Journal articles on the topic 'Geometry non-Euclidean geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Geometry non-Euclidean geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gardiner, Tony, and H. S. M. Coxeter. "Non-Euclidean Geometry." Mathematical Gazette 86, no. 506 (2002): 364. http://dx.doi.org/10.2307/3621907.
Full textStewart, Ian. "Geometry: Non-euclidean kaleidoscopes." Nature 323, no. 6084 (1986): 114. http://dx.doi.org/10.1038/323114a0.
Full textBellot, F., and Eugene E. Krause. "Taxicab Geometry: An Adventure in Non-Euclidean Geometry." Mathematical Gazette 72, no. 461 (1988): 255. http://dx.doi.org/10.2307/3618288.
Full textPosamentier, Alfred S. "Delving Deeper: Trisecting the Circle: A Case for Euclidean Geometry." Mathematics Teacher 99, no. 6 (2006): 414–18. http://dx.doi.org/10.5951/mt.99.6.0414.
Full textSun, B. W., L. T. Jiang, H. Pan, and H. Zhu. "Realization on Fractal Interpolation of Non-Rule Geometry." Key Engineering Materials 392-394 (October 2008): 523–25. http://dx.doi.org/10.4028/www.scientific.net/kem.392-394.523.
Full textBarreto, Mylane dos Santos, and Salvador Tavares. "From the myth of Euclidean Geometry to the teaching of Non-Euclidean Geometry." Revista Vértices 9, no. 1 (2007): 73–81. http://dx.doi.org/10.5935/1809-2667.20070007.
Full textDarke, Ian P., and Patrick J. Ryan. "Euclidean and Non-Euclidean Geometry: An Analytic Approach." Mathematical Gazette 71, no. 458 (1987): 349. http://dx.doi.org/10.2307/3617111.
Full textSunada, T. "Euclidean versus Non-Euclidean Aspects in Spectral Geometry." Progress of Theoretical Physics Supplement 116 (May 16, 2013): 235–50. http://dx.doi.org/10.1143/ptp.116.235.
Full textSunada, Toshikazu. "Euclidean versus Non-Euclidean Aspects in Spectral Geometry." Progress of Theoretical Physics Supplement 116 (1994): 235–50. http://dx.doi.org/10.1143/ptps.116.235.
Full textPopov, A. "Non-Euclidean geometry and differential equations." Banach Center Publications 33, no. 1 (1996): 297–308. http://dx.doi.org/10.4064/-33-1-297-308.
Full textStorer, W. O., and B. A. Rosenfeld. "The History of Non-Euclidean Geometry." Mathematical Gazette 74, no. 468 (1990): 203. http://dx.doi.org/10.2307/3619413.
Full textBEESON, MICHAEL, PIERRE BOUTRY, and JULIEN NARBOUX. "HERBRAND’S THEOREM AND NON-EUCLIDEAN GEOMETRY." Bulletin of Symbolic Logic 21, no. 2 (2015): 111–22. http://dx.doi.org/10.1017/bsl.2015.6.
Full textHansen, Vagn Lundsgaard. "The dawn of non‐Euclidean geometry." International Journal of Mathematical Education in Science and Technology 28, no. 1 (1997): 3–23. http://dx.doi.org/10.1080/0020739970280102.
Full textBlum, Zoltan, Sven Lidin, and Ronnie Thomasson. "Zeolites: Coneyers of non-euclidean geometry." Journal of Solid State Chemistry 74, no. 2 (1988): 353–55. http://dx.doi.org/10.1016/0022-4596(88)90365-9.
Full textSuter, Beth. "Non-Euclidean Geometry Before Breakfast, and: Inheritance." Colorado Review 45, no. 2 (2018): 151–52. http://dx.doi.org/10.1353/col.2018.0070.
Full textLeichtweiss, Kurt. "Polar Curves in the Non-euclidean Geometry." Results in Mathematics 52, no. 1-2 (2008): 143–60. http://dx.doi.org/10.1007/s00025-007-0247-3.
Full textDobbs, David E. "A proof of the arithmetic-geometric mean inequality using non-Euclidean geometry." International Journal of Mathematical Education in Science and Technology 32, no. 5 (2001): 778–82. http://dx.doi.org/10.1080/002073901753124655.
Full textBashir, Asma, Benjamin Koch, and Muhammad Abdul Wasay. "Geometric description of Schrödinger equation in Finsler and Funk geometry." International Journal of Geometric Methods in Modern Physics 16, no. 07 (2019): 1950098. http://dx.doi.org/10.1142/s0219887819500981.
Full textBellone, T., F. Fiermonte, and L. Mussio. "THE COMMON EVOLUTION OF GEOMETRY AND ARCHITECTURE FROM A GEODETIC POINT OF VIEW." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-5/W1 (May 16, 2017): 623–30. http://dx.doi.org/10.5194/isprs-archives-xlii-5-w1-623-2017.
Full textAfgoustidis, Alexandre. "Orientation Maps in V1 and Non-Euclidean Geometry." Journal of Mathematical Neuroscience 5, no. 1 (2015): 12. http://dx.doi.org/10.1186/s13408-015-0024-7.
Full textBruss, I. R., and G. M. Grason. "Non-Euclidean geometry of twisted filament bundle packing." Proceedings of the National Academy of Sciences 109, no. 27 (2012): 10781–86. http://dx.doi.org/10.1073/pnas.1205606109.
Full textGriffin, Nicholas. "Non-Euclidean geometry: Still some problems for Kant." Studies in History and Philosophy of Science Part A 22, no. 4 (1991): 661–63. http://dx.doi.org/10.1016/0039-3681(91)90038-t.
Full textWu, Wei, Guangmin Hu, and Fucai Yu. "An Unsupervised Learning Method for Attributed Network Based on Non-Euclidean Geometry." Symmetry 13, no. 5 (2021): 905. http://dx.doi.org/10.3390/sym13050905.
Full textShillor, Irith. "Gifted Mathematicians Constructing Their Own Geometries — Changes in Knowledge and Attitudes." Gifted Education International 12, no. 2 (1997): 102–5. http://dx.doi.org/10.1177/026142949701200210.
Full textLoiola, Carlos Augusto Gomes, and Chrsitine Sertã Costa. "AS CÔNICAS NA GEOMETRIA DO TÁXI." Ciência e Natura 37 (August 7, 2015): 179. http://dx.doi.org/10.5902/2179460x14596.
Full textZhao, Yuzhou, Chenyu Zhang, Daniel D. Kohler, et al. "Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces." Science 370, no. 6515 (2020): 442–45. http://dx.doi.org/10.1126/science.abc4284.
Full textJovanovic, Radmila. "Three views on epistemological status of geometry." Theoria, Beograd 55, no. 4 (2012): 21–38. http://dx.doi.org/10.2298/theo1204021j.
Full textSitenko, Yurii, and Volodymyr Gorkavenko. "Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects." Universe 4, no. 2 (2018): 23. http://dx.doi.org/10.3390/universe4020023.
Full textKisil, Vladimir V. "MoebInv: C++ libraries for manipulations in non-Euclidean geometry." SoftwareX 11 (January 2020): 100385. http://dx.doi.org/10.1016/j.softx.2019.100385.
Full textLeichtweiss, K. "Curves of constant width in the non-euclidean geometry." Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 75, no. 1 (2005): 257–84. http://dx.doi.org/10.1007/bf02942046.
Full textLeichtweiss, Kurt. "Linear combinations of convex hypersurfaces in non-Euclidean geometry." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 53, no. 1 (2011): 77–88. http://dx.doi.org/10.1007/s13366-011-0080-4.
Full textNoro, Shuta, Masahiko Okumura, Satoshi Hongo, et al. "Langevin simulations of protoplasmic streaming in non-Euclidean geometry." Journal of Physics: Conference Series 1730, no. 1 (2021): 012037. http://dx.doi.org/10.1088/1742-6596/1730/1/012037.
Full textGray, Jeremy. "A history of non-euclidean geometry: Evolution of the concept of a geometric space." Historia Mathematica 18, no. 4 (1991): 373–74. http://dx.doi.org/10.1016/0315-0860(91)90380-g.
Full textCoxeter, H. S. M., and Jan van de Craats. "Philon lines in non-Euclidean planes." Journal of Geometry 48, no. 1-2 (1993): 26–55. http://dx.doi.org/10.1007/bf01226799.
Full textEl Khaldi, Khaldoun, and Elias G. Saleeby. "On the density of lines and Santalo’s formula for computing geometric size measures." Monte Carlo Methods and Applications 26, no. 4 (2020): 315–23. http://dx.doi.org/10.1515/mcma-2020-2071.
Full textBlok, Johan. "Toward a Formal Interpretation of Kant's Analogies of Experience." Hegel Bulletin 28, no. 1-2 (2007): 107–20. http://dx.doi.org/10.1017/s0263523200000665.
Full textСафиулина, Yu Safiulina, Шмурнов, and V. Shmurnov. "Graphical Proof of the Main Theorem of Non-Euclidean Geometry." Geometry & Graphics 3, no. 3 (2015): 18–23. http://dx.doi.org/10.12737/14416.
Full textShiguo, Yang, and Wang Jia. "Some geometric inequalities in non-euclidean space." Journal of Geometry 56, no. 1-2 (1996): 196–201. http://dx.doi.org/10.1007/bf01222696.
Full textStruve, Horst, and Rolf Struve. "Non-euclidean geometries: the Cayley-Klein approach." Journal of Geometry 98, no. 1-2 (2010): 151–70. http://dx.doi.org/10.1007/s00022-010-0053-z.
Full textBerrett, Joshua, Virginia Marquardt, and Linda Dalrymple Henderson. "The Fourth Dimension and Non-Euclidean Geometry in Modern Art." Technology and Culture 26, no. 4 (1985): 879. http://dx.doi.org/10.2307/3105651.
Full textHenderson, Andrea. "Math for Math's Sake: Non-Euclidean Geometry, Aestheticism, and Flatland." PMLA/Publications of the Modern Language Association of America 124, no. 2 (2009): 455–71. http://dx.doi.org/10.1632/pmla.2009.124.2.455.
Full textKalimuthu, S. "Two Findings for the Origin of Third Non Euclidean Geometry." National Academy Science Letters 36, no. 6 (2013): 621–23. http://dx.doi.org/10.1007/s40009-013-0179-2.
Full textLeichtweiss, Kurt. "On Steiner’s Symmetrization of Convex Bodies in Non-Euclidean Geometry." Results in Mathematics 52, no. 3-4 (2008): 339–46. http://dx.doi.org/10.1007/s00025-008-0315-3.
Full textTrzesowski, Andrzej. "Geometry of crystal structure with defects. II. Non-Euclidean picture." International Journal of Theoretical Physics 26, no. 4 (1987): 335–55. http://dx.doi.org/10.1007/bf00672243.
Full textGudmundsson, Sigmundur. "On the geometry of harmonic morphisms." Mathematical Proceedings of the Cambridge Philosophical Society 108, no. 3 (1990): 461–66. http://dx.doi.org/10.1017/s0305004100069358.
Full textKhrennikov, Andrei. "Bell Could Become the Copernicus of Probability." Open Systems & Information Dynamics 23, no. 02 (2016): 1650008. http://dx.doi.org/10.1142/s1230161216500086.
Full textTolchelnikova, S. A., and K. N. Naumov. "On the matter of proving Euclidean fifth postulate and the origin of non-Euclidean geometries." Geodesy and Cartography 950, no. 8 (2019): 2–11. http://dx.doi.org/10.22389/0016-7126-2019-950-8-2-11.
Full textKORCHEMSKY, G. P. "QUANTUM GEOMETRY OF DIRAC FERMIONS." International Journal of Modern Physics A 07, no. 02 (1992): 339–80. http://dx.doi.org/10.1142/s0217751x9200020x.
Full textEDER, GÜNTHER, and GEORG SCHIEMER. "HILBERT, DUALITY, AND THE GEOMETRICAL ROOTS OF MODEL THEORY." Review of Symbolic Logic 11, no. 1 (2017): 48–86. http://dx.doi.org/10.1017/s1755020317000260.
Full textTamm, Martin. "Minimizing Curvature in Euclidean and Lorentz Geometry." Symmetry 13, no. 8 (2021): 1433. http://dx.doi.org/10.3390/sym13081433.
Full text