Academic literature on the topic 'Geometry of Banach spaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geometry of Banach spaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Geometry of Banach spaces"

1

Muñoz-Fernández, Gustavo A., and Juan B. Seoane-Sepúlveda. "Geometry of Banach spaces of trinomials." Journal of Mathematical Analysis and Applications 340, no. 2 (April 2008): 1069–87. http://dx.doi.org/10.1016/j.jmaa.2007.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Okeke, Godwin Amechi, and Mujahid Abbas. "Fejér monotonicity and fixed point theorems with applications to a nonlinear integral equation in complex valued Banach spaces." Applied General Topology 21, no. 1 (April 3, 2020): 135. http://dx.doi.org/10.4995/agt.2020.12220.

Full text
Abstract:
It is our purpose in this paper to prove some fixed point results and Fej´er monotonicity of some faster fixed point iterative sequences generated by some nonlinear operators satisfying rational inequality in complex valued Banach spaces. We prove that results in complex valued Banach spaces are valid in cone metric spaces with Banach algebras. Furthermore, we apply our results in solving certain mixed type VolterraFredholm functional nonlinear integral equation in complex valued Banach spaces.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Han Ju. "RANDOMIZED SERIES AND GEOMETRY OF BANACH SPACES." Taiwanese Journal of Mathematics 14, no. 5 (October 2010): 1837–48. http://dx.doi.org/10.11650/twjm/1500406019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

TASKINEN, JARI. "Inductive limits and geometry of Banach spaces." Mathematical Proceedings of the Cambridge Philosophical Society 126, no. 1 (January 1999): 99–107. http://dx.doi.org/10.1017/s0305004198003077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pietsch, A. "Eigenvalue Distributions and Geometry of Banach Spaces." Mathematische Nachrichten 150, no. 1 (1991): 41–81. http://dx.doi.org/10.1002/mana.19911500105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Becerra Guerrero, Julio, and Angel Rodriguez Palacios. "The Geometry of Convex Transitive Banach Spaces." Bulletin of the London Mathematical Society 31, no. 3 (May 1999): 323–31. http://dx.doi.org/10.1112/s0024609398005359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Granero, A. S., M. Jiménez Sevilla, and J. P. Moreno. "Geometry of Banach spaces with property β." Israel Journal of Mathematics 111, no. 1 (December 1999): 263–73. http://dx.doi.org/10.1007/bf02810687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alber, Y. I., R. S. Burachik, and A. N. Iusem. "A proximal point method for nonsmooth convex optimization problems in Banach spaces." Abstract and Applied Analysis 2, no. 1-2 (1997): 97–120. http://dx.doi.org/10.1155/s1085337597000298.

Full text
Abstract:
In this paper we show the weak convergence and stability of the proximal point method when applied to the constrained convex optimization problem in uniformly convex and uniformly smooth Banach spaces. In addition, we establish a nonasymptotic estimate of convergence rate of the sequence of functional values for the unconstrained case. This estimate depends on a geometric characteristic of the dual Banach space, namely its modulus of convexity. We apply a new technique which includes Banach space geometry, estimates of duality mappings, nonstandard Lyapunov functionals and generalized projection operators in Banach spaces.
APA, Harvard, Vancouver, ISO, and other styles
9

Garrido, M. Isabel, Jesús A. Jaramillo, and José G. Llavona. "Polynomial topologies on Banach spaces." Topology and its Applications 153, no. 5-6 (December 2005): 854–67. http://dx.doi.org/10.1016/j.topol.2005.01.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adams, Tarn. "Flat Chains in Banach Spaces." Journal of Geometric Analysis 18, no. 1 (December 7, 2007): 1–28. http://dx.doi.org/10.1007/s12220-007-9008-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Geometry of Banach spaces"

1

Blagojevic, Danilo. "Spectral families and geometry of Banach spaces." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2389.

Full text
Abstract:
The principal objects of study in this thesis are arbitrary spectral families, E, on a complex Banach space X. The central theme is the relationship between the geometry of X and the p-variation of E. We show that provided X is super- reflexive, then given any E, there exists a value 1 · p < 1, depending only on E and X, such that var p(E) < 1. If X is uniformly smooth we provide an explicit range of such values p, which depends only on E and the modulus of convexity of X*, delta X*(.).
APA, Harvard, Vancouver, ISO, and other styles
2

Doust, Ian Raymond. "Well-bounded operators and the geometry of Banach spaces." Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/13705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hardtke, Jan-David [Verfasser]. "Geometry of Banach spaces, absolute sums and Köthe-Bochner spaces / Jan-David Hardtke." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1075190851/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arnt, Sylvain. "Large scale geometry and isometric affine actions on Banach spaces." Thesis, Orléans, 2014. http://www.theses.fr/2014ORLE2021/document.

Full text
Abstract:
Dans le premier chapitre, nous définissons la notion d’espaces à partitions pondérées qui généralise la structure d’espaces à murs mesurés et qui fournit un cadre géométrique à l’étude des actions isométriques affines sur des espaces de Banach pour les groupes localement compacts à base dénombrable. Dans un premier temps, nous caractérisons les actions isométriques affines propres sur des espaces de Banach en termes d’actions propres par automorphismes sur des espaces à partitions pondérées. Puis, nous nous intéressons aux structures de partitions pondérées naturelles pour les actions de certaines constructions de groupes : somme directe ; produit semi-directe ; produit en couronne et produit libre. Nous établissons ainsi des résultats de stabilité de la propriété PLp par ces constructions. Notamment, nous généralisons un résultat de Cornulier, Stalder et Valette de la façon suivante : le produit en couronne d’un groupe ayant la propriété PLp par un groupe ayant la propriété de Haagerup possède la propriété PLp. Dans le deuxième chapitre, nous nous intéressons aux espaces métriques quasi-médians - une généralisation des espaces hyperboliques à la Gromov et des espaces médians - et à leurs propriétés. Après l’étude de quelques exemples, nous démontrons qu’un espace δ-médian est δ′-médian pour tout δ′ ≥ δ. Ce résultat nous permet par la suite d’établir la stabilité par produit directe et par produit libre d’espaces métriques - notion que nous développons par la même occasion. Le troisième chapitre est consacré à la définition et l’étude d’une distance propre, invariante à gauche et qui engendre la topologie explicite sur les groupes localement compacts, compactement engendrés. Après avoir montré les propriétés précédentes, nous prouvons que cette distance est quasi-isométrique à la distance des mots sur le groupe et que la croissance du volume des boules est contrôlée exponentiellement
In the first chapter, we define the notion of spaces with labelled partitions which generalizes the structure of spaces with measured walls : it provides a geometric setting to study isometric affine actions on Banach spaces of second countable locally compact groups. First, we characterise isometric affine actions on Banach spaces in terms of proper actions by automorphisms on spaces with labelled partitions. Then, we focus on natural structures of labelled partitions for actions of some group constructions : direct sum ; semi-direct product ; wreath product and free product. We establish stability results for property PLp by these constructions. Especially, we generalize a result of Cornulier, Stalder and Valette in the following way : the wreath product of a group having property PLp by a Haagerup group has property PLp. In the second chapter, we focus on the notion of quasi-median metric spaces - a generalization of both Gromov hyperbolic spaces and median spaces - and its properties. After the study of some examples, we show that a δ-median space is δ′-median for all δ′ ≥ δ. This result gives us a way to establish the stability of the quasi-median property by direct product and by free product of metric spaces - notion that we develop at the same time. The third chapter is devoted to the definition and the study of an explicit proper, left-invariant metric which generates the topology on locally compact, compactly generated groups. Having showed these properties, we prove that this metric is quasi-isometric to the word metric and that the volume growth of the balls is exponentially controlled
APA, Harvard, Vancouver, ISO, and other styles
5

Hume, David S. "Embeddings of infinite groups into Banach spaces." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde.

Full text
Abstract:
In this thesis we build on the theory concerning the metric geometry of relatively hyperbolic and mapping class groups, especially with respect to the difficulty of embedding such groups into Banach spaces. In Chapter 3 (joint with Alessandro Sisto) we construct simple embeddings of closed graph manifold groups into a product of three metric trees, answering positively a conjecture of Smirnov concerning the Assouad-Nagata dimension of such spaces. Consequently, we obtain optimal embeddings of such spaces into certain Banach spaces. The ideas here have been extended to other closed three-manifolds and to higher dimensional analogues of graph manifolds. In Chapter 4 we give an explicit method of embedding relatively hyperbolic groups into certain Banach spaces, which yields optimal bounds on the compression exponent of such groups relative to their peripheral subgroups. From this we deduce that the fundamental group of every closed three-manifold has Hilbert compression exponent one. In Chapter 5 we prove that relatively hyperbolic spaces with a tree-graded quasi-isometry representative can be characterised by a relative version of Manning's bottleneck property. This applies to the Bestvina-Bromberg-Fujiwara quasi-trees of spaces, yielding an embedding of each mapping class group of a closed surface into a finite product of simplicial trees. From this we obtain explicit embeddings of mapping class groups into certain Banach spaces and deduce that these groups have finite Assouad-Nagata dimension. It also applies to relatively hyperbolic groups, proving that such groups have finite Assouad-Nagata dimension if and only if each peripheral subgroup does.
APA, Harvard, Vancouver, ISO, and other styles
6

Petitjean, Colin. "Some aspects of the geometry of Lipschitz free spaces." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD006/document.

Full text
Abstract:
Quelques aspects de la géométrie des espaces LipschitzEn premier lieu, nous donnons les propriétés fondamentales des espaces Lipschitz libres. Puis, nous démontrons que l'image canonique d'un espace métrique M est faiblement fermée dans l'espace libre associé F(M). Nous prouvons un résultat similaire pour l'ensemble des molécules.Dans le second chapitre, nous étudions les conditions sous lesquelles F(M) est isométriquement un dual. En particulier, nous généralisons un résultat de Kalton sur ce sujet. Par la suite, nous nous focalisons sur les espaces métriques uniformément discrets et sur les espaces métriques provenant des p-Banach.Au chapitre suivant, nous explorons le comportement de type l1 des espaces libres. Entre autres, nous démontrons que F(M) a la propriété de Schur dès que l'espace des fonctions petit-Lipschitz est 1-normant pour F(M). Sous des hypothèses supplémentaires, nous parvenons à plonger F(M) dans une somme l_1 d'espaces de dimension finie.Dans le quatrième chapitre, nous nous intéressons à la structure extrémale de $F(M)$. Notamment, nous montrons que tout point extrémal préservé de la boule unité d'un espace libre est un point de dentabilité. Si F(M) admet un prédual, nous obtenons une description précise de sa structure extrémale.Le cinquième chapitre s'intéresse aux fonctions Lipschitziennes à valeurs vectorielles. Nous généralisons certains résultats obtenus dans les trois premiers chapitres. Nous obtenons également un résultat sur la densité des fonctions Lipschitziennes qui atteignent leur norme
Some aspects of the geometry of Lipschitz free spaces.First and foremost, we give the fundamental properties of Lipschitz free spaces. Then, we prove that the canonical image of a metric space M is weakly closed in the associated free space F(M). We prove a similar result for the set of molecules.In the second chapter, we study the circumstances in which F(M) is isometric to a dual space. In particular, we generalize a result due to Kalton on this topic. Subsequently, we focus on uniformly discrete metric spaces and on metric spaces originating from p-Banach spaces.In the next chapter, we focus on l1-like properties. Among other things, we prove that F(M) has the Schur property provided the space of little Lipschitz functions is 1-norming for F(M). Under additional assumptions, we manage to embed F(M) into an l1-sum of finite dimensional spaces.In the fourth chapter, we study the extremal structure of F(M). In particular, we show that any preserved extreme point in the unit ball of a free space is a denting point. Moreover, if F(M) admits a predual, we obtain a precise description of its extremal structure.The fifth chapter deals with vector-valued Lipschitz functions.We generalize some results obtained in the first three chapters.We finish with some considerations of norm attainment. For instance, we obtain a density result for vector-valued Lipschitz maps which attain their norm
APA, Harvard, Vancouver, ISO, and other styles
7

Ball, K. M. "Isometric problems in lp̲ and sections of convex sets." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klisinska, Anna. "Clarkson type inequalities and geometric properties of banach spaces." Licentiate thesis, Luleå tekniska universitet, Pedagogik, språk och Ämnesdidaktik, 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25946.

Full text
Abstract:
In this thesis Clarkson's inequalities and their generalizations are the main tools. The technique that can be used to prove Clarkson type inequalities in more dimensions is shown. We also establish Clarkson type inequalities in general Banach spaces and point out the connections between Clarkson's inequalities and the concept of type and cotype. The classical results on the von Neumann-Jordan constant, closely related to Clarkson's inequalities, are shortly presented. The concepts of moduli of convexity and smoothness, which are connected with the geometry of Banach spaces, are discussed. Some equivalent ways of describing modulus of convexity and some properties of this function are formulated. The estimation of the modulus of convexity for L(p)-spaces is presented as well. Finally, several examples of moduli of convexity and smoothness for different spaces are described.

Godkänd; 1999; 20070320 (ysko)

APA, Harvard, Vancouver, ISO, and other styles
9

De, Rancourt Noé. "Théorie de Ramsey sans principe des tiroirs et applications à la preuve de dichotomies d'espaces de Banach." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC208/document.

Full text
Abstract:
Dans les années 90, Gowers démontre un théorème de type Ramsey pour les bloc-suites dans les espaces de Banach, afin de prouver deux dichotomies d'espaces de Banach. Ce théorème, contrairement à la plupart des résultats de type Ramsey en dimension infinie, ne repose pas sur un principe des tiroirs, et en conséquence, sa formulation doit faire appel à des jeux. Dans une première partie de cette thèse, nous développons un formalisme abstrait pour la théorie de Ramsey en dimension infinie avec et sans principe des tiroirs, et nous démontrons dans celui-ci une version abstraite du théorème de Gowers, duquel on peut déduire à la fois le théorème de Mathias-Silver et celui de Gowers. On en donne à la fois une version exacte dans les espaces dénombrables, et une version approximative dans les espaces métriques séparables. On démontre également le principe de Ramsey adverse, un résultat généralisant à la fois le théorème de Gowers abstrait et la détermination borélienne des jeux dénombrables. On étudie aussi les limitations de ces résultats et leurs généralisations possibles sous des hypothèses supplémentaires de théorie des ensembles.Dans une seconde partie, nous appliquons les résultats précédents à la preuve de deux dichotomies d'espaces de Banach. Ces dichotomies ont une forme similaire à celles de Gowers, mais sont Hilbert-évitantes : elles assurent que le sous-espace obtenu n'est pas isomorphe à un espace de Hilbert. Ces dichotomies sont une nouvelle étape vers la résolution d'une question de Ferenczi et Rosendal, demandant si un espace de Banach séparable non-isomorphe à un espace de Hilbert possède nécessairement un grand nombre de sous-espaces, à isomorphisme près
In the 90's, Gowers proves a Ramsey-type theorem for block-sequences in Banach spaces, in order to show two Banach-space dichotomies. Unlike most infinite-dimensional Ramsey-type results, this theorem does not rely on a pigeonhole principle, and therefore it has to have a partially game-theoretical formulation. In a first part of this thesis, we develop an abstract formalism for Ramsey theory with and without pigeonhole principle, and we prove in it an abstract version of Gowers' theorem, from which both Mathias-Silver's theorem and Gowers' theorem can be deduced. We give both an exact version of this theorem in countable spaces, and an approximate version of it in separable metric spaces. We also prove the adversarial Ramsey principle, a result generalising both the abstract Gowers' theorem and Borel determinacy of countable games. We also study the limitations of these results and their possible generalisations under additional set-theoretical hypotheses. In a second part, we apply the latter results to the proof of two Banach-space dichotomies. These dichotomies are similar to Gowers' ones, but are Hilbert-avoiding, that is, they ensure that the subspace they give is not isomorphic to a Hilbert space. These dichotomies are a new step towards the solution of a question asked by Ferenczi and Rosendal, asking whether a separable Banach space non-isomorphic to a Hilbert space necessarily contains a large number of subspaces, up to isomorphism
APA, Harvard, Vancouver, ISO, and other styles
10

Silva, André Luis Porto da. "Versões não-lineares do teorema clássico de Banach-Stone." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07092016-000557/.

Full text
Abstract:
No presente trabalho apresentamos dois teoremas obtidos por Gorak em 2011, que são generalizações para o Teorema de Banach-Stone, envolvendo uma classe de funções não-necessariamente lineares, denominadas quasi-isometrias.
In this work we present two theorems proved by Gorak in 2011. These results are generalizations of the Banach-Stone Theorem envolving a class of not-necessarily linear functions, called quasi-isometries.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Geometry of Banach spaces"

1

Pietsch, A. Orthonormal systems and Banach space geometry. Cambridge: Cambridge University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beauzamy, Bernard. Introduction to Banach spaces and their geometry. 2nd ed. Amsterdam: North-Holland, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Srinivasa, Swaminathan, ed. Geometry and nonlinear analysis in Banach spaces. Berlin: Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sundaresan, Kondagunta, and Srinivasa Swaminathan. Geometry and Nonlinear Analysis in Banach Spaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0075323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ciorănescu, Ioana. Geometry of banach spaces, duality mappings, and nonlinear problems. Dordrecht: Kluwer Academic Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Conference Board of the Mathematical Sciences., ed. Factorization of linear operators and geometry of Banach spaces. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cioranescu, Ioana. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2121-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pisier, Gilles. The volume of convex bodies and Banach space geometry. Cambridge: Cambridge University Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dulst, D. van. The geometry of Banach spaces with the Radon-Nikodým property. Palermo: Sede della Società, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dulst, D. van. The geometry of Banach spaces with the Radon-Nikodým property. Palermo: Sede della Socièta, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Geometry of Banach spaces"

1

Fabian, Marián, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler. "Structure of Banach Spaces." In Functional Analysis and Infinite-Dimensional Geometry, 137–59. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3480-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albiac, Fernando, and Nigel J. Kalton. "Nonlinear Geometry of Banach Spaces." In Graduate Texts in Mathematics, 361–426. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31557-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cioranescu, Ioana. "Renorming of Banach Spaces." In Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, 89–113. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2121-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fabian, Marián, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler. "Basic Concepts in Banach Spaces." In Functional Analysis and Infinite-Dimensional Geometry, 1–35. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3480-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fabian, Marián, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler. "Compact Operators on Banach Spaces." In Functional Analysis and Infinite-Dimensional Geometry, 203–40. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3480-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meylan, Francine. "Holomorphic Approximation in Banach Spaces: A Survey." In Analysis and Geometry, 231–40. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17443-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pathak, Hemant Kumar. "Geometry of Banach Spaces and Duality Mapping." In An Introduction to Nonlinear Analysis and Fixed Point Theory, 103–27. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8866-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guirao, Antonio J., Vicente Montesinos, and Václav Zizler. "Nonlinear Geometry." In Open Problems in the Geometry and Analysis of Banach Spaces, 103–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33572-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guirao, Antonio J., Vicente Montesinos, and Václav Zizler. "Basic Linear Geometry." In Open Problems in the Geometry and Analysis of Banach Spaces, 37–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33572-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Davis, Burgess, and Renming Song. "Martingale Transforms and the Geometry Of Banach Spaces." In Selected Works of Donald L. Burkholder, 375–90. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7245-3_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Geometry of Banach spaces"

1

Bounkhel, Messaoud, and Chong Li. "Fréchet and proximal regularities of perturbed distance functions at points in the target set in Banach spaces." In Annual International Conference on Computational Mathematics, Computational Geometry & Statistics (CMCGS 2014). GSTF, 2014. http://dx.doi.org/10.5176/2251-1911_cmcgs14.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kato, Mikio, Yasuji Takahashi, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Some Recent Results on Geometric Constants of Banach Spaces." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xiao, Xuemei, Xincun Wang, and Yucan Zhu. "Duality principles in Banach spaces." In 2010 3rd International Congress on Image and Signal Processing (CISP). IEEE, 2010. http://dx.doi.org/10.1109/cisp.2010.5648102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kopecká, Eva, and Simeon Reich. "Nonexpansive retracts in Banach spaces." In Fixed Point Theory and its Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc77-0-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Todorov, Vladimir T., and Michail A. Hamamjiev. "Transitive functions in Banach spaces." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’16): Proceedings of the 42nd International Conference on Applications of Mathematics in Engineering and Economics. Author(s), 2016. http://dx.doi.org/10.1063/1.4968490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schroder, Matthias, and Florian Steinberg. "Bounded time computation on metric spaces and Banach spaces." In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2017. http://dx.doi.org/10.1109/lics.2017.8005139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baratella, S., and S. A. Ng. "MODEL-THEORETIC PROPERTIES OF BANACH SPACES." In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

González, Manuel. "Banach spaces with small Calkin algebras." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bamerni, Nareen, and Adem Kılıçman. "k-diskcyclic operators on Banach spaces." In INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: Proceedings of the 2nd International Conference on Mathematical Sciences and Statistics (ICMSS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4952536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

GAO, SU. "EQUIVALENCE RELATIONS AND CLASSICAL BANACH SPACES." In Proceedings of the 9th Asian Logic Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772749_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Geometry of Banach spaces"

1

Temlyakov, V. N. Greedy Algorithms in Banach Spaces. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada637095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yamamoto, Tetsuro. A Convergence Theorem for Newton's Method in Banach Spaces. Fort Belvoir, VA: Defense Technical Information Center, October 1985. http://dx.doi.org/10.21236/ada163625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosinski, J. On Stochastic Integral Representation of Stable Processes with Sample Paths in Banach Spaces. Fort Belvoir, VA: Defense Technical Information Center, January 1985. http://dx.doi.org/10.21236/ada152927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holzapfel, Rolf-Peter. Enumerative Geometry on Quasi-Hyperbolic 4-Spaces with Cusps. GIQ, 2012. http://dx.doi.org/10.7546/giq-4-2003-42-87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography