To see the other types of publications on this topic, follow the link: Geometry of Banach spaces.

Journal articles on the topic 'Geometry of Banach spaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Geometry of Banach spaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Muñoz-Fernández, Gustavo A., and Juan B. Seoane-Sepúlveda. "Geometry of Banach spaces of trinomials." Journal of Mathematical Analysis and Applications 340, no. 2 (April 2008): 1069–87. http://dx.doi.org/10.1016/j.jmaa.2007.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Okeke, Godwin Amechi, and Mujahid Abbas. "Fejér monotonicity and fixed point theorems with applications to a nonlinear integral equation in complex valued Banach spaces." Applied General Topology 21, no. 1 (April 3, 2020): 135. http://dx.doi.org/10.4995/agt.2020.12220.

Full text
Abstract:
It is our purpose in this paper to prove some fixed point results and Fej´er monotonicity of some faster fixed point iterative sequences generated by some nonlinear operators satisfying rational inequality in complex valued Banach spaces. We prove that results in complex valued Banach spaces are valid in cone metric spaces with Banach algebras. Furthermore, we apply our results in solving certain mixed type VolterraFredholm functional nonlinear integral equation in complex valued Banach spaces.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Han Ju. "RANDOMIZED SERIES AND GEOMETRY OF BANACH SPACES." Taiwanese Journal of Mathematics 14, no. 5 (October 2010): 1837–48. http://dx.doi.org/10.11650/twjm/1500406019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

TASKINEN, JARI. "Inductive limits and geometry of Banach spaces." Mathematical Proceedings of the Cambridge Philosophical Society 126, no. 1 (January 1999): 99–107. http://dx.doi.org/10.1017/s0305004198003077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pietsch, A. "Eigenvalue Distributions and Geometry of Banach Spaces." Mathematische Nachrichten 150, no. 1 (1991): 41–81. http://dx.doi.org/10.1002/mana.19911500105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Becerra Guerrero, Julio, and Angel Rodriguez Palacios. "The Geometry of Convex Transitive Banach Spaces." Bulletin of the London Mathematical Society 31, no. 3 (May 1999): 323–31. http://dx.doi.org/10.1112/s0024609398005359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Granero, A. S., M. Jiménez Sevilla, and J. P. Moreno. "Geometry of Banach spaces with property β." Israel Journal of Mathematics 111, no. 1 (December 1999): 263–73. http://dx.doi.org/10.1007/bf02810687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alber, Y. I., R. S. Burachik, and A. N. Iusem. "A proximal point method for nonsmooth convex optimization problems in Banach spaces." Abstract and Applied Analysis 2, no. 1-2 (1997): 97–120. http://dx.doi.org/10.1155/s1085337597000298.

Full text
Abstract:
In this paper we show the weak convergence and stability of the proximal point method when applied to the constrained convex optimization problem in uniformly convex and uniformly smooth Banach spaces. In addition, we establish a nonasymptotic estimate of convergence rate of the sequence of functional values for the unconstrained case. This estimate depends on a geometric characteristic of the dual Banach space, namely its modulus of convexity. We apply a new technique which includes Banach space geometry, estimates of duality mappings, nonstandard Lyapunov functionals and generalized projection operators in Banach spaces.
APA, Harvard, Vancouver, ISO, and other styles
9

Garrido, M. Isabel, Jesús A. Jaramillo, and José G. Llavona. "Polynomial topologies on Banach spaces." Topology and its Applications 153, no. 5-6 (December 2005): 854–67. http://dx.doi.org/10.1016/j.topol.2005.01.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adams, Tarn. "Flat Chains in Banach Spaces." Journal of Geometric Analysis 18, no. 1 (December 7, 2007): 1–28. http://dx.doi.org/10.1007/s12220-007-9008-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Albiac, Fernando, and Camino Leránoz. "Drops in Quasi-Banach Spaces." Journal of Geometric Analysis 20, no. 3 (March 23, 2010): 525–37. http://dx.doi.org/10.1007/s12220-010-9118-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Khalil, R., D. Hussein, and W. Amin. "Geometry of Modulus Spaces." gmj 9, no. 2 (June 2002): 295–301. http://dx.doi.org/10.1515/gmj.2002.295.

