Academic literature on the topic 'Geometry Axioms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry Axioms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometry Axioms"
Richter, William, Adam Grabowski, and Jesse Alama. "Tarski Geometry Axioms." Formalized Mathematics 22, no. 2 (June 30, 2014): 167–76. http://dx.doi.org/10.2478/forma-2014-0017.
Full textCoghetto, Roland, and Adam Grabowski. "Tarski Geometry Axioms – Part II." Formalized Mathematics 24, no. 2 (June 1, 2016): 157–66. http://dx.doi.org/10.1515/forma-2016-0012.
Full textGrigoryan, Yu. "Axioms of Heterogeneous Geometry." Cybernetics and Systems Analysis 55, no. 4 (July 2019): 539–46. http://dx.doi.org/10.1007/s10559-019-00162-3.
Full textBEESON, MICHAEL, PIERRE BOUTRY, and JULIEN NARBOUX. "HERBRAND’S THEOREM AND NON-EUCLIDEAN GEOMETRY." Bulletin of Symbolic Logic 21, no. 2 (June 2015): 111–22. http://dx.doi.org/10.1017/bsl.2015.6.
Full textCoghetto, Roland, and Adam Grabowski. "Tarski Geometry Axioms. Part III." Formalized Mathematics 25, no. 4 (December 20, 2017): 289–313. http://dx.doi.org/10.1515/forma-2017-0028.
Full textvon Plato, Jan. "The axioms of constructive geometry." Annals of Pure and Applied Logic 76, no. 2 (December 1995): 169–200. http://dx.doi.org/10.1016/0168-0072(95)00005-2.
Full textTarski, Alfred, and Steven Givant. "Tarski's System of Geometry." Bulletin of Symbolic Logic 5, no. 2 (June 1999): 175–214. http://dx.doi.org/10.2307/421089.
Full textGottlieb, Alex D., and Joseph Lipman. "Group-Theoretic Axioms For Projective Geometry." Canadian Journal of Mathematics 43, no. 1 (February 1, 1991): 89–107. http://dx.doi.org/10.4153/cjm-1991-006-2.
Full textCoghetto, Roland, and Adam Grabowski. "Tarski Geometry Axioms. Part IV – Right Angle." Formalized Mathematics 27, no. 1 (April 1, 2019): 75–85. http://dx.doi.org/10.2478/forma-2019-0008.
Full textBEESON, MICHAEL. "CONSTRUCTIVE GEOMETRY AND THE PARALLEL POSTULATE." Bulletin of Symbolic Logic 22, no. 1 (March 2016): 1–104. http://dx.doi.org/10.1017/bsl.2015.41.
Full textDissertations / Theses on the topic "Geometry Axioms"
Thorgeirsson, Sverrir. "Hyperbolic geometry: history, models, and axioms." Thesis, Uppsala universitet, Algebra och geometri, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227503.
Full textWard, Peter James. "Euclid's Elements, from Hilbert's Axioms." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354311965.
Full textToniolo, Luciano Santos. "Cônicas em modelos físicos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-24102018-151118/.
Full textThis work is a study carried out around the main conic curves studied by elementary school students: parabola, ellipse and hyperbola. The main idea of this work is to be self-contained, starting from the basic axioms from the geometry and after we present formal definitions, properties and applications of conics in the everyday life. It is expected that a person that is not a specialist in mathematics, are able to read and understand all the mathematics in the surroundings of the applications of these conics.
Portela, Antonio Edilson Cardoso. "Noções de geometria projetiva." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25586.
Full textSubmitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-09-06T17:17:00Z No. of bitstreams: 1 2017_dis_aecportela.pdf: 1065928 bytes, checksum: 468c05aa35745f3fd2761f13aa26eff1 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Estou devolvendo a Dissertação de ANTONIO EDILSON CARDOSO PORTELA, para que o mesmo realize algumas correções na formatação do trabalho. 1- SUMÁRIO ( A formatação do sumário está incorreta, primeiro, retire o último ponto final que aparece após a numeração dos capítulos e seções (Ex.: 3.1. Axioma....; deve ser corrigido para: 3.1 Axioma.....), o alinhamento dos títulos deve seguir o modelo abaixo 1 INTRODUÇÃO.....................00 2 O ESPAÇO...........................00 3 GEOMETRIA........................00 3.1 Axiomas...............................00 REFERÊNCIAS...................00 (OBS.: não altere a formatação do negrito, pois já estava correta) 2- TITULO DOS CAPÍTULOS E SEÇÕES ( retire o ponto final que aparece após o último dígito da numeração dos capítulos e seções, seguindo o modelo do sumário. Retire o recuo de parágrafo dos títulos das seções. Ex.: 3.1 Axioma.......) 3- REFERÊNCIAS ( substitua o termo REFERÊNCIAS BIBLIOGRÁFICAS apenas por REFERÊNCIAS, com fonte n 12, negrito e centralizado. Retire a numeração progressiva que aparece nos itens da referência. Atenciosamente, on 2017-09-06T17:56:50Z (GMT)
Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-09-11T14:48:40Z No. of bitstreams: 1 2017_dis_aecportela.pdf: 944228 bytes, checksum: 3ab4691817df04ba5d7818fd02e5095f (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-11T15:30:32Z (GMT) No. of bitstreams: 1 2017_dis_aecportela.pdf: 944228 bytes, checksum: 3ab4691817df04ba5d7818fd02e5095f (MD5)
Made available in DSpace on 2017-09-11T15:30:32Z (GMT). No. of bitstreams: 1 2017_dis_aecportela.pdf: 944228 bytes, checksum: 3ab4691817df04ba5d7818fd02e5095f (MD5) Previous issue date: 2017
In this work, initially, some results of Linear Algebra are presented, in particular the study of the Vector Space R^n, which becomes, together with Analytical Geometry, the language used in the chapters that follow. We present a study from an axiomatic point of view, from the perspectives of Hilbert's axioms and we elaborate models of planes for the Euclidean, Elliptic and Projective Geometries. The validity of the Incidence and Order axioms for Euclidean Geometry is verified. In R^3, an approach is made to the study of the plane and the unitary sphere, highlighting the elliptical line obtained by the intersection of these sets, thus making an approach to the Elliptic Geometry. With the concepts and definitions studied in the Vector Space R^n, Three-dimensional Space and in the Euclidean and Elliptic Geometries we will approach the study of Projective Geometry, demonstrating propositions and verifying its axioms.
Neste trabalho, inicialmente, apresenta-se alguns resultados da Álgebra Linear, em especial o estudo do Espaço Vetorial R^n, que passa a ser, juntamente com a Geometria Analítica, a linguagem empregada nos capítulos que se seguem. Apresentamos um estudo de um ponto de vista axiomático, sob a ótica dos axiomas de Hilbert e elaboramos modelos de planos para as Geometrias Euclidiana, Elíptica e Projetiva. É verificada a validade dos axiomas de Incidência e Ordem para a Geometria Euclidiana. No R^3, é feita uma abordagem do estudo de plano e da esfera unitária, destacando a reta elíptica obtida pela interseção destes conjuntos, passando assim a fazer uma abordagem da Geometria Elíptica. Com os conceitos e definições estudadas no Espaço Vetorial R^n, Espaço tridimensional e nas Geometrias Euclidiana e Elíptica, abordaremos o estudo da Geometria Projetiva, demonstrando proposições e verificando os seus axiomas.
Pejlare, Johanna. "On Axioms and Images in the History of Mathematics." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8345.
Full textFreitas, Brasilio Alves. "Introdução à geometria euclidiana axiomática com o geogebra." Universidade Federal de Juiz de Fora, 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/1188.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T03:47:21Z (GMT) No. of bitstreams: 1 brasilioalvesfreitas.pdf: 747431 bytes, checksum: 36ffb6103af8abbc9cfff08d7d2cd820 (MD5)
Made available in DSpace on 2016-04-24T03:47:21Z (GMT). No. of bitstreams: 1 brasilioalvesfreitas.pdf: 747431 bytes, checksum: 36ffb6103af8abbc9cfff08d7d2cd820 (MD5) Previous issue date: 2013-03-25
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Por conhecer a grande dificuldade dos alunos de Ensino Médio, da rede pública Estadual de Minas Gerais, em relação aos conceitos, demostrações e deduções básicas da Geometria Euclidiana plana, foi elaborado um pequeno roteiro de estudo dos axiomas que regem esses conteúdos e também uma introdução às construções geométricas básicas, utilizando os instrumentos euclidianos e o software gratuito GeoGebra. O desenvolvimento do trabalho trouxe como objetivo dotar os alunos do Ensino Fundamental, cursando oitavo ano (antiga sétima série), de uma compreensão gradual e intuitiva da geometria euclidiana plana, buscando, de forma fundamentada fixar os aspectos conceituais básicos que são extremamente necessários para estudos mais aprofundados em cursos posteriores. As atividades propostas no capítulo 4 foram criadas com o intuito de que o aluno, percorrendo os conceitos mostrados no capítulo 2, tenha oportunidade de abstrair-se literalmente e ou com recursos algébricos em um processo de demonstração das propriedades de diversas figuras geométricas.
Knowing the great hardship high school students of Minas Gerais public school system have concerning the basic concepts, demonstrations and deductions of the Euclidean Geometry, a small study guide of the axioms that rule these contents was made, and also an introduction to the basic geometry constructions using the Euclidean instruments and the free software GeoGebra. The work’s development brought as a goal to endow the middle school students, attending the eight year (the old seventh grade), a gradual and intuitive understanding of the Euclidian Geometry, trying to fix the basic conceptual aspects that are deeply necessary for further studies. The proposed activities on chapter four intend to give the student, going trough the concepts shown on chapter two, the opportunity to abstract on a descriptive way and/or use algebraic resources in a process of demonstration of many geometrical forms.
SOUZA, Carlos Bino de. "Geometria hiperbólica : consistência do modelo de disco de Poincaré." Universidade Federal Rural de Pernambuco, 2015. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6695.
Full textMade available in DSpace on 2017-03-28T14:00:56Z (GMT). No. of bitstreams: 1 Carlos Bino de Souza.pdf: 2371603 bytes, checksum: d2f0bb2e430fc899161fe573fbae4e50 (MD5) Previous issue date: 2015-08-26
Euclid wrote a book in 13 volumes called Elements where systematized all the mathematical knowledge of his time. In this work, the 5 postulates of Euclidean geometry were presented. For several years, the 5th Postulate was frequently asked, this inquiries it was discovered that there are several other possible geometries, including hyperbolic geometry. Beltrimi proved that hyperbolic geometry is consistent if Euclidean geometry is consistent. Hilbert showed that Euclidean geometry is consistent if the arithmetic is consistent and presented an axiomatic system that capped the gaps in Euclid’s axiomatic system. Poincaré created a model, called the Poincaré disk, to represent the plan of hyperbolic geometry. The objective of this work is to show that the Poincaré disk model is consistent with reference Axioms Hilbert, replacing only the Axioms of Parallel to "On a point outside a line passes through the two parallel straight lines given", by constructions of Euclidean geometry.
Euclides escreveu uma obra em 13 volumes chamada de Elementos onde sistematizava todo o conhecimento matemático do seu tempo. Nesta obra, foram apresentados os 5 postulados da Geometria Euclidiana. Durante vários anos, o 5o Postulado foi muito questionado, desses questionamentos descobriu-se a existência de várias outras Geometrias possíveis, entre elas a Geometria Hiperbólica. Beltrimi provou que a Geometria Hiperbólica é consistente se a Geometria Euclidiana é consistente. Hilbert mostrou que a Geometria Euclidiana é consistente se a Aritmética é consistente e apresentou um sistema axiomático que preencheu as lacunas do sistema axiomático de Euclides. Poincaré criou um Modelo, chamado de Disco de Poincaré, para representar o plano da Geometria Hiperbólica. O objetivo deste trabalho é mostrar que o Modelo de Disco de poincaré é consistente, tomando como referência os Axiomas de Hilbert, substituindo apenas os Axiomas das Paralelas para "Por um ponto fora de uma reta passam duas retas paralelas à reta dada", através de construções da Geometria Euclidiana.
Barreto, Carlos Alberto. "A geometria do origami como ferramenta para o ensino da geometria euclidiana na educação básica." Mestrado Profissional em Matemática, 2013. https://ri.ufs.br/handle/riufs/6503.
Full textO objetivo desta monografia é fazer o estudo da Geometria do Origami e de suas aplicações na Geometria Euclidiana como instrumento que contribua para o ensino da Geometria na Educação Básica. Fornecemos um pequeno histórico do Origami e de sua chegada ao Brasil e na sequência apresentamos os axiomas que definem os movimentos simples que podem ser realizados utilizando pontos e retas num plano. Estudamos também os problemas clássicos da duplicação do cubo e da trissecção do ângulo, mostrando que são possíveis de ser resolvidos por meio da Geometria do Origami. Mostramos, então, aplicações do Origami para estudos de Geometria Euclidiana plana e espacial, dando ênfase ao estudo dos poliedros de Platão. Encerramos o trabalho, mostrando como foi desenvolvido o Projeto Origami - Matemática e Arte no Colégio Estadual João XXIII .
Bassan, André Roberto. "Observações sobre geometria sintética /." Rio Claro, 2015. http://hdl.handle.net/11449/132066.
Full textBanca: Sérgio Roberto Nobre
Banca: Edson de Oliveira
Resumo: O objetivo deste trabalho é apresentar alguns resultados da Geometria Euclidiana no plano, que são vistos no ensino fundamental e médio sob ponto de vista sintético, ou seja, não serão assumidos os axiomas métricos. Como aplicação faremos algumas construções, usando as ferramentas desenvolvidas
Abstract: The objective of this work is to present some results of Euclidean geometry which are given in elementary and high school from the synthetic point of view, that is we will not assume the metric axioms. As an application we will make some constructions using the developed tools
Mestre
Freitas, Aline Claro de [UNESP]. "Origami: o uso como instrumento alternativo no ensino da geometria." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/134280.
Full textApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-02-17T16:12:02Z (GMT) No. of bitstreams: 1 freitas_ac_me_prud.pdf: 1602203 bytes, checksum: d62a761bc942b6ff65606a2498723090 (MD5)
Made available in DSpace on 2016-02-17T16:12:02Z (GMT). No. of bitstreams: 1 freitas_ac_me_prud.pdf: 1602203 bytes, checksum: d62a761bc942b6ff65606a2498723090 (MD5) Previous issue date: 2016-01-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Frente à realidade do ensino contemporâneo que demanda a necessidade de diversificar o uso de estratégias de ensino, pretendemos propor uma abordagem, por meio de material concreto e que pode tornar-se bastante significativa no ensino da matemática. Este trabalho discute sobre a história, aplicações clássicas e utilização do origami em sala de aula. Após uma breve apresentação histórica sobre o origami, apresentamos uma abordagem axiomática deste instrumento. Dois dos três famosos problemas matemáticos gregos da antiguidade que não podem ser solucionados através da régua e compasso: trissecção do ângulo e duplicação do cubo encontram uma solução por meio das técnicas de origami. Além disso, apresentamos sugestões de roteiros de aulas e a atividade aplicada em sala de aula que obteve resultado satisfatório.
Faced with the reality of contemporary teaching that demands the need to diversify the use of teaching strategies, we intend to propose an approach through concrete material and can become quite significant in mathematics education. This monograph discusses about the history, classic applications and use origami in the classroom. After a brief historical introduction about origami, we present an axiomatic approach of this instrument. Two of the three famous Greek mathematical problems of antiquity that can’t be solved by ruler and compass: trisection angle and doubling the cube find a solution through of origami techniques. In addition, we present suggestions classes scripts and the activitie applied in the classroom that obtained satisfactory result.
Books on the topic "Geometry Axioms"
Whitehead, Alfred North. Axioms of projective geometry. [Place of publication not identified]: Nabu Press, 2010.
Find full textXiao-shan, Gao, and Chang Ching-chung 1936-, eds. Machine proofs in geometry: Automated production of readable proofs for geometry theorems. Singapore: World Scientific, 1994.
Find full textGoetsch, James Robert. Vico's axioms: The geometry of the human world. New Haven: Yale University Press, 1995.
Find full textZahlbereiche, naive Mengenlehre, Axiomatik der Geometrie: Grundlagenfragen. Bremen: Universitätsdruckerei Bremen, 2007.
Find full textErro, Luis Enrique. Axioma: El pensamiento matemático contemporáneo. México: Dirección de Difusión Cultural, Departamento Editorial, 1985.
Find full textBorceux, Francis. An Axiomatic Approach to Geometry: Geometric Trilogy I. Springer, 2016.
Find full textWhitehead, Alfred North. The Axioms Of Descriptive Geometry. Kessinger Publishing, LLC, 2007.
Find full textBook chapters on the topic "Geometry Axioms"
Ramsay, Arlan, and Robert D. Richtmyer. "Axioms for Plane Geometry." In Introduction to Hyperbolic Geometry, 9–29. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4757-5585-5_2.
Full textSossinsky, A. "Hilbert’s axioms for plane geometry." In The Student Mathematical Library, 271–82. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/stml/064/19.
Full textAnglin, W. S., and J. Lambek. "Non-Euclidean Geometry and Hilbert’s Axioms." In The Heritage of Thales, 89–92. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0803-7_18.
Full textBiagioli, Francesca. "Axioms, Hypotheses, and Definitions." In Space, Number, and Geometry from Helmholtz to Cassirer, 51–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31779-3_3.
Full textRamsay, Arlan, and Robert D. Richtmyer. "Consistency and Categoricalness of the Hyperbolic Axioms; The Classical Models." In Introduction to Hyperbolic Geometry, 202–17. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4757-5585-5_8.
Full textSpecht, Edward John, Harold Trainer Jones, Keith G. Calkins, and Donald H. Rhoads. "Consistency and Independence of Axioms; Other Matters Involving Models." In Euclidean Geometry and its Subgeometries, 413–516. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23775-6_21.
Full textScheid, Harald, and Wolfgang Schwarz. "Axiome der Geometrie." In Elemente der Geometrie, 321–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50323-2_9.
Full textScheid, Harald, and Wolfgang Schwarz. "Axiome der Geometrie." In Elemente der Geometrie, 245–60. Heidelberg: Spektrum Akademischer Verlag, 2007. http://dx.doi.org/10.1007/978-3-8274-3126-4_8.
Full textScheid, Harald, and Wolfgang Schwarz. "Axiome der Geometrie." In Elemente der Geometrie, 245–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-662-49551-3_8.
Full textBusemann, Herbert, and B. B. Phadke. "Minkowskian Geometry, Convexity Conditionsand The Parallel Axiom." In Selected Works II, 671–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-65624-3_47.
Full textConference papers on the topic "Geometry Axioms"
Petrov, Alexander P., and L. V. Kuzmin. "Visual space geometry derived from occlusion axioms." In Optical Tools for Manufacturing and Advanced Automation, edited by Robert A. Melter and Angela Y. Wu. SPIE, 1993. http://dx.doi.org/10.1117/12.165001.
Full textArahovitis, Ioannis L. "DNA: THE AXIOMS OF CELL GEOMETRY THE DIFFERENTIAL GEOMETRY OF ITS FUNCTION THE AFFINE GEOMETRY OF ITS STRUCTURE." In Proceedings of the 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322034_0011.
Full textPimentel, Elaine. "Proof systems for Geometric theories (PROGEO)." In Workshop Brasileiro de Lógica. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wbl.2020.11459.
Full textSchleich, Benjamin, Michael Walter, Sandro Wartzack, Nabil Anwer, and Luc Mathieu. "A Comprehensive Framework for Skin Model Simulation." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82204.
Full textHan, Jeong-Yeol, and Sukmock Lee. "Geometry for off-axis parabolic mirrors." In Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, edited by Roland Geyl and Ramón Navarro. SPIE, 2018. http://dx.doi.org/10.1117/12.2318256.
Full textChoi, Jihoon. "First axion dark matter search with toroidal geometry." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.314.0625.
Full textPanta Pazos, Rube´n. "Behavior of a Sequence of Geometric Transformations for a Truncated Ellipsoid Geometry in Transport Theory." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75758.
Full textMiklos, Balint, Joachim Giesen, and Mark Pauly. "Discrete scale axis representations for 3D geometry." In ACM SIGGRAPH 2010 papers. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1833349.1778838.
Full textFu, Qiang, and Zezhong C. Chen. "Efficient, Accurate Geometric Modeling for Three-Axis Sculptured Surfaces Milling." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28910.
Full textHaghpassand, Khorssand, and James Oliver. "Computational Geometry for Optimal Workpiece Orientation." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0116.
Full textReports on the topic "Geometry Axioms"
Wu, A. Y., S. K. Bhaskar, and A. Rosenfeld. Computation of Geometric Properties from the Medial Axis Transform in 0 (n logn) Time. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada158934.
Full text