkovich Spaces and the Local-Global Principle." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC240.

Full text
Abstract:
Le recollement sur les corps, introduit par Harbater et Hartmann, et étendu par ces auteurs et Krashen, a récemment trouvé de nombreuses applications. Nous présentons ici une extension de cette technique au cadre de la géométrie analytique de Berkovich et des applications au principe local-global.Nous montrons que cette adaptation du recollement peut s'appliquer aux courbes analytiques de Berkovich, et par conséquent obtenons des principes locaux-globaux sur les corps de fonctions de courbes définies sur des corps ultramétriques complets. Grâce à la connexion entre les points d'une courbe analytique de Berkovich et les valuations dont on peut munir son corps de fonctions, nous obtenons un principe local-global par rapport à des complétés du corps de fonctions considéré, ce qui présente une ressemblance avec des versions plus classiques. En application, nous établissons des principes locaux-globaux dans le cas plus précis des formes quadratiques et en déduisons des bornes sur l'u-invariant de certains corps. Nos résultats généralisent ceux de Harbater, Hartmann et Krashen.Comme point de départ pour le recollement en dimension supérieure dans un cadre d'espaces de Berkovich, nous montrons que cette technique peut s'appliquer autour de certaines fibres d'une courbe analytique relative. Nous l'utilisons ensuite pour démontrer un principe local-global sur les germes des fonctions méromorphes sur ces fibres. En montrant que ces germes de fonctions méromorphes sont algébriques, nous obtenons aussi des principes locaux-globaux sur les corps de fonctions des courbes algébriques définies sur une famille plus vaste de corps ultramétriques
Field patching, introduced by Harbater and Hartmann, and extended by the aforementioned authors and Krashen, has recently seen numerous applications. We present an extension of this technique to the setting of Berkovich analytic geometry and applications to the local-global principle.In particular, we show that this adaptation of patching can be applied to Berkovich analytic curves, and as a consequence obtain local-global principles over function fields of curves defined over complete ultrametric fields. Because of the connection between the points of a Berkovich analytic curve and the valuations that its function field can be endowed with, one of these local-global principles is given with respect to completions, thus evoking some similarity with more classical versions. As an application, we obtain local-global principles for quadratic forms and results on the u-invariant. These findings generalize those of Harbater, Hartmann and Krashen.As a starting point for higher-dimensional patching in the Berkovich setting, we show that this technique is applicable around certain fibers of a relative Berkovich analytic curve. As a consequence, we prove a local-global principle over the germs of meromorphic functions on said fibers. By showing that said germs of meromorphic functions are algebraic, we also obtain local-global principles over function fields of algebraic curves defined over a larger class of ultrametric fields
APA, Harvard, Vancouver, ISO, and other styles
19

Oliveira, Marina Mariano de. "Curvas pedais e Teorema dos Quatro Vértices : uma introdução à geometria diferencial." reponame:Repositório Institucional da UFABC, 2018.

Find full text
Abstract:
Orientador: Prof. Dr. Marcus Antônio Mendonça Marrocos
Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional - PROFMAT, Santo André, 2018.
Neste trabalho, apresentamos a geometria diferencial das curvas planas de um modo mais acessível para um leitor não especialista no assunto, mas de forma a despertar seu interesse. A Teoria Local das Curvas Planas é desenvolvida por meio de exemplos e, em particular, exibimos a família das curvas pedais. Ilustramos a Teoria Global por meio do Teorema dos Quatro Vértices e apresentamos, também, formas de explorar os conceitos de geometria diferencial na Educação Básica, com resultados geométricos interessantes e visualmente atraentes. Para isso, contamos com o auxílio do GeoGebra, um software de matemática dinâmica, e da string art, um estilo de arte caracterizado por um arranjo de cordas que formam padrões geométricos. Com isso, buscamos proporcionar ao leitor uma forma diferente de experimentar a geometria diferencial das curvas planas, bem como proporcionar aos alunos do Ensino Médio um aprendizado interessante de geometria analítica.
In this work, we present the differential geometry of the plane curves in an accessible way for not specialized readers in the subject, but in order to arouse their interest. The Local Theory of Plane Curves is developed by means of several examples and, in particular, we bring out the class of pedal curves. In order to ilustrate the Global Theory we present the Four-Vertex Theorem and we also present a way to introduce differential geometry concepts to secondary school students with interesting and visually attractive geometric results. To do this, we use the software GeoGebra, a interactive geometry and algebra application, and string art, a sort of art characterized by an arrangement of strings that form geometric patterns. We hope to provide to the readers a pratical experience of differential geometry of plane curves, as well as providing them the students of High School with an interesting learning of analytical geometry.
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Shin-Ling, and 陳時霖. "Geometry of Convex Closed Plane Curves." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/skmzds.

