Academic literature on the topic 'Geometry and quantization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry and quantization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geometry and quantization"

1

Marcolli, Matilde, and Roger Penrose. "Gluing Non-commutative Twistor Spaces." Quarterly Journal of Mathematics 72, no. 1-2 (2021): 417–54. http://dx.doi.org/10.1093/qmath/haab024.

Full text
Abstract:
Abstract We describe a general procedure, based on Gerstenhaber–Schack complexes, for extending to quantized twistor spaces the Donaldson–Friedman gluing of twistor spaces via deformation theory of singular spaces. We consider in particular various possible quantizations of twistor spaces that leave the underlying spacetime manifold classical, including the geometric quantization of twistor spaces originally constructed by the second author, as well as some variants based on non-commutative geometry. We discuss specific aspects of the gluing construction for these different quantization proced
APA, Harvard, Vancouver, ISO, and other styles
2

Fabbri, Luca. "Geometry, Zitterbewegung, quantization." International Journal of Geometric Methods in Modern Physics 16, no. 09 (2019): 1950146. http://dx.doi.org/10.1142/s0219887819501469.

Full text
Abstract:
In the most general geometric background, we study the Dirac spinor fields with particular emphasis given to the explicit form of their gauge momentum and the way in which this can be inverted so as to give the expression of the corresponding velocity; we study how Zitterbewegung affects the motion of particles, focusing on the internal dynamics involving the chiral parts; we discuss the connections to field quantization, sketching in what way anomalous terms may be gotten eventually.
APA, Harvard, Vancouver, ISO, and other styles
3

El Gradechi, Amine M., and Luis M. Nieto. "Supercoherent states, super-Kähler geometry and geometric quantization." Communications in Mathematical Physics 175, no. 3 (1996): 521–63. http://dx.doi.org/10.1007/bf02099508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HAJRA, K. "EQUIVALENCE OF STOCHASTIC AND HYDRODYNAMICAL QUANTIZATION." International Journal of Modern Physics A 04, no. 13 (1989): 3163–78. http://dx.doi.org/10.1142/s0217751x8900128x.

Full text
Abstract:
On the basis of earlier work on relativistic generalization of Nelson’s stochastic quantization procedure introducing an anisotropy in the internal space it is shown here that in the non-relativistic limit the equivalence of stochastic and hydrodynamical quantizations formulated respectively by Nelson and Takabayashi can be achieved. Some difficulties regarding interpretation in both the formalisms may possibly be removed from the geometry of internal space-time.
APA, Harvard, Vancouver, ISO, and other styles
5

Castro, Carlos. "geometry from Fedosov's deformation quantization." Journal of Geometry and Physics 33, no. 1-2 (2000): 173–90. http://dx.doi.org/10.1016/s0393-0440(99)00044-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Melas, Evangelos. "Quantization of the Schwarzschild geometry." Journal of Physics: Conference Series 442 (June 10, 2013): 012037. http://dx.doi.org/10.1088/1742-6596/442/1/012037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rovelli, Carlo. "Spectral Noncommutative Geometry and Quantization." Physical Review Letters 83, no. 6 (1999): 1079–83. http://dx.doi.org/10.1103/physrevlett.83.1079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

González-Martín, Gustavo. "Physical geometry and field quantization." General Relativity and Gravitation 24, no. 5 (1992): 501–17. http://dx.doi.org/10.1007/bf00760133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yekutieli, Amnon. "Deformation quantization in algebraic geometry." Advances in Mathematics 198, no. 1 (2005): 383–432. http://dx.doi.org/10.1016/j.aim.2005.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klauder, John R. "Quantization is geometry, after all." Annals of Physics 188, no. 1 (1988): 120–41. http://dx.doi.org/10.1016/0003-4916(88)90092-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Geometry and quantization"

1

Gardell, Fredrik. "Geometric Quantization." Thesis, Uppsala universitet, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296618.

Full text
Abstract:
In this project we introduce the general idea of geometric quantization and demonstratehow to apply the process on a few examples. We discuss how to construct a line bundleover the symplectic manifold with Dirac’s quantization conditions and how to determine if we are able to quantize a system with the help of Weil’s integrability condition. To reducethe prequantum line bundle we employ real polarization such that the system does notbreak Heisenberg’s uncertainty principle anymore. From the prequantum bundle and thepolarization we construct the sought after Hilbert space.
APA, Harvard, Vancouver, ISO, and other styles
2

Hedlund, William. "Geometric Quantization." Thesis, Uppsala universitet, Teoretisk fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325649.

Full text
Abstract:
We formulate a process of quantization of classical mechanics, from a symplecticperspective. The Dirac quantization axioms are stated, and a satisfactory prequantizationmap is constructed using a complex line bundle. Using polarization, it isdetermined which prequantum states and observables can be fully quantized. Themathematical concepts of symplectic geometry, fibre bundles, and distributions are exposedto the degree to which they occur in the quantization process. Quantizationsof a cotangent bundle and a sphere are described, using real and K¨ahler polarizations,respectively.
APA, Harvard, Vancouver, ISO, and other styles
3

Falk, Kevin. "Berezin--Toeplitz quantization and noncommutative geometry." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4033/document.