Full text
Abstract:
Abstract Let ϕ be a modulus function, i.e., continuous strictly increasing function on [0, ∞), such that ϕ(0) = 0, ϕ(1) = 1, and ϕ(𝑥+𝑦) ≤ ϕ(𝑥)+ϕ(𝑦) for all 𝑥, 𝑦 in [0, ∞). It is the object of this paper to characterize, for any Banach space 𝑋, extreme points, exposed points, and smooth points of the unit ball of the metric linear space ℓ ϕ (𝑋), the space of all sequences (𝑥𝑛), 𝑥𝑛 ∈ 𝑋, 𝑛 = 1, 2, . . . , for which ∑ϕ(‖𝑥𝑛‖) < ∞. Further, extreme, exposed, and smooth points of the unit ball of the space of bounded linear operators on ℓ𝑝, 0 < 𝑝 < 1, are characterized.
APA, Harvard, Vancouver, ISO, and other styles
13

Godefroy, Gilles, and Bruno Iochum. "Arens-regularity of Banach algebras and the geometry of Banach spaces." Journal of Functional Analysis 80, no. 1 (September 1988): 47–59. http://dx.doi.org/10.1016/0022-1236(88)90064-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Shkarin, S. A. "Isometric embedding of finite ultrametric spaces in Banach spaces." Topology and its Applications 142, no. 1-3 (July 2004): 13–17. http://dx.doi.org/10.1016/j.topol.2003.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dilworth, S. J. "Complex convexity and the geometry of Banach spaces." Mathematical Proceedings of the Cambridge Philosophical Society 99, no. 3 (May 1986): 495–506. http://dx.doi.org/10.1017/s0305004100064446.

Full text
Abstract:
The notion of PL-convexity was introduced in [4]. In the present article several results are proved which related PL-convexity to various aspects of the geometry of Banach spaces. The first section introduces the moduli of comples convexity and makes a comparison with the more familiar modulus of uniform convexity. It is shown that unconditional convergence of implies convergence of . In the next section the moduli and are shown to be related. The method of proof gives rise to a theorem about strict c-convexity of Lp(X) and a result on the representability in Lp(X).
APA, Harvard, Vancouver, ISO, and other styles
16

Selivanov, Yu V. "A problem in the geometry of Banach spaces." Russian Mathematical Surveys 48, no. 4 (August 31, 1993): 251–53. http://dx.doi.org/10.1070/rm1993v048n04abeh001061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Astashkin, Sergey V., and Fedor A. Sukochev. "Independent functions and the geometry of Banach spaces." Russian Mathematical Surveys 65, no. 6 (December 31, 2010): 1003–81. http://dx.doi.org/10.1070/rm2010v065n06abeh004715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Haller, Rainis, and Johann Langemets. "Geometry of Banach spaces with an octahedral norm." Acta et Commentationes Universitatis Tartuensis de Mathematica 18, no. 1 (June 25, 2014): 125. http://dx.doi.org/10.12697/acutm.2014.18.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kasparov, Gennadi, and Guoliang Yu. "The Novikov conjecture and geometry of Banach spaces." Geometry & Topology 16, no. 3 (August 27, 2012): 1859–80. http://dx.doi.org/10.2140/gt.2012.16.1859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Moreno, J. P. "On Geometry of Banach Spaces with Property α." Journal of Mathematical Analysis and Applications 201, no. 2 (July 1996): 600–608. http://dx.doi.org/10.1006/jmaa.1996.0276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rasila, Antti, Jarno Talponen, and Xiaohui Zhang. "Observations on quasihyperbolic geometry modeled on Banach spaces." Proceedings of the American Mathematical Society 146, no. 9 (May 24, 2018): 3863–73. http://dx.doi.org/10.1090/proc/13989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hájek, P., V. Montesinos, and V. Zizler. "Geometry and Gâteaux smoothness in separable Banach spaces." Operators and Matrices, no. 2 (2012): 201–32. http://dx.doi.org/10.7153/oam-06-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Banaś, Józef, and Krzysztof Fra̧czek. "Conditions involving compactness in geometry of Banach spaces." Nonlinear Analysis: Theory, Methods & Applications 20, no. 10 (May 1993): 1217–30. http://dx.doi.org/10.1016/0362-546x(93)90152-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Baronti, M., E. Casini, and P. L. Papini. "Antipodal pairs and the geometry of Banach spaces." Rendiconti del Circolo Matematico di Palermo 42, no. 3 (October 1993): 369–81. http://dx.doi.org/10.1007/bf02844628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fabian, M., V. Montesinos, and V. Zizler. "Biorthogonal Systems in Weakly Lindelöf Spaces." Canadian Mathematical Bulletin 48, no. 1 (March 1, 2005): 69–79. http://dx.doi.org/10.4153/cmb-2005-006-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shang, Shaoqiang, and Yunan Cui. "Approximative Compactness and Radon-Nikodym Property inw∗Nearly Dentable Banach Spaces and Applications." Journal of Function Spaces 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/921456.

Full text
Abstract:
Authors definew∗nearly dentable Banach space. Authors study Radon-Nikodym property, approximative compactness and continuity metric projector operator inw∗nearly dentable space. Moreover, authors obtain some examples ofw∗nearly dentable space in Orlicz function spaces. Finally, by the method of geometry of Banach spaces, authors give important applications ofw∗nearly dentability in generalized inverse theory of Banach space.
APA, Harvard, Vancouver, ISO, and other styles
27

Molnár, Lajos, and Borut Zalar. "Reflexivity of the group of surjective isometries on some Banach spaces." Proceedings of the Edinburgh Mathematical Society 42, no. 1 (February 1999): 17–36. http://dx.doi.org/10.1017/s0013091500019982.

Full text
Abstract:
In this paper we study the problem of algebraic reflexivity of the isometry group of some important Banach spaces. Because of the previous work in similar topics, our main interest lies in the von Neumann – Schatten p-classes of compact operators. The ideas developed there can be used in ℓp-spaces, Banach spaces of continuous functions and spin factors as well. Moreover, we attempt to attract the attention to this problem from general Banach spaces geometry view-point. This study, we believe, would provide nice geometrical results.
APA, Harvard, Vancouver, ISO, and other styles
28

Rudelson, M., and R. Vershynin. "Embedding Levy families into Banach spaces." Geometric And Functional Analysis 12, no. 1 (May 1, 2002): 183–98. http://dx.doi.org/10.1007/s00039-002-8242-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gowers, W. T. "A new dichotomy for Banach spaces." Geometric and Functional Analysis 6, no. 6 (November 1996): 1083–93. http://dx.doi.org/10.1007/bf02246998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Polyrakis, Ioannis A. "Strongly exposed points in bases for the positive cone of ordered Banach spaces and characterizations of l1(Г)." Proceedings of the Edinburgh Mathematical Society 29, no. 2 (June 1986): 271–82. http://dx.doi.org/10.1017/s0013091500017648.

