Academic literature on the topic 'Geometry non-Euclidean geometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry non-Euclidean geometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geometry non-Euclidean geometry"

1

Gardiner, Tony, and H. S. M. Coxeter. "Non-Euclidean Geometry." Mathematical Gazette 86, no. 506 (2002): 364. http://dx.doi.org/10.2307/3621907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stewart, Ian. "Geometry: Non-euclidean kaleidoscopes." Nature 323, no. 6084 (1986): 114. http://dx.doi.org/10.1038/323114a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bellot, F., and Eugene E. Krause. "Taxicab Geometry: An Adventure in Non-Euclidean Geometry." Mathematical Gazette 72, no. 461 (1988): 255. http://dx.doi.org/10.2307/3618288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Posamentier, Alfred S. "Delving Deeper: Trisecting the Circle: A Case for Euclidean Geometry." Mathematics Teacher 99, no. 6 (2006): 414–18. http://dx.doi.org/10.5951/mt.99.6.0414.

Full text
Abstract:
As an undergraduate mathematics major, a prospective teacher usually takes at least one geometry course. Typically, these courses focus on non–Euclidean geometry (sometimes presented as Modern Geometry), or vectors, transformations, or topology. Instead, we at the City College of New York offer a course on more advanced Euclidean geometry in which prospective teachers investigate a plethora of geometric theorems (or relationships) that enrich their understanding of Euclidean geometry and, consequently, their teaching of it.
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, B. W., L. T. Jiang, H. Pan, and H. Zhu. "Realization on Fractal Interpolation of Non-Rule Geometry." Key Engineering Materials 392-394 (October 2008): 523–25. http://dx.doi.org/10.4028/www.scientific.net/kem.392-394.523.

Full text
Abstract:
The traditional geometric modeling is generally described by means of Euclidean geometry, and objects for the geometric modeling are usually artificial work-pieces with smooth and regular contour. However in real world, there are so many irregular geometric objects(such as cavernous body, geological body, rough surface body and so on) with extremely complicated structure that the constructing method based on Euclidean geometry equation has been already helpless, while the process constructing method based on fractal geometry can. Taking rough surface body as examples, in order to explore a met
APA, Harvard, Vancouver, ISO, and other styles
6

Barreto, Mylane dos Santos, and Salvador Tavares. "From the myth of Euclidean Geometry to the teaching of Non-Euclidean Geometry." Revista Vértices 9, no. 1 (2007): 73–81. http://dx.doi.org/10.5935/1809-2667.20070007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Darke, Ian P., and Patrick J. Ryan. "Euclidean and Non-Euclidean Geometry: An Analytic Approach." Mathematical Gazette 71, no. 458 (1987): 349. http://dx.doi.org/10.2307/3617111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sunada, T. "Euclidean versus Non-Euclidean Aspects in Spectral Geometry." Progress of Theoretical Physics Supplement 116 (May 16, 2013): 235–50. http://dx.doi.org/10.1143/ptp.116.235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sunada, Toshikazu. "Euclidean versus Non-Euclidean Aspects in Spectral Geometry." Progress of Theoretical Physics Supplement 116 (1994): 235–50. http://dx.doi.org/10.1143/ptps.116.235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Popov, A. "Non-Euclidean geometry and differential equations." Banach Center Publications 33, no. 1 (1996): 297–308. http://dx.doi.org/10.4064/-33-1-297-308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Geometry non-Euclidean geometry"

1

Ross, Skyler W. "Non-Euclidean Geometry." Fogler Library, University of Maine, 2000. http://www.library.umaine.edu/theses/pdf/RossSW2000.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vincent, Hugh. "Using geometric algebra to interactively model the geometry of Euclidean and non-Euclidean spaces." Thesis, Middlesex University, 2007. http://eprints.mdx.ac.uk/6750/.

Full text
Abstract:
This research interprets and develops the 'conformal model of space' in a way appropriate for a graphics developer interested in the design of interactive software for exploring 2-dimensional non-Euclidean spaces. The conformal model of space extends the standard projective model – instead of adding just one extra dimension to standard Euclidean space, a second one is added that results in a Minkowski space similar to that of relativistic spacetime. Also, standard matrix algebra is replaced by geometric ( i.e. Clifford) algebra. The key advantage of the conformal model is that both Euclidean a
APA, Harvard, Vancouver, ISO, and other styles
3

Oliveira, Vivianne Tasso Perugini de 1975. "Geometria do táxi : pelas ruas de uma cidade aprende-se uma geometria diferente." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306859.

Full text
Abstract:
Orientador: Claudina Izepe Rodrigues<br>Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica<br>Made available in DSpace on 2018-08-25T10:14:12Z (GMT). No. of bitstreams: 1 Oliveira_VivianneTassoPeruginide_M.pdf: 42677277 bytes, checksum: e029738b1504da7dbb6995d59c3b35f5 (MD5) Previous issue date: 2014<br>Resumo: Neste trabalho apresentamos o estudo sobre a Geometria do Táxi, uma Geometria não-Euclidiana de fácil compreensão e muito próxima do cotidiano das pessoas, uma vez que tem uma ampla gama de aplicações em
APA, Harvard, Vancouver, ISO, and other styles
4

Strzheletska, Elena. "The Euler Line in non-Euclidean geometry." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2443.

Full text
Abstract:
The main purpose of this thesis is to explore the conditions of the existence and properties of the Euler line of a triangle in the hyperbolic plane. Poincaré's conformal disk model and Hermitian matrices were used in the analysis.ʹ
APA, Harvard, Vancouver, ISO, and other styles
5

Dario, Douglas Francisco. "Geometrias não euclidianas: elíptica e hiperbólica no ensino médio." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/862.

Full text
Abstract:
Este trabalho tem como objetivo colaborar na inserção do ensino das Geometrias Não Euclidianas no ensino médio. Para tanto, fizemos uma pesquisa bibliográfica sobre o surgimento de tais Geometrias, em seguida apresentamos uma sequência de conteúdos para o ensino das Geometrias Elíptica e Hiperbólica, abordando os principais tópicos elencados pelas Diretrizes Curriculares do Estado do Paraná, comparando-as sempre que possível com a Geometria Euclidiana. Esclarecemos que onde citamos Geometria Elíptica, estamos realmente tratando da Geometria da Superfície Esférica, para que este trabalho
APA, Harvard, Vancouver, ISO, and other styles
6

Figueiredo, Fabio Dalla Costa. "Alguns problemas em geometrias de curvas." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276211.

Full text
Abstract:
Orientador: Pedro Jussieu de Rezende<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação<br>Made available in DSpace on 2018-08-06T03:40:47Z (GMT). No. of bitstreams: 1 Figueiredo_FabioDallaCosta_M.pdf: 1782158 bytes, checksum: fa8eb774d4870ff779afab7b7041759f (MD5) Previous issue date: 2005<br>Resumo: Problemas de natureza geométrica são encontrados em diversas áreas e, portanto, a análise dos mesmos sob uma ótica algorítmica e imprescindível. Não obstante um amplo tratamento de problemas na geometria euclidiana, relativamente poucos estudos foram feitos e
APA, Harvard, Vancouver, ISO, and other styles
7

Lyra, Wilton Luiz Duque. "Intercomunicação entre matemática-ciência-arte:um estudo sobre as implicações das geometrias na produção artistica desde o gótico até o surrealismo." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/27/27154/tde-15072009-234402/.

Full text
Abstract:
Podemos dizer que as Catedrais Góticas, verdadeiras bíblias de pedra, são signos medievais que podem ser lidos já como o resultado da intercomunicação entre matemática-ciência-arte, uma vez que tais edificações surgiram de projeções arquitetônicas, da utilização de uma dada geometria assim como da execução de determinados conjuntos escultóricos. Podemos ainda ressaltar que essa intercomunicação se intensifica durante todo o Renascimento, exemplo máximo da união entre esses três campos do conhecimento. No Renascimento, a geometria dominante e a Euclidiana; os artistas enfrentavam as questões es
APA, Harvard, Vancouver, ISO, and other styles
8

LOIOLA, CARLOS AUGUSTO GOMES. "A TAXICAB FOR EUCLID: A NON EUCLIDEAN GEOMETRY IN BASIC EDUCATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25026@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>A dissertação em tela foi desenvolvida com o intuito de proporcionar ao professor de matemática uma introdução ao estudo das Geometrias Não Euclidianas, um assunto carente em nossas salas de aulas tanto do Ensino Básico como das Licenciaturas em Matemática. Em consonância com os Parâmetros Curriculares Nacionais, são historicamente construídos os conhecimentos matemáticos apresentados para discutir o Quinto Postulado dos Elementos de Euclides e para apresentar a descoberta de n
APA, Harvard, Vancouver, ISO, and other styles
9

Awonusika, Richard Olu. "Harmonic analysis in non-Euclidean geometry : trace formulae and integral representations." Thesis, University of Sussex, 2016. http://sro.sussex.ac.uk/id/eprint/65356/.

Full text
Abstract:
This thesis is concerned with the spectral theory of the Laplacian on non-Euclidean spaces and its intimate links with harmonic analysis and the theory of special functions. More specifically, it studies the spectral theory of the Laplacian on the quotients M = Γ\G/K and X = G/K, where G is a connected semisimple Lie group, K is a maximal compact subgroup of G and Γ is a discrete subgroup of G.
APA, Harvard, Vancouver, ISO, and other styles
10

Magalhães, José Messias. "Um estuo dos modelos da geometria hiperbólica /." Rio Claro, 2015. http://hdl.handle.net/11449/134147.

Full text
Abstract:
Orientador: Wladimir Seixas<br>Banca: Yuriko Yamomoto Baldin<br>Banca: João Peres Vieira<br>Resumo: Esta dissertação tem como objetivo introduzir os conceitos e os principais resultados da Geometria Hiperbólica, entre eles a não existência de retângulos. Verifica-se assim que as diferenças entre as geometrias euclidiana e hiperbólica se dá pela negação do Quinto Axioma de Euclides ou, como é conhecido, o Axioma das paralelas de Euclides. Na parte final deste trabalho abordaremos três principais modelos da Geometria Hiperb ólica: o Disco de Beltrami-Klein, o Disco de Poincaré e o Semiplano de P
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Geometry non-Euclidean geometry"

1

Parker, Manning Henry. Non-Euclidean geometry. Ginn, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Manning, Henry Parker. Non-Euclidean geometry. Ginn, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kulczycki, Stefan. Non-Euclidean geometry. Dover Publications, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Non-Euclidean geometry. 6th ed. Mathematical Association of America, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greenberg, Marvin J. Euclidean and non-Euclidean geometries. 4th ed. W.H. Freeman, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greenberg, Marvin J. Euclidean and non-Euclidean geometries. 4th ed. W.H. Freeman, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Taxicab Geometry: An adventure in non-Euclidean geometry. Dover Publications, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krause, Eugene F. Taxicab geometry: An adventure in non-Euclidean geometry. Dover Publications, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Euclidean and non-Euclidean geometry: An analytical approach. Cambridge University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Daina, Taimin̦a, ed. Experiencing geometry: Euclidean and non-Euclidean with history. 3rd ed. Pearson Prentice Hall, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Geometry non-Euclidean geometry"

1

Trudeau, Richard J. "Euclidean Geometry." In The Non-Euclidean Revolution. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-2102-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Trudeau, Richard J. "Hyperbolic Geometry." In The Non-Euclidean Revolution. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-2102-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cederberg, Judith N. "Non-Euclidean Geometry." In A Course in Modern Geometries. Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3490-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borceux, Francis. "Non-Euclidean Geometry." In An Axiomatic Approach to Geometry. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01730-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stillwell, John. "Non-Euclidean geometry." In The Four Pillars of Geometry. Springer New York, 2005. http://dx.doi.org/10.1007/0-387-29052-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Busemann, Herbert. "Non-Euclidean Geometry." In Selected Works II. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-65624-3_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hartshorne, Robin. "Non-Euclidean Geometry." In Undergraduate Texts in Mathematics. Springer New York, 2000. http://dx.doi.org/10.1007/978-0-387-22676-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cederberg, Judith N. "Non-Euclidean Geometry." In A Course in Modern Geometries. Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4757-3831-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stillwell, John. "Non-Euclidean Geometry." In Undergraduate Texts in Mathematics. Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6053-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Natário, José. "Non-Euclidean Geometry." In General Relativity Without Calculus. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21452-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geometry non-Euclidean geometry"

1

M'rabet, Zakaria, Fouad Ayoub, Mostafa Belkasmi, Anouar Yatribi, and Alaoui Ismaili Zine El Abidine. "Non-binary Euclidean Geometry codes: Majority Logic Decoding." In 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS). IEEE, 2016. http://dx.doi.org/10.1109/acosis.2016.7843943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Benvenuti, Silvia, and Alessandra Cardinali. "THE MENTAL TELESCOPE: UNDERSTANDING THE GEOMETRY OF EUCLID BY LEARNING THE NON-EUCLIDEAN GEOMETRY." In 12th International Technology, Education and Development Conference. IATED, 2018. http://dx.doi.org/10.21125/inted.2018.2287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shirazi, Sareh, Mehrtash T. Harandi, Brian C. Lovell, and Conrad Sanderson. "Object tracking via non-Euclidean geometry: A Grassmann approach." In 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2014. http://dx.doi.org/10.1109/wacv.2014.6836008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panichella, Annibale. "An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization." In GECCO '19: Genetic and Evolutionary Computation Conference. ACM, 2019. http://dx.doi.org/10.1145/3321707.3321839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hall, Andreia, Isabel Brás, and Sónia Pais. "USING AN ARTISTIC APPROACH TO THE TEACHING OF NON-EUCLIDEAN GEOMETRY IN A PROFESSIONAL DEVELOPMENT COURSE FOR MATHEMATICS TEACHERS." In 13th International Technology, Education and Development Conference. IATED, 2019. http://dx.doi.org/10.21125/inted.2019.0775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saji, Kentaro. "Singularities of non-degenerate n-ruled (n+1)-manifolds in Euclidean space." In Geometric Singularity Theory. Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ferreira, João P. M., Renato Martins, and Erickson R. Nascimento. "Synthesizing Realistic Human Dance Motions Conditioned by Musical Data using Graph Convolutional Networks." In Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/ctd.2021.15762.

Full text
Abstract:
Learning to move naturally from music, i.e., to dance, is one of the most complex motions humans often perform effortlessly. Existing techniques of automatic dance generation with classical CNN and RNN models undergo training and variability issues due to the non-Euclidean geometry of the motion manifold. We design a novel method based on GCNs to tackle the problem of automatic dance generation from audio. Our method uses an adversarial learning scheme conditioned on the input music audios to create natural motions. The results demonstrate that the proposed GCN model outperforms the state-of-t
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Jae Gyeong, Sukyoung Won, Jeong Eun Park, and Jeong Jae Wie. "Multi-Functional 3D Curvilinear Self-Folding of Glassy Polymers." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8407.

Full text
Abstract:
Abstract The selective light absorption of pre-stretched thermoplastic polymeric films enables wireless photothermal shape morphing from two-dimensional Euclidean geometry of films to three-dimensional (3D) curvilinear architectures. For a facile origami-inspired programming of 3D folding, black inks are printed on glassy polymers that are used as hinges to generate light-absorption patterns. However, the deformation of unpatterned areas and/or stress convolution of patterned areas hinder the creation of accurate curvilinear structures. In addition, black inks remain in the film, prohibiting t
APA, Harvard, Vancouver, ISO, and other styles
9

Rajagopalan, Sanjay, and Mark R. Cutkosky. "Optimal Pose Selection for In-Situ Fabrication of Planar Mechanisms." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dfm-8958.

Full text
Abstract:
Abstract Solid Freeform Fabrication (SFF) techniques allow the in-situ fabrication of fully-assembled devices with mating/fitting parts. Recently, this technique of fabrication has been found to be useful for building integrated mechanisms in robotics, and a wide array of other similar applications are anticipated. An interesting issue that arises during the fabrication of such mechanisms is the determination of an optimal pose in which the mechanism should be built. For example, should the mechanism be built in a folded or stretched-out position? In conventional manufacturing these issues do
APA, Harvard, Vancouver, ISO, and other styles
10

Gou, J. B., Y. X. Chu, H. Wu, and Z. X. Li. "A Geometric Theory for Formulation of Form, Profile and Orientation Tolerances: Problem Formulation." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/dfm-5743.

Full text
Abstract:
Abstract This paper develops a geometric theory which unifies the formulation and evaluation of form (straightness, flatness, cylindricity and circularity), profile and orientation tolerances stipulated in ANSI Y14.5M standard. In the paper, based on an an important observation that a toleranced feature exhibits a symmetry subgroup G0 under the action of the Euclidean group, SE(3), we identify the configuration space of a toleranced (or a symmetric) feature with the homogeneous space SE(3)/G0 of the Euclidean group. Geometric properties of SE(3)/G0, especially its exponential coordinates carri
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!