Academic literature on the topic 'Geometry {Global differential geometry}'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry {Global differential geometry}.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometry {Global differential geometry}"
Banchoff, Thomas F., and S. S. Chern. "Global Differential Geometry." American Mathematical Monthly 98, no. 7 (August 1991): 669. http://dx.doi.org/10.2307/2324949.
Full textBanchoff, Thomas F. "Global Differential Geometry. Editor, S. S. Chern." American Mathematical Monthly 98, no. 7 (August 1991): 669–71. http://dx.doi.org/10.1080/00029890.1991.11995775.
Full textHuhtanen, Marko. "Differential geometry of matrix inversion." MATHEMATICA SCANDINAVICA 107, no. 2 (December 1, 2010): 267. http://dx.doi.org/10.7146/math.scand.a-15155.
Full textPark, F. C. "Optimal Robot Design and Differential Geometry." Journal of Mechanical Design 117, B (June 1, 1995): 87–92. http://dx.doi.org/10.1115/1.2836475.
Full textPark, F. C. "Optimal Robot Design and Differential Geometry." Journal of Vibration and Acoustics 117, B (June 1, 1995): 87–92. http://dx.doi.org/10.1115/1.2838681.
Full textSimon, Udo. "Global uniqueness for ovaloids in Euclidean and affine differential geometry." Tohoku Mathematical Journal 44, no. 3 (1992): 327–34. http://dx.doi.org/10.2748/tmj/1178227299.
Full textSARDANASHVILY, G. "GEOMETRY OF CLASSICAL HIGGS FIELDS." International Journal of Geometric Methods in Modern Physics 03, no. 01 (February 2006): 139–48. http://dx.doi.org/10.1142/s0219887806001065.
Full textHale, J. K., and W. Z. Huang. "Global Geometry of the Stable Regions for Two Delay Differential Equations." Journal of Mathematical Analysis and Applications 178, no. 2 (September 1993): 344–62. http://dx.doi.org/10.1006/jmaa.1993.1312.
Full textCAZALS, FRÉDÉRIC, and MARC POUGET. "DIFFERENTIAL TOPOLOGY AND GEOMETRY OF SMOOTH EMBEDDED SURFACES: SELECTED TOPICS." International Journal of Computational Geometry & Applications 15, no. 05 (October 2005): 511–36. http://dx.doi.org/10.1142/s0218195905001816.
Full textMalta, Iaci, Nicolau C. Saldanha, and Carlos Tomei. "Morin singularities and global geometry in a class of ordinary differential operators." Topological Methods in Nonlinear Analysis 10, no. 1 (September 1, 1997): 137. http://dx.doi.org/10.12775/tmna.1997.026.
Full textDissertations / Theses on the topic "Geometry {Global differential geometry}"
Paula, Pedro Manfrim Magalhães de 1991. "Consequências geométricas associadas à limitação do tensor de Bakry-Émery-Ricci." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306950.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T22:36:25Z (GMT). No. of bitstreams: 1 Paula_PedroManfrimMagalhaesde_M.pdf: 1130226 bytes, checksum: bbd8d375ddf7846ed2eafe024103e682 (MD5) Previous issue date: 2015
Resumo: Este trabalho apresenta um estudo sobre variedades Riemannianas que possuem um tensor de Bakry-Émery-Ricci com limitações. Inicialmente abordamos tanto aspectos da geometria Riemanniana tradicional como métricas e geodésicas, quanto aspectos mais avançados como as fórmulas de Bochner, Weitzenböck e o teorema de Hodge. Em seguida discutimos a convergência de Gromov-Hausdorff e suas propriedades, além de serem apresentados alguns teoremas como os de Kasue e Fukaya. Por fim estudamos as propriedades topológicas e geométricas de variedades com limitação no tensor de Bakry-Émery-Ricci e o comportamento de tais limitações com respeito à submersões e à convergência de Gromov-Hausdorff
Abstract: This work presents a study about Riemannian manifolds having a Bakry-Émery-Ricci tensor with bounds. Initially we approached both the traditional aspects of Riemannian geometry like metrics and geodesics, as more advanced aspects like the Bochner, Weitzenböck formulas and the Hodge's theorem. Then we discussed the Gromov-Hausdorff convergence and its properties, in addition to showing some theorems as those from Kasue and Fukaya. Lastly we studied the topological and geometric properties of manifolds with bounds on the Bakry-Émery-Ricci tensor and the behavior of these bounds with respect to submersions and the Gromov-Hausdorff convergence
Mestrado
Matematica
Mestre em Matemática
Stewart, Chris G. "Incorporating global information into local nonlinear controllers." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/41900.
Full textPouget, Marc. "Geometry of surfaces : from the estimation of local differential quantities to the robust extraction of global differential features." Nice, 2005. http://www.theses.fr/2005NICE4052.
Full textThis research work relates to the geometrical aspects of mathematics, computer sciences and applications. This work is motivated by applications such as computer aided design, medical imaging, scientific computations and simulations or also virtual reality and multimedia. This thesis proposes an analysis of some local as well as global topics of the geometry of surfaces. From a local point of view, the problem is the estimation of the normal, the curvatures and quantities of higher order from points sampled on a smooth surface. From a global point of view, we analyze the lines of extreme curvature on surfaces, called ridges. On the one hand, a method for the estimation of local differential quantities with polynomial fitting is studied : the properties of convergence are established and an algorithm is proposed and implemented. On the other hand, algorithms are developed for the computation of the topology on the ridges for surfaces discretized by a mesh or parameterized. Precise conditions of sampling as wel as certified algorithm are given in the case of a surface, an implicit equation of the ridges is derived in the parametric domain and the singularities are analyzed for a polynomial parameterization. The equations are also polynomial, and specific methods of computer algebra are developed to compute the topology on the singular curve of the ridges
Hitomi, Eduardo Eizo Aramaki 1989. "Equações parabólicas quase lineares e fluxos de curvatura média em espaços euclidianos." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306218.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T03:06:43Z (GMT). No. of bitstreams: 1 Hitomi_EduardoEizoAramaki_M.pdf: 5800906 bytes, checksum: 04b93921a20d8ab0f71d4977b9e93e73 (MD5) Previous issue date: 2015
Resumo: Nesta dissertação realizamos um estudo sobre o fluxo de curvatura média em espaços Euclidianos sob as perspectivas analítica e geométrica. Tratamos inicialmente da existência e regularidade de soluções em tempos pequenos de equações parabólicas quase lineares de segunda ordem em variedades Riemannianas, o que é essencial para garantirmos a existência de uma solução suave em tempo pequeno do fluxo de curvatura média. Em uma segunda parte, passamos a alguns resultados sobre o comportamento no intervalo maximal de existência de uma solução suave da hipersuperfície em evolução, por meio de equações das componentes geométricas associadas e de Princípios de Máximo. Próximo desse tempo maximal, analisamos a formação de singularidades do Tipo I por meio da Fórmula de Monotonicidade de Huisken e de rescalings, e do Tipo II por meio de uma técnica de blow-up devida a Hamilton. Em especial, reservamos o caso de curvas a um capítulo a parte e apresentamos resultados clássicos da teoria de curve-shortening flows
Abstract: In this dissertation we study the mean curvature flow in Euclidean spaces from the analytic and geometric point of view. We deal initially with short-time existence and regularity of a solution for second order quasilinear parabolic equations on Riemannian manifolds, which is essential to guarantee the short-time existence of a smooth solution to the mean curvature flow. In a second part, we present some results concerning the behavior of the evolving hypersurface close to the maximal time of existence of a smooth solution, by means of Maximum Principles and evolution equations of the associated geometric components. Close to this maximal time, we analyse the formation of singularities of Type I by means of rescalings and Huisken's Monotonicity Formula, and of Type II by means of a blow-up technique due to Hamilton. In particular, we reserve the case of curves to a separate chapter, where we present some classical results in curve-shortening flow theory
Mestrado
Matematica
Mestre em Matemática
Takei, Yoshitsugu. "THE GEOMETRY OF BICHARACTERISTICS AND THE GLOBAL EXISTENCE OF HOLOMORPHIC SOLUTIONS OF SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS." 京都大学 (Kyoto University), 1989. http://hdl.handle.net/2433/86416.
Full textEnders, Joerg. "Generalizations of the reduced distance in the Ricci flow - monotonicity and applications." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textWhiteway, L. "Topics in differential geometry." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379896.
Full textTaylor, Thomas E. "Differential geometry of Minkowski spaces." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq24990.pdf.
Full textLenssen, Mark. "A topic in differential geometry." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314920.
Full textGuo, Guang-Yuan. "Differential geometry of holomorphic bundles." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239283.
Full textBooks on the topic "Geometry {Global differential geometry}"
Bär, Christian, Joachim Lohkamp, and Matthias Schwarz, eds. Global Differential Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22842-1.
Full textJoachim, Lohkamp, Schwarz Matthias, and SpringerLink (Online service), eds. Global Differential Geometry. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2012.
Find full textJost, Jürgen. Riemannian geometry and geometric analysis. 2nd ed. Berlin: Springer, 1998.
Find full textCordero, Luis A. Differential Geometry of Frame Bundles. Dordrecht: Springer Netherlands, 1988.
Find full textFerus, Dirk, Ulrich Pinkall, Udo Simon, and Berd Wegner, eds. Global Differential Geometry and Global Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0083621.
Full textParrott, Stephen. Relativistic Electrodynamics and Differential Geometry. New York, NY: Springer New York, 1987.
Find full textBook chapters on the topic "Geometry {Global differential geometry}"
Hitchin, Nigel. "Global Differential Geometry." In Mathematics Unlimited — 2001 and Beyond, 577–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_29.
Full textFreyn, Walter. "Kac-Moody Geometry." In Global Differential Geometry, 55–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22842-1_3.
Full textBernig, Andreas. "Algebraic Integral Geometry." In Global Differential Geometry, 107–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22842-1_5.
Full textAlekseevskij, D. V., V. V. Lychagin, and A. M. Vinogradov. "Global Aspects of Differential Geometry." In Geometry I, 197–247. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02712-7_8.
Full textPressley, Andrew. "Global properties of curves." In Elementary Differential Geometry, 55–65. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-891-9_3.
Full textPressley, Andrew. "Global Properties of Curves." In Elementary Differential Geometry, 47–57. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-3696-5_3.
Full textSchwachhöfer, Lorenz J. "Holonomy Groups and Algebras." In Global Differential Geometry, 3–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22842-1_1.
Full textHanke, Bernhard. "Positive Scalar Curvature, K-area and Essentialness." In Global Differential Geometry, 275–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22842-1_10.
Full textBunke, Ulrich, and Thomas Schick. "Differential K-Theory: A Survey." In Global Differential Geometry, 303–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22842-1_11.
Full textBär, Christian, and Nicolas Ginoux. "Classical and Quantum Fields on Lorentzian Manifolds." In Global Differential Geometry, 359–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22842-1_12.
Full textConference papers on the topic "Geometry {Global differential geometry}"
Richter, Thomas. "SSIM as global quality metric: A differential geometry view." In 2011 Third International Workshop on Quality of Multimedia Experience (QoMEX 2011). IEEE, 2011. http://dx.doi.org/10.1109/qomex.2011.6065701.
Full textRichter, Thomas. "From index to metric: using differential geometry to define a global visual quality metric." In SPIE Optical Engineering + Applications, edited by Andrew G. Tescher. SPIE, 2011. http://dx.doi.org/10.1117/12.896091.
Full textMa, Baoshun, Robert Harbaugh, Jia Lu, and Madhavan Raghavan. "Modeling the Geometry, Hemodynamics and Tissue Mechanics of Cerebral Aneurysms." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60024.
Full textGu, C. H., H. S. Hu, and Y. L. Xin. "Differential Geometry." In Symposium in Honor of Professor Su Buchin on His 90th Birthday. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814537148.
Full textSameer and Pradeep Kumar Pandey. "Copper differential geometry." In ADVANCEMENTS IN MATHEMATICS AND ITS EMERGING AREAS. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003357.
Full textMüller, Andreas. "A Screw Approach to the Approximation of the Local Geometry of the Configuration Space and of the Set of Configurations of Certain Rank of Lower Pair Linkages." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85526.
Full textO̸stergaard, Niels H., Anders Lyckegaard, and Jens H. Andreasen. "On Lateral Buckling Failure of Armour Wires in Flexible Pipes." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49358.
Full textSbutega, Krsto, and Ivan Catton. "Application of Fourier-Galerkin Method to Volume Averaging Theory Based Model of Heat Sinks." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65244.
Full textGhaderi, P., and M. Bankehsaz. "Effects of Material Properties Estimations on the Thermo-Elastic Analysis for Functionally Graded Thick Spheres and Cylinders." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41475.
Full textCaddeo, R., and F. Tricerri. "DIFFERENTIAL GEOMETRY AND TOPOLOGY." In Proceedings of the Workshop. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814535779.
Full textReports on the topic "Geometry {Global differential geometry}"
Schmidke, W. B. Jr. Differential geometry of groups in string theory. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6422738.
Full textZund, Joseph D., and Wayne A. Moore. Conformal Geometry, Hotine's Conjecture, and Differential Geodesy. Fort Belvoir, VA: Defense Technical Information Center, July 1987. http://dx.doi.org/10.21236/ada189265.
Full textMore, J. J., and Zhijun Wu. Global continuation for distance geometry problems. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/510547.
Full textSchupp, Peter. Quantum groups, non-commutative differential geometry and applications. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10148553.
Full textManes, J. L. Anomalies in quantum field theory and differential geometry. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/6982663.
Full textWatts, Paul. Differential geometry on Hopf algebras and quantum groups. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/89507.
Full textCook, J. M. An application of differential geometry to SSC magnet end winding. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/7050536.
Full textLudu, Andrei. Differential Geometry of Moving Surfaces and its Relation to Solitons. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-43-69.
Full textPeggs, S. Global searches in quadrupole geometry for minimum or chromaticity contribution. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/93788.
Full textBazarov, Ivan, Matthew Andorf, William Bergan, Cameron Duncan, Vardan Khachatryan, Danilo Liarte, David Rubin, and James Sethna. Innovations in optimization and control of accelerators using methods of differential geometry and genetic algorithms. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1530158.
Full text