Full text
Abstract:
The study of extreme, strongly exposed points of closed, convex and bounded sets in Banach spaces has been developed especially by the interconnection of the Radon–Nikodým property with the geometry of closed, convex and bounded subsets of Banach spaces [5],[2] . In the theory of ordered Banach spaces as well as in the Choquet theory, [4], we are interested in the study of a special type of convex sets, not necessarily bounded, namely the bases for the positive cone. In [7] the geometry (extreme points, dentability) of closed and convex subsets K of a Banach space X with the Radon-Nikodým property is studied and special emphasis has been given to the case where K is a base for acone P of X. In [6, Theorem 1], it is proved that an infinite-dimensional, separable, locally solid lattice Banach space is order-isomorphic to l1 if, and only if, X has the Krein–Milman property and its positive cone has a bounded base.
APA, Harvard, Vancouver, ISO, and other styles
31

VEOMETT, E., and K. WILDRICK. "SPACES OF SMALL METRIC COTYPE." Journal of Topology and Analysis 02, no. 04 (December 2010): 581–97. http://dx.doi.org/10.1142/s1793525310000422.

Full text
Abstract:
Mendel and Naor's definition of metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz is equivalent to an ultrametric space having infimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov–Hausdorff limits, and use these facts to establish a partial converse of the main result.
APA, Harvard, Vancouver, ISO, and other styles
32

Dodson, C. T. J. "Fréchet geometry via projective limits." International Journal of Geometric Methods in Modern Physics 11, no. 07 (August 2014): 1460017. http://dx.doi.org/10.1142/s0219887814600172.

Full text
Abstract:
Fréchet spaces of sections arise naturally as configurations of a physical field. Some recent work in Fréchet geometry is briefly reviewed and some suggestions for future work are offered. An earlier result on the structure of second tangent bundles in the finite-dimensional case was extended to infinite-dimensional Banach manifolds and Fréchet manifolds that could be represented as projective limits of Banach manifolds. This led to further results concerning the characterization of second tangent bundles and differential equations in the more general Fréchet structure needed for applications.
APA, Harvard, Vancouver, ISO, and other styles
33

Duda, Jakub, and Boaz Tsaban. "Null sets and games in Banach spaces." Topology and its Applications 156, no. 1 (November 2008): 56–60. http://dx.doi.org/10.1016/j.topol.2008.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Angosto, C., and B. Cascales. "Measures of weak noncompactness in Banach spaces." Topology and its Applications 156, no. 7 (April 2009): 1412–21. http://dx.doi.org/10.1016/j.topol.2008.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

JENČOVÁ, ANNA. "QUANTUM INFORMATION GEOMETRY AND NONCOMMUTATIVE Lp-SPACES." Infinite Dimensional Analysis, Quantum Probability and Related Topics 08, no. 02 (June 2005): 215–33. http://dx.doi.org/10.1142/s0219025705001949.

Full text
Abstract:
Let M be a von Neumann algebra. We define the noncommutative extension of information geometry by embeddings of M into noncommutative Lp-spaces. Using the geometry of uniformly convex Banach spaces and duality of the Lp and Lq spaces for 1/p +1/q =1, we show that we can introduce the α-divergence, for α∈(-1, 1), in a similar manner as Amari in the classical case. If restricted to the positive cone, the α-divergence belongs to the class of quasi-entropies, defined by Petz.
APA, Harvard, Vancouver, ISO, and other styles
36

Braga, B. M. "Asymptotic structure and coarse Lipschitz geometry of Banach spaces." Studia Mathematica 237, no. 1 (2017): 71–97. http://dx.doi.org/10.4064/sm8604-11-2016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fry, R., and S. McManus. "Smooth bump functions and the geometry of banach spaces." Expositiones Mathematicae 20, no. 2 (2002): 143–83. http://dx.doi.org/10.1016/s0723-0869(02)80017-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baronti, M., E. Casini, and P. L. Papini. "On average distances and the geometry of Banach spaces." Nonlinear Analysis: Theory, Methods & Applications 42, no. 3 (October 2000): 533–41. http://dx.doi.org/10.1016/s0362-546x(99)00112-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xu, Genqi, Ji Gao, Peide Liu, and Satit Saejung. "Geometry of Banach Spaces, Operator Theory, and Their Applications." Journal of Function Spaces 2014 (2014): 1. http://dx.doi.org/10.1155/2014/635649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dilworth, S. J., Denka Kutzarova, G. Lancien, and N. L. Randrianarivony. "Asymptotic geometry of Banach spaces and uniform quotient maps." Proceedings of the American Mathematical Society 142, no. 8 (April 25, 2014): 2747–62. http://dx.doi.org/10.1090/s0002-9939-2014-12001-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Agadzhanov, A. N. "Geometry of norms and inequalities in superreflexive banach spaces." Doklady Mathematics 78, no. 1 (August 2008): 518–21. http://dx.doi.org/10.1134/s1064562408040133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ames, W. F., and C. Brezinski. "Geometry of banach spaces, duality mappings and nonlinear problems." Mathematics and Computers in Simulation 34, no. 2 (August 1992): 190. http://dx.doi.org/10.1016/0378-4754(92)90069-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Farkas, Bálint, and Henrik Kreidler. "Relative compactness of orbits and geometry of Banach spaces." Journal of Mathematical Analysis and Applications 495, no. 1 (March 2021): 124660. http://dx.doi.org/10.1016/j.jmaa.2020.124660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ludkovsky, Sergey V., and Wolfgang Lusky. "On the Geometry of Müntz Spaces." Journal of Function Spaces 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/787291.

Full text
Abstract:
LetΛ={λk}k=1∞satisfy0<λ1<λ2<⋯,∑k=1∞‍1/λk<∞andinfk(λk+1-λk)>0. We investigate the Müntz spacesMpΛ=span¯{tλk:k=1,2,…}⊂Lp(0,1)for1≤p≤∞. We show that, for eachp, there is a Müntz spaceFpwhich contains isomorphic copies of all Müntz spaces as complemented subspaces.Fpis uniquely determined up to isomorphisms by this maximality property. We discuss explicit descriptions ofFp. In particularFpis isomorphic to a Müntz spaceMp(Λ^)whereΛ^consists of positive integers. Finally we show that the Banach spaces(∑n‍⊕Fn)pfor1≤p<∞and(∑n‍⊕Fn)0forp=∞are always isomorphic to suitable Müntz spacesMp(Λ)if theFnare the spans of arbitrary finitely many monomials over[0,1].
APA, Harvard, Vancouver, ISO, and other styles
45

Boyd, C., and R. A. Ryan. "THE NORM OF THE PRODUCT OF POLYNOMIALS IN INFINITE DIMENSIONS." Proceedings of the Edinburgh Mathematical Society 49, no. 1 (February 2006): 17–28. http://dx.doi.org/10.1017/s0013091504000756.

Full text
Abstract:
AbstractGiven a Banach space $E$ and positive integers $k$ and $l$ we investigate the smallest constant $C$ that satisfies $\|P\|\hskip1pt\|Q\|\le C\|PQ\|$ for all $k$-homogeneous polynomials $P$ and $l$-homogeneous polynomials $Q$ on $E$. Our estimates are obtained using multilinear maps, the principle of local reflexivity and ideas from the geometry of Banach spaces (type and uniform convexity). We also examine the analogous problem for general polynomials on Banach spaces.
APA, Harvard, Vancouver, ISO, and other styles
46

Goldstein, Jerome A., Shinnosuke Oharu, and Andrew Vogt. "Affine semigroups on Banach spaces." Hiroshima Mathematical Journal 18, no. 2 (1988): 433–50. http://dx.doi.org/10.32917/hmj/1206129734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Friedman, Yaakov, and Bernard Russo. "Affine structure of facially symmetric spaces." Mathematical Proceedings of the Cambridge Philosophical Society 106, no. 1 (July 1989): 107–24. http://dx.doi.org/10.1017/s030500410006802x.

Full text
Abstract:
In [7], the authors proposed the problem of giving a geometric characterization of those Banach spaces which admit an algebraic structure. Motivated by the geometry imposed by measuring processes on the set of observables of a quantum mechanical system, they introduced the category of facially symmetric spaces. A discrete spectral theorem for an arