Dissertations / Theses on the topic 'Geometry, Analytic. Curves, Plane'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Geometry, Analytic. Curves, Plane.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Holanda, Felipe D'Angelo. "Introduction to differential geometry of plane curves." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15052.
Full textA intenÃÃo desse trabalho serà de abordar de forma bÃsica e introdutÃria o estudo da Geometria Diferencial, que por sua vez tem seus estudos iniciados com as Curvas Planas. Serà necessÃrio um conhecimento de CÃlculo Diferencial, Integral e Geometria AnalÃtica para melhor compreensÃo desse trabalho, pois como seu prÃprio nome nos transparece Geometria Diferencial vem de uma junÃÃo do estudo da Geometria envolvendo CÃlculo. Assim abordaremos subtemas como curvas suaves, vetor tangente, comprimento de arco passando por fÃrmulas de Frenet, curvas evolutas e involutas e finalizaremos com alguns teoremas importantes, como o teorema fundamental das curvas planas, teorema de Jordan e o teorema dos quatro vÃrtices. O que, basicamente representa, o capÃtulo 1, 4 e 6 do livro IntroduÃÃo Ãs Curvas Planas de HilÃrio Alencar e Walcy Santos.
The intention of this work is to address in basic form and introductory study of Differential Geometry, which in turn has started his studies with Planas curves. It will require a knowledge of Differential Calculus, Integral and Analytic Geometry for better understanding of this work, because as its name says in Differential Geometry comes from the joint study of geometry involving Calculation. So we discuss sub-themes as smooth curves, tangent vector, arc length through formulas of Frenet, evolutas curves and involute and conclude with some important theorems, as the fundamental theorem of plane curves, Jordan 's theorem and the theorem of four vertices. What basically is, Chapter 1, 4 and 6 of the book Introduction to Plane Curves HilÃrio Alencar and Walcy Santos.
Nichols, Margaret E. "Intersection Number of Plane Curves." Oberlin College Honors Theses / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1385137385.
Full textNeovius, Sofia. "René Descartes’ Foundations of Analytic Geometry and Classification of Curves." Thesis, Uppsala universitet, Algebra och geometri, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202147.
Full textSheppardson, Laura. "Disjoint paths in planar graphs." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/29862.
Full textCollins, John P. "Gluing Bridgeland's stability conditions and Z₂-equivariant sheaves on curves /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10218.
Full textCohen, Camron Alexander Robey. "CURVING TOWARDS BÉZOUT: AN EXAMINATION OF PLANE CURVES AND THEIR INTERSECTION." Oberlin College Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin159345184740689.
Full textFowler, Thomas George. "Unique coloring of planar graphs." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30358.
Full textJaramillo, Puentes Andrés. "Rigid isotopy classification of real quintic rational plane curves." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066116/document.
Full textIn order to study the rigid isotopy classes of nodal rational curves of degree $5$ in $\RPP$, we associate to every real rational quintic curve with a marked real nodal point a trigonal curve in the Hirzebruch surface $\Sigma_3$ and the corresponding nodal real dessin on~$\CP/(z\mapsto\bar{z})$. The dessins are real versions, proposed by S. Orevkov~\cite{Orevkov}, of Grothendieck's {\it dessins d'enfants}. The {\it dessins} are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves~$C\subset \Sigma$ in real ruled surfaces~$\Sigma$. Uninodal dessins in any surface with non-empty boundary and nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk~$\mathbf{D}^2$, which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in~$\RPP$
Duran, James Joseph. "Differential geometry of surfaces and minimal surfaces." CSUSB ScholarWorks, 1997. https://scholarworks.lib.csusb.edu/etd-project/1542.
Full textBeltrami, Reginaldo Silva. "Algumas técnicas utilizando o software GeoGebra no processo de resolução de problemas geométricos do ensino básico: situações de máximos e mínimos e lugares geométricos." Universidade Federal de Roraima, 2016. http://www.bdtd.ufrr.br/tde_busca/arquivo.php?codArquivo=342.
Full textTendo em vista as mudanças ocorridas ao longo do tempo, provenientes dos avanços tecnológicos e contidas em todos os setores, a vida humana tem sido atingida significativamente. Particularmente, procura-se fazer uso dessas novas tecnologias, objetivando motivar a aprendizagem do indivíduo e nos métodos utilizados na educação. E no que diz respeito a consolidação no processo pedagógico, os softwares de matemática dinâmica têm como objetivo auxiliar os modelos tradicionais de ensino e contribuir para a evolução do cenário educacional. No Ensino Básico, espera-se que os alunos saibam utilizar essas ferramentas tecnológicas para uma melhor compreensão ou visualização de problemas geométricos. Dessa forma, o principal objetivo desta dissertação é apresentar algumas técnicas que contribuam como facilitadoras do entendimento de problemas geométricos relacionados à geometria plana com abordagem em situações variáveis, utilizando funções reais, o conceito de lugar geométrico e o software GeoGebra. Por fim, apresenta-se um acervo de dez problemas geométricos relacionados mais intimamente com os conceitos de lugar geométrico, de máximo e de mínimo, nos quais servirão como referencial para os professores e alunos que desejam explorar essa poderosa ferramenta chamada GeoGebra.
In view of the changes over time, from the technological advances and contained in all sectors, human life has been affected significantly. In particular, one seeks to make use of these new technologies, aiming to motivate learning of the individual and the methods used in education. And, with regard to consolidation in the educational process, the dynamic software are designed to help traditional models of education and contribute to the development of the educational setting. In basic education, it is expected that students know how to use these technological tools for better understanding and visualization of geometric problems. Thus, the main objective of this dissertation is to present some techniques that contribute to facilitating the understanding of geometric problems related to the flat geometry approach to changing situations using real functions, the concept of locus and GeoGebra software. Finally, we present a collection of ten related geometric problems more closely with the concepts of locus, maximum and minimum, in which will serve as a reference for teachers and students who wish to explore this powerful tool called GeoGebra.
Rimmasch, Gretchen. "Complete Tropical Bezout's Theorem and Intersection Theory in the Tropical Projective Plane." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2507.pdf.
Full textTerra, Neto Platão Gonçalves. "Possibilidades na conversão entre registros de geometria plana." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/151181.
Full textIn this case study we elaborate a didactic sequence that predicts activities that should be solved in two different ways. One of them uses the concepts of plane geometry – such as the Pythagorean theorem and similarities – and the other uses the concepts of analytic geometry – such as the equations of a line and area calculations. To analyze the data assembled with the application of this sequence we used The Theory of Registers of Semiotic Representation. Duval (2009), the author of this theory, addresses the importance of registers in Mathematics Teaching, the conversion of one register to another, and the need to use more than one register as a way to understand the mathematical way of thinking. To support our research, we looked in our bibliographical review for recent articles that made use of the same theory under the conversion aspect, and we also analyzed whether third year high school mathematics textbooks offer activities that encourage the use of more than one register in the solution of activities. This sequence was applied in a class of third-year students, from an integrated technical high school and its structure was inspired by Ponte’s Mathematical Investigation (2006). In this research, the registers most used by the students were those of plane geometry – figure – and of analytic geometry – graph – and we verified that the students, on request, achieved to articulate the use of these two types of registers.
Tewari, Ayush Kumar [Verfasser], Michael [Akademischer Betreuer] Joswig, Michael [Gutachter] Joswig, Hannah [Gutachter] Markwig, and Dhruv [Gutachter] Ranganathan. "Realizability of tropical plane curves and tropical incidence geometry / Ayush Kumar Tewari ; Gutachter: Michael Joswig, Hannah Markwig, Dhruv Ranganathan ; Betreuer: Michael Joswig." Berlin : Technische Universität Berlin, 2021. http://d-nb.info/1226217400/34.
Full textMoreno, Ávila Carlos Jesús. "Global geometry of surfaces defined by non-positive and negative at infinity valuations." Doctoral thesis, Universitat Jaume I, 2021. http://hdl.handle.net/10803/672247.
Full textIntroducimos los conceptos de no positividad y negatividad en el infinito para valoraciones planas divisoriales de una superficie de Hirzebruch. Probamos que las superficies dadas por valoraciones con las características anteriores poseen interesantes propiedades globales y locales. Además, las valoraciones divisoriales no positivas en el infinito son aquellas valoraciones divisoriales de superficies de Hirzebruch que dan lugar a superficies racionales tales que su cono de curvas está generado por un número mínimo de generadores. Los conceptos de no positividad y negatividad en el infinito también se extienden a valoraciones reales del plano proyectivo y de superficies de Hirzebruch. Por último, calculamos explícitamente las constantes de tipo Seshadri para pares formados por divisores big y valoraciones divisoriales de superficies de Hirzebruch y obtenemos los vértices de los cuerpos de Newton-Okounkov para pares como los anteriores bajo la condición de no positividad en el infinito.
Programa de Doctorat en Ciències
Sanchez, Luis Florial Espinoza. "Singularidades de curvas na geometria afim." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-07102010-145223/.
Full textIn this work we study the geometry of the affine evolute and the affine normal curve associated with a plane curve without inflections from the type of singularity of affine support functions. The main result is setting if \'\\gamma\' is a flat curve without inflections, satisfying certain conditions generic then, if p is a point of the affine evolute of \'\\gamma\' at \'s IND. 0\' then two cases: if \'\\gamma\' (\'s IND. 0\') is a sextactic point then locally in p the affine evolute is diffeomorphic to a cusp at \'R POT. 2\', otherwise locally in p the affine evolute is diffeomorphic to a straight in \'R POT. 2\', and second if p = \'\\gamma\' (\'s IND. 0\') is a point of the affine normal curve then two cases: if \'\\gamma\'(\'s IND. 0\') is a parabolic point of \'\\gamma\' then locally in p the affine normal curve is diffeomorphic to a cusp at \'R POT. 2\' , in otherwise locally in p the affine normal curve is diffeomorphic to a line in \'R POT. 2\'
Soares, Vanessa Ribeiro. "Batalha naval e suas aplicações." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/5909.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-10T13:42:09Z (GMT) No. of bitstreams: 2 Dissertação - Vanessa Ribeiro Soares - 2016.pdf: 11844437 bytes, checksum: 03d509603ea96f2647ea2764aea87d17 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-10T13:42:09Z (GMT). No. of bitstreams: 2 Dissertação - Vanessa Ribeiro Soares - 2016.pdf: 11844437 bytes, checksum: 03d509603ea96f2647ea2764aea87d17 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-30
This work has the purpose contribute to the improvement in some teaching contents of analytic geometry and trigonometry in high school . The content work was based on the National Curriculum Parameters, highlighting de nitions, theorems and properties necessary for the development of student learning. The theme was chosen after a practical experience involving the Naval Battle game in order to reduce the students' di culties. The playful work, as the game, has a practical application that does the student become familiar with the content. That's an interesting way to propose problems and solutions involving the content. Thus becomes something attractive to the student and encourages creativity in nding problems solutions.
O trabalho tem como objetivo contribuir para o aprimoramento no ensino de alguns conteúdos de Geometria Analítica e Trigonometria no Ensino Médio. Dentro dos Parâmetros Curriculares Nacionais, trabalhamos o conteúdo destacando de nições, teoremas e propriedades necessárias para o desenvolvimento de aprendizagem do aluno. O tema foi escolhido depois de uma experiência prática envolvendo o jogo Batalha Naval a m de diminuir as di culdades dos alunos. O trabalho lúdico, como o jogo, tem uma aplicação prática que faz o aluno se familiarizar com os conceitos. É uma forma interessante de propor problemas e soluções envolvendo o conceitos. Assim se torna algo atrativo para o aluno e favorece a criatividade na busca de soluções para os problemas.
Iavorski, Alessandro. "Cônicas e curvas de Cassini." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/809.
Full textEste trabalho foi desenvolvido com o propósito de servir de material de apoio para professores e alunos de matemática. Apresenta a exploração de algumas curvas como lugar geométrico dos pontos que satisfazem uma determinada propriedade. Apresenta como sugestão de trabalho uma família de curvas chamadas de curvas de Cassini, que são determinadas por uma propriedade similar `a propriedade que define as cônicas. Propõe atividades envolvendo as cônicas e as curvas de Cassini, para que essas atividades possam ser utilizadas em sala de aula e para que possam servir de base para elaboração de outras.
This work was developed with the purpose of serving as a support material for teachers and students of mathematics. Presents the exploration of some curves as locus of points that satisfy a given property. Presents as suggestion of work a family of curves called Cassini curves, which are determined by a property similar to the property that defines the conics. Proposes activities involving the conics and curves of Cassini so that these activities can be used in the classroom and what can be the basis for development of other.
Mehmeti, Vlere. "Patching on Berkovich Spaces and the Local-Global Principle." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC240.
Full textField patching, introduced by Harbater and Hartmann, and extended by the aforementioned authors and Krashen, has recently seen numerous applications. We present an extension of this technique to the setting of Berkovich analytic geometry and applications to the local-global principle.In particular, we show that this adaptation of patching can be applied to Berkovich analytic curves, and as a consequence obtain local-global principles over function fields of curves defined over complete ultrametric fields. Because of the connection between the points of a Berkovich analytic curve and the valuations that its function field can be endowed with, one of these local-global principles is given with respect to completions, thus evoking some similarity with more classical versions. As an application, we obtain local-global principles for quadratic forms and results on the u-invariant. These findings generalize those of Harbater, Hartmann and Krashen.As a starting point for higher-dimensional patching in the Berkovich setting, we show that this technique is applicable around certain fibers of a relative Berkovich analytic curve. As a consequence, we prove a local-global principle over the germs of meromorphic functions on said fibers. By showing that said germs of meromorphic functions are algebraic, we also obtain local-global principles over function fields of algebraic curves defined over a larger class of ultrametric fields
Oliveira, Marina Mariano de. "Curvas pedais e Teorema dos Quatro Vértices : uma introdução à geometria diferencial." reponame:Repositório Institucional da UFABC, 2018.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional - PROFMAT, Santo André, 2018.
Neste trabalho, apresentamos a geometria diferencial das curvas planas de um modo mais acessível para um leitor não especialista no assunto, mas de forma a despertar seu interesse. A Teoria Local das Curvas Planas é desenvolvida por meio de exemplos e, em particular, exibimos a família das curvas pedais. Ilustramos a Teoria Global por meio do Teorema dos Quatro Vértices e apresentamos, também, formas de explorar os conceitos de geometria diferencial na Educação Básica, com resultados geométricos interessantes e visualmente atraentes. Para isso, contamos com o auxílio do GeoGebra, um software de matemática dinâmica, e da string art, um estilo de arte caracterizado por um arranjo de cordas que formam padrões geométricos. Com isso, buscamos proporcionar ao leitor uma forma diferente de experimentar a geometria diferencial das curvas planas, bem como proporcionar aos alunos do Ensino Médio um aprendizado interessante de geometria analítica.
In this work, we present the differential geometry of the plane curves in an accessible way for not specialized readers in the subject, but in order to arouse their interest. The Local Theory of Plane Curves is developed by means of several examples and, in particular, we bring out the class of pedal curves. In order to ilustrate the Global Theory we present the Four-Vertex Theorem and we also present a way to introduce differential geometry concepts to secondary school students with interesting and visually attractive geometric results. To do this, we use the software GeoGebra, a interactive geometry and algebra application, and string art, a sort of art characterized by an arrangement of strings that form geometric patterns. We hope to provide to the readers a pratical experience of differential geometry of plane curves, as well as providing them the students of High School with an interesting learning of analytical geometry.
Chen, Shin-Ling, and 陳時霖. "Geometry of Convex Closed Plane Curves." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/skmzds.
Full text國立清華大學
數學系
102
In the first five sections we introduce some important geometric quantities of a curve, such as curvature, torsion, the support function and the width. In the rest part of this thesis we derive some famous geometric inequalities such as the isoperimetric inequality, Gage’s isoperimetric inequality and Wirtinger inequality. Also we introduce an important idea for a curve – the parallel curve. Using the idea of the parallel curve we can obtain our final goal of this thesis – the entropy estimate.
Frizzell, Carrie. "Prym Varieties of Tropical Plane Quintics." Thesis, 2018. http://hdl.handle.net/2097/38898.
Full textDepartment of Mathematics
Ilia Zharkov
When considering an unramified double cover π: C’→ C of nonsingular algebraic curves, the Prym variety (P; θ) of the cover arises from the sheet exchange involution of C’ via extension to the Jacobian J(C’). The Prym is defined to be the anti-invariant (odd) part of this induced map on J(C’), and it carries twice a principal polarization of J(C’). The pair (P; θ), where θ is a representative of a theta divisor of J(C’) on P, makes the Prym a candidate for the Jacobian of another curve. In 1974, David Mumford proved that for an unramified double cover π : C’η →C of a plane quintic curve, where η is a point of order two in J(C), then the Prym (P; θ) is not a Jacobian if the theta characteristic L(η) is odd, L the hyperplane section. We sought to find an analog of Mumford's result in the tropical geometry setting. We consider the Prym variety of certain unramified double covers of three types of tropical plane quintics. Applying the theory of lattice dicings, which give affine invariants of the Prym lattice, we found that when the parity α(H3) is even, H3 the cycle associated to the hyperplane section and the analog to η in the classical setting, then the Prym is not a Jacobian, and is a Jacobian when the parity is odd.
Pelcová, Kateřina. "Charakteristika odlišných pojetí výuky matematiky na příkladu dvou učitelů gymnázia." Master's thesis, 2015. http://www.nusl.cz/ntk/nusl-349450.
Full text