Full text
Abstract:
碩士
國立清華大學
數學系
102
In the first five sections we introduce some important geometric quantities of a curve, such as curvature, torsion, the support function and the width. In the rest part of this thesis we derive some famous geometric inequalities such as the isoperimetric inequality, Gage’s isoperimetric inequality and Wirtinger inequality. Also we introduce an important idea for a curve – the parallel curve. Using the idea of the parallel curve we can obtain our final goal of this thesis – the entropy estimate.
APA, Harvard, Vancouver, ISO, and other styles
21

Frizzell, Carrie. "Prym Varieties of Tropical Plane Quintics." Thesis, 2018. http://hdl.handle.net/2097/38898.

Full text
Abstract:
Master of Science
Department of Mathematics
Ilia Zharkov
When considering an unramified double cover π: C’→ C of nonsingular algebraic curves, the Prym variety (P; θ) of the cover arises from the sheet exchange involution of C’ via extension to the Jacobian J(C’). The Prym is defined to be the anti-invariant (odd) part of this induced map on J(C’), and it carries twice a principal polarization of J(C’). The pair (P; θ), where θ is a representative of a theta divisor of J(C’) on P, makes the Prym a candidate for the Jacobian of another curve. In 1974, David Mumford proved that for an unramified double cover π : C’η →C of a plane quintic curve, where η is a point of order two in J(C), then the Prym (P; θ) is not a Jacobian if the theta characteristic L(η) is odd, L the hyperplane section. We sought to find an analog of Mumford's result in the tropical geometry setting. We consider the Prym variety of certain unramified double covers of three types of tropical plane quintics. Applying the theory of lattice dicings, which give affine invariants of the Prym lattice, we found that when the parity α(H3) is even, H3 the cycle associated to the hyperplane section and the analog to η in the classical setting, then the Prym is not a Jacobian, and is a Jacobian when the parity is odd.
APA, Harvard, Vancouver, ISO, and other styles
22

Pelcová, Kateřina. "Charakteristika odlišných pojetí výuky matematiky na příkladu dvou učitelů gymnázia." Master's thesis, 2015. http://www.nusl.cz/ntk/nusl-349450.

Full text
Abstract:
The goal of this thesis is to describe teaching styles of two secondary mathematics teachers with very different approaches. One of them represents traditional frontal instruction and one prefers students to be more actively involved in the learning process. Their styles are compared based on their teaching a concrete mathematical topic, namely plane analytic geometry of lines. Examined teaching styles (frontal instruction and so-called realistic education) and selected research with a similar focus are described in the theoretical part of the thesis. The research consisted of observations in lessons of both teachers and a final test for their students. The acquired data has been analyzed by qualitative and quantitative methods. The teacher representing traditional frontal instruction emphasizes practising and explaining the new topic. Problems are solved by herself or one chosen student on the blackboard. Questions, which she is asking, require mainly short answers and are focused on reproduction of the previously learnt knowledge. During the lessons of the teacher who is the creator and also an exponent of the so-called realistic education, students are solving problems independently. New topics are discussed collectively, the teacher often asks questions focused on the application of previous knowledge,...
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography