Academic literature on the topic 'Geometry Mathematics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry Mathematics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geometry Mathematics"
Murtianto, Yanuar Hery, Sutrisno Sutrisno, Nizaruddin Nizaruddin, and Muhtarom Muhtarom. "EFFECT OF LEARNING USING MATHEMATICA SOFTWARE TOWARD MATHEMATICAL ABSTRACTION ABILITY, MOTIVATION, AND INDEPENDENCE OF STUDENTS IN ANALYTIC GEOMETRY." Infinity Journal 8, no. 2 (September 30, 2019): 219. http://dx.doi.org/10.22460/infinity.v8i2.p219-228.
Full textManouchehri, Azita, Mary C. Enderson, and Lyle A. Pugnucco. "Exploring Geometry with Technology." Mathematics Teaching in the Middle School 3, no. 6 (March 1998): 436–42. http://dx.doi.org/10.5951/mtms.3.6.0436.
Full textRobichaux, Rebecca R., and Paulette R. Rodrigue. "Using Origami to Promote Geometric Communication." Mathematics Teaching in the Middle School 9, no. 4 (December 2003): 222–29. http://dx.doi.org/10.5951/mtms.9.4.0222.
Full textHuse, Vanessa Evans, Nancy Larson Bluemel, and Rhonda Harris Taylor. "Making Connections: From Paper to Pop-Up Books." Teaching Children Mathematics 1, no. 1 (September 1994): 14–17. http://dx.doi.org/10.5951/tcm.1.1.0014.
Full textLin, Qin, and Yumei Chen. "Deepening the Understanding of Mathematics with Geometric Intuition." Journal of Contemporary Educational Research 5, no. 6 (June 30, 2021): 36–40. http://dx.doi.org/10.26689/jcer.v5i6.2214.
Full textBright, George W. "Teaching Mathematics with Technology: Logo and Geometry." Arithmetic Teacher 36, no. 5 (January 1989): 32–34. http://dx.doi.org/10.5951/at.36.5.0032.
Full textCarroll, William M. "Polygon Capture: A Geometry Game." Mathematics Teaching in the Middle School 4, no. 2 (October 1998): 90–94. http://dx.doi.org/10.5951/mtms.4.2.0090.
Full textRobertson, Stuart P. "Getting Students Actively Involved in Geometry." Teaching Children Mathematics 5, no. 9 (May 1999): 526–29. http://dx.doi.org/10.5951/tcm.5.9.0526.
Full textMcClintock, Ruth. "Animating Geometry with Flexigons." Mathematics Teacher 87, no. 8 (November 1994): 602–6. http://dx.doi.org/10.5951/mt.87.8.0602.
Full textHangül, Tuğba, and Ozlem Cezikturk. "A practice for using Geogebra of pre-service mathematics teachers’ mathematical thinking process." New Trends and Issues Proceedings on Humanities and Social Sciences 7, no. 1 (July 2, 2020): 102–16. http://dx.doi.org/10.18844/prosoc.v7i1.4872.
Full textDissertations / Theses on the topic "Geometry Mathematics"
Miller, Richard A. "Geometric algebra| An introduction with applications in Euclidean and conformal geometry." Thesis, San Jose State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1552269.
Full textThis thesis presents an introduction to geometric algebra for the uninitiated. It contains examples of how some of the more traditional topics of mathematics can be reexpressed in terms of geometric algebra along with proofs of several important theorems from geometry. We introduce the conformal model. This is a current topic among researchers in geometric algebra as it is finding wide applications in computer graphics and robotics. The appendices provide a list of some of the notational conventions used in the literature, a reference list of formulas and identities used in geometric algebra along with some of their derivations, and a glossary of terms.
Lurie, Jacob 1977. "Derived algebraic geometry." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30144.
Full textIncludes bibliographical references (p. 191-193).
The purpose of this document is to establish the foundations for a theory of derived algebraic geometry based upon simplicial commutative rings. We define derived versions of schemes, algebraic spaces, and algebraic stacks. Our main result is a derived analogue of Artin's representability theorem, which provides a precise criteria for the representability of a moduli functor by geometric objects of these types.
by Jacob Lurie.
Ph.D.
Bunch, Eric. "K-Theory in categorical geometry." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20350.
Full textDepartment of Mathematics
Zongzhu Lin
In the endeavor to study noncommutative algebraic geometry, Alex Rosenberg defined in [13] the spectrum of an Abelian category. This spectrum generalizes the prime spectrum of a commutative ring in the sense that the spectrum of the Abelian category R − mod is homeomorphic to the prime spectrum of R. This spectrum can be seen as the beginning of “categorical geometry”, and was used in [15] to study noncommutative algebriac geometry. In this thesis, we are concerned with geometries extending beyond traditional algebraic geometry coming from the algebraic structure of rings. We consider monoids in a monoidal category as the appropriate generalization of rings–rings being monoids in the monoidal category of Abelian groups. Drawing inspiration from the definition of the spectrum of an Abelian category in [13], and the exploration of it in [15], we define the spectrum of a monoidal category, which we will call the monoidal spectrum. We prove a descent condition which is the mathematical formalization of the statment “R − mod is the category of quasi-coherent sheaves on the monoidal spectrum of R − mod”. In addition, we prove a functoriality condidition for the spectrum, and show that for a commutative Noetherian ring, the monoidal spectrum of R − mod is homeomorphic to the prime spectrum of the ring R. In [1], Paul Balmer defined the prime tensor ideal spectrum of a tensor triangulated cat- gory; this can be thought of as the beginning of “tensor triangulated categorical geometry”. This definition is very transparent and digestible, and is the inspiration for the definition in this thesis of the prime tensor ideal spectrum of an monoidal Abelian category. It it shown that for a polynomial identity ring R such that the catgory R − mod is monoidal Abelian, the prime tensor ideal spectrum is homeomorphic to the prime ideal spectrum.
Dodds, Peter Sheridan 1969. "Geometry of river networks." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9177.
Full textSegarra, Escandón Jaime Rodrigo. "Pre-service teachers' mathematics teaching beliefs and mathematical content knowledge." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/671686.
Full textEl estudio del conocimiento matemático y las creencias de la eficacia de la enseñanza de las matemáticas en la formación inicial de los futuros maestros es fundamental, ya que influye en el rendimiento académico de los estudiantes. El objetivo de esta tesis es estudiar tanto el conocimiento matemático inicial de los futuros maestros como sus creencias sobre la eficacia matemática y su actitud hacia las matemáticas. Para cumplir con el objetivo se realiza varias investigaciones. Primero, se estudia los conocimientos iniciales de números y geometría de los estudiantes de primer año del Grado de Educación Primaria en la Universidad Rovira y Virgili (URV). En segundo lugar, se estudia las creencias de la eficacia de la enseñanza de las matemáticas de los futuros maestros a lo largo del grado. Tercero, esta Tesis compara la autoeficacia y la expectativa de resultados de la enseñanza de las matemáticas de futuros maestros, maestros novatos y maestros experimentados. Cuarto, se estudia la relación entre las creencias de la enseñanza de las matemáticas, la actitud hacia las matemáticas y su rendimiento académico. Quinto, se estudia la influencia de los factores experiencia docente, nivel de educación y nivel de enseñanza, sobre las creencias de la eficacia de la enseñanza de las matemáticas en maestros en servicio. Finalmente, se compara la autoeficacia de la enseñanza de las matemáticas entre los estudiantes de cuarto año del grado de maestro en la Universidad del Azuay y en la URV. Los resultados de esta Tesis ofrecen información potencialmente importante sobre el conocimiento matemático, las creencias, la autoeficacia de la enseñanza de las matemáticas y la actitud hacia las matemáticas de los futuros maestros y maestros en servicio. Estos resultados pueden ayudar a desarrollar políticas adecuadas para diseñar planes de estudios y también asesorar a los profesores de los grados de maestro en las instituciones de educación superior.
The study of mathematical content knowledge and teachers’ mathematics teaching beliefs of the pre-service teachers is fundamental, since it influences the academic performance of students. The objective of this Thesis is to study the initial mathematical knowledge of pre-service teachers and also their teachers’ mathematics teaching beliefs and their attitude towards mathematics. To meet the objective, various investigations are carried out. First, the initial knowledge of numbers and geometry of first-year students of the primary education degree at the Rovira and Virgili University (URV) is studied. Second, pre-service teachers’ mathematics teaching beliefs are studied throughout the grade. Third, this Thesis compares the self-efficacy and the expectation of results of the teaching of mathematics of pre-service teachers, novice in-service teachers and experienced in-service teachers. Fourth, the relationship between the teachers’ mathematics teaching beliefs, the attitude towards mathematics and their academic performance is studied. Fifth, the influence of the factors teaching level factor and level of training on the teachers’ mathematics teaching beliefs of in-service teachers is studied. Finally, the self-efficacy of mathematics teaching of fourth-year students at the Azuay University and at the URV is compared. The results of this Thesis offer potentially important information on the mathematical knowledge, beliefs, self-efficacy of mathematics teaching and the attitude towards mathematics of pre-service teachers and in-service teachers. These results can help develop policies for curriculum developers and teaching professors at institutes of higher education.
Armstrong, John. "Almost-Kahler geometry." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268139.
Full textMarkham, Sarah. "Hypercomplex hyperbolic geometry." Thesis, Durham University, 2003. http://etheses.dur.ac.uk/3698/.
Full textMarshall, T. H. (Timothy Hamilton). "Hyperbolic Geometry and Reflection Groups." Thesis, University of Auckland, 1994. http://hdl.handle.net/2292/2140.
Full textBaer, Lawrence H. "Numerical aspects of computational geometry." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22507.
Full textSam, Steven V. "Free resolutions, combinatorics, and geometry." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73178.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 71-72).
Boij-Söderberg theory is the study of two cones: the first is the cone of graded Betti tables over a polynomial ring, and the second is the cone of cohomology tables of coherent sheaves over projective space. Each cone has a triangulation induced from a certain partial order. Our first result gives a module-theoretic interpretation of this poset structure. The study of the cone of cohomology tables over an arbitrary polarized projective variety is closely related to the existence of an Ulrich sheaf, and our second result shows that such sheaves exist on the class of Schubert degeneracy loci. Finally, we consider the problem of classifying the possible ranks of Betti numbers for modules over a regular local ring.
by Steven V Sam.
Ph.D.
Books on the topic "Geometry Mathematics"
Education, Ontario Ministry of. Mathematics, geometry: Junior Division. Toronto: Ontario Ministry of Education, 1986.
Find full textEducation, Ontario Ministry of. Mathematics, Junior Division: Geometry. S.l: s.n, 1986.
Find full text1942-, Frisk Peter D., ed. Essential mathematics with geometry. 3rd ed. Pacific Grove, Calif: Brooks/Cole Pub. Co., 1997.
Find full text1942-, Frisk Peter D., ed. Essential mathematics with geometry. 2nd ed. Pacific Grove, Calif: Brooks/Cole, 1994.
Find full textGustafson, R. David. Essential mathematics with geometry. Pacific Grove, Calif: Brooks/Cole Pub. Co., 1990.
Find full textBeneš, Viktor. Stochastic geometry: Selected topics. Boston: Kluwer Academic Publishers, 2004.
Find full textBook chapters on the topic "Geometry Mathematics"
Holme, Audun. "Arabic Mathematics and Geometry." In Geometry, 173–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14441-7_5.
Full textBronshtein, I. N., K. A. Semendyayev, Gerhard Musiol, and Heiner Mühlig. "Geometry." In Handbook of Mathematics, 129–268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46221-8_3.
Full textBronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol, and Heiner Muehlig. "Geometry." In Handbook of Mathematics, 128–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_3.
Full textVince, John. "Geometry Using Geometric Algebra." In Imaginary Mathematics for Computer Science, 229–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94637-5_10.
Full textMotz, Lloyd, and Jefferson Hane Weaver. "Analytic Geometry." In Conquering Mathematics, 201–31. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2774-3_7.
Full textMordeson, John N., and Premchand S. Nair. "Fuzzy Geometry." In Fuzzy Mathematics, 137–217. Heidelberg: Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-7908-1808-6_5.
Full textBarbeau, Edward J. "Geometry." In Problem Books in Mathematics, 133–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28106-3_8.
Full textSoifer, Alexander. "Geometry." In Mathematics as Problem Solving, 45–75. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-74647-0_4.
Full textMac Lane, Saunders. "Geometry." In Mathematics Form and Function, 61–92. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4872-9_4.
Full textHurlbert, Glenn H. "Geometry." In Undergraduate Texts in Mathematics, 59–72. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79148-7_3.
Full textConference papers on the topic "Geometry Mathematics"
Chandra, Nitish. "Effects of Geometry on Scattering." In Mathematics in Imaging. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/math.2017.mw4c.2.
Full textWeiss, Pierre. "The geometry of convex regularized inverse problems." In Mathematics in Imaging. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/math.2018.mw2d.5.
Full textSameer and Pradeep Kumar Pandey. "Copper differential geometry." In ADVANCEMENTS IN MATHEMATICS AND ITS EMERGING AREAS. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003357.
Full textOchiai, T., J. C. Nacher, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Geometry and Cloaking Devices." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636985.
Full textLian, Qin, Jue Wang, Hongzhong Liu, and DiChen Li. "Optimal Geometry and Stimulating Mechanism of Deep‐brain Electrode—Role of Electrode Contact Geometry." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990932.
Full textCoquereaux, R., M. Dubois-Violette, and P. Flad. "INFINITE DIMENSIONAL GEOMETRY NON COMMUTATIVE GEOMETRY OPERATOR ALGEBRAS FUNDAMENTAL INTERACTIONS." In First Caribbean Spring School of Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814532846.
Full textRoussel, O., M. Renaud, and M. Taïx. "Inverse geometry for Kirchhoff elastic rods." In IMA Conference on Mathematics of Robotics. Institute of Mathematics and its Applications, 2015. http://dx.doi.org/10.19124/ima.2015.001.07.
Full textW. Ker, H., S. M. Ho, M. C. Lee, and K. K. Huang. "Factors Associated with Mathematics Achievement: An International Comparative Study." In Annual International Conference on Computational Mathematics, Computational Geometry & Statistics. Global Science and Technology Forum (GSTF), 2012. http://dx.doi.org/10.5176/2251-1911_cmcgs48.
Full textKaufmann, Hannes, and Dieter Schmalstieg. "Mathematics and geometry education with collaborative augmented reality." In ACM SIGGRAPH 2002 conference abstracts and applications. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/1242073.1242086.
Full textCharpin, J. P. F., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Spin Coating over a Varying Geometry." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241371.
Full textReports on the topic "Geometry Mathematics"
Swetz, Frank J. Sacred Mathematics: Japanese Temple Geometry. Washington, DC: The MAA Mathematical Sciences Digital Library, September 2008. http://dx.doi.org/10.4169/loci002864.
Full textHoffman, D. [Geometry, analysis, and computation in mathematics and applied science]. Progress report. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/218245.
Full textKusner, R. B., D. A. Hoffman, P. Norman, F. Pedit, N. Whitaker, and D. Oliver. Geometry, analysis, and computation in mathematics and applied sciences. Final report. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/171332.
Full textChen, W. Y. C., and J. D. Louck. Combinatorics, geometry, and mathematical physics. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/674871.
Full textDe Silva, K. N. A mathematical model for optimization of sample geometry for radiation measurements. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/122732.
Full textMeisel, L. V. A Mathematica Formulation of Geometric Algebra in 3-Space. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada295512.
Full textLiou, Yuei-An. Retrieving Ionospheric Electron Density Distribution With COSMIC Occultations: An Analysis of the Effects of Geometric and Mathematical Delays on TEC Inversions From GPS/MET Occultation Data. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada627499.
Full textPerdigão, Rui A. P., and Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, November 2020. http://dx.doi.org/10.46337/201111.
Full text