Full text
Abstract:
Cette thèse montre en quoi la quantification de Berezin--Toeplitz peut être incorporée dans le cadre de la géométrie non commutative.Tout d'abord, nous présentons les principales notions abordées : les opérateurs de Toeplitz (classiques et généralisés), les quantifications géométrique et par déformation, ainsi que quelques outils de la géométrie non commutative.La première étape de ces travaux a été de construire des triplets spectraux (A,H,D) utilisant des algèbres d'opérateurs de Toeplitz sur les espaces de Hardy et Bergman pondérés relatifs à des ouverts Omega de Cn à bord régulier et stric
APA, Harvard, Vancouver, ISO, and other styles
4

Granåker, Johan. "Wheeled Operads in Algebra, Geometry, and Quantization /." Stockholm : Department of mathematics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jost, Christine. "Topics in Computational Algebraic Geometry and Deformation Quantization." Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-87399.

Full text
Abstract:
This thesis consists of two parts, a first part on computations in algebraic geometry, and a second part on deformation quantization. More specifically, it is a collection of four papers. In the papers I, II and III, we present algorithms and an implementation for the computation of degrees of characteristic classes in algebraic geometry. Paper IV is a contribution to the field of deformation quantization and actions of the Grothendieck-Teichmüller group. In Paper I, we present an algorithm for the computation of degrees of Segre classes of closed subschemes of complex projective space. The al
APA, Harvard, Vancouver, ISO, and other styles
6

Tizzano, Luigi. "Geometry of BV quantization and Mathai-Quillen formalism." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5941/.

Full text
Abstract:
Il formalismo Mathai-Quillen (MQ) è un metodo per costruire la classe di Thom di un fibrato vettoriale attraverso una forma differenziale di profilo Gaussiano. Lo scopo di questa tesi è quello di formulare una nuova rappresentazione della classe di Thom usando aspetti geometrici della quantizzazione Batalin-Vilkovisky (BV). Nella prima parte del lavoro vengono riassunti i formalismi BV e MQ entrambi nel caso finito dimensionale. Infine sfrutteremo la trasformata di Fourier “odd" considerando la forma MQ come una funzione definita su un opportuno spazio graduato.
APA, Harvard, Vancouver, ISO, and other styles
7

Vázquez-Bello, José Luis. "Covariant quantization and geometry of general gauge theories." Thesis, Queen Mary, University of London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Balleier, Carsten. "Geometry and quantization of Howe pairs of symplectic actions." Thesis, Metz, 2009. http://www.theses.fr/2009METZ016S/document.

Full text
Abstract:
Motivé par la dualité de Howe dans la théorie des représentations de groupes de Lie, on cherche une construction analogue en géométrie symplectique, c'est-à-dire on souhaite que sa quantification géométrique décomposé de manière Howe-duale. On trouve que dans le contexte symplectique, le cadre correct est donné par deux groupes de Lie agissant sur la même variété symplectique si ces actions commutent et satisfont la condition de Howe symplectique, i. e., ces actions sont hamiltoniennes et leurs fonctions collectives sont leurs centralisateurs mutuelles dans l'algèbre de Poisson des fonctions l
APA, Harvard, Vancouver, ISO, and other styles
9

Hsu, Siu-fai, and 許紹輝. "Geometric quantization of fermions and complex bosons." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50434500.

Full text
Abstract:
Geometric quantization is a subject of finding irreducible representations of certain group or algebra and identifying those equivalent representations by geometric means. Geometric quantization of even dimensional fermionic system has been constructed based on the spinor representation of even dimensional Clifford algebras. Although geometric quantization of odd dimensional fermionic system has not been done, the existence of spinor representations in odd dimension indicates that the geometric quantization is possible. In quantum field theory, charge conjungation can be defined on complex
APA, Harvard, Vancouver, ISO, and other styles
10

Russell, Neil Eric. "Aspects of the symplectic and metric geometry of classical and quantum physics." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005237.

Full text
Abstract:
I investigate some algebras and calculi naturally associated with the symplectic and metric Clifford algebras. In particular, I reformulate the well known Lepage decomposition for the symplectic exterior algebra in geometrical form and present some new results relating to the simple subspaces of the decomposition. I then present an analogous decomposition for the symmetric exterior algebra with a metric. Finally, I extend this symmetric exterior algebra into a new calculus for the symmetric differential forms on a pseudo-Riemannian manifold. The importance of this calculus lies in its potentia
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Geometry and quantization"

1

Geometric quantization. 2nd ed. Clarendon Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bandyopadhyay, Pratul. Geometry, topology, and quantization. Kluwer Academic Publishers, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bahns, Dorothea, Wolfram Bauer, and Ingo Witt, eds. Quantization, PDEs, and Geometry. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22407-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bandyopadhyay, Pratul. Geometry, Topology and Quantization. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5426-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maeda, Yoshiaki, Hideki Omori, and Alan Weinstein, eds. Symplectic Geometry and Quantization. American Mathematical Society, 1994. http://dx.doi.org/10.1090/conm/179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arithmetic and geometry around quantization. Birkhäuser, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ceyhan, Özgür, Yu I. Manin, and Matilde Marcolli, eds. Arithmetic and Geometry Around Quantization. Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4831-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karasev, M. V. Nonlinear Poisson brackets: Geometry and quantization. American Mathematical Society, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hennig, Jö-Dieter, Wolfgang Lücke, and Jiří Tolar, eds. Differential Geometry, Group Representations, and Quantization. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-53941-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fock, Vladimir, Andrey Marshakov, Florent Schaffhauser, Constantin Teleman, and Richard Wentworth. Geometry and Quantization of Moduli Spaces. Edited by Luis Alvarez Consul, Jørgen Ellegaard Andersen, and Ignasi Mundet i Riera. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33578-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Geometry and quantization"

1

Bandyopadhyay, Pratul. "Quantization." In Geometry, Topology and Quantization. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5426-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weinstein, Alan. "Noncommutative Geometry and Geometric Quantization." In Symplectic Geometry and Mathematical Physics. Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4757-2140-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klauder, John R. "Quantization = Geometry + Probability." In Probabilistic Methods in Quantum Field Theory and Quantum Gravity. Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3784-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kimura, Taro. "Quantization of Geometry." In Instanton Counting, Quantum Geometry and Algebra. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76190-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prugovečki, Eduard. "Geometro-Stochastic Quantization and Quantum Geometry." In Quantization, Coherent States, and Complex Structures. Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1060-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Puta, Mircea. "Symplectic Geometry." In Hamiltonian Mechanical Systems and Geometric Quantization. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1992-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bandyopadhyay, Pratul. "Quantization and Gauge Field." In Geometry, Topology and Quantization. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5426-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karasev, M. V. "Simple Quantization Formula." In Symplectic Geometry and Mathematical Physics. Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4757-2140-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bandyopadhyay, Pratul. "Spinor Structure and Twistor Geometry." In Geometry, Topology and Quantization. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5426-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bandyopadhyay, Pratul. "Manifold and Differential Forms." In Geometry, Topology and Quantization. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5426-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geometry and quantization"

1

Ferreira, P. Castelo, Rui Loja Fernandes, and Roger Picken. "Canonical Functional Quantization of Pseudo-Photons in Planar Systems." In GEOMETRY AND PHYSICS: XVI International Fall Workshop. AIP, 2008. http://dx.doi.org/10.1063/1.2958165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De Simone, Francesca, Pascal Frossard, Paul Wilkins, Neil Birkbeck, and Anil Kokaram. "Geometry-driven quantization for omnidirectional image coding." In 2016 Picture Coding Symposium (PCS). IEEE, 2016. http://dx.doi.org/10.1109/pcs.2016.7906402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lewandowski, Jerzy, Marcin Domagala, and Michal Dziendzikowski. "The dynamics of the massless scalar field coupled to LQG in the polymer quantization." In 3rd Quantum Gravity and Quantum Geometry School. Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.140.0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhai, Yikui, Junying Gan, Junying Zeng, and Ying Xu. "Disguised face recognition via local phase quantization plus geometry coverage." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

EL-Leithy, Shymaa T., and Walaa M. Sheta. "Wavelet -based geometry coding for 3D mesh using space frequency quantization." In 2008 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2008. http://dx.doi.org/10.1109/iscc.2008.4625754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Zhen, Zhe-Ming Lu, and Lei Sun. "Dynamic Extended Codebook Based Vector Quantization Scheme for Mesh Geometry Compression." In Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/iihmsp.2007.4457520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maeda, Yoshiaki, та Akifumi Sako. "Deformation Quantization of Gauge Theory in ℝ4 and U(1) Instanton Problems". У Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

D'Andrea, Francesco, and Giovanni Landi. "Geometry of Quantum Projective Spaces." In Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wenze Hu. "Learning 3D object templates by hierarchical quantization of geometry and appearance spaces." In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6247945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roychowdhury, Mrinal K. "Preface of the "Symposium on fractal geometry, quantization dimension and related topics"." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756437.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geometry and quantization"

1

Sansonetto, Nicola. Monodromy and the Bohr-Sommerfeld Geometric Quantization. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-320-328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sansonetto, Nicola. Monodromy and the Bohr-Sommerfeld Geometric Quantization. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-20-2010-97-106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holod, Petro I. Geometric Quantization, Cohomology Groups and Intertwining Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-95-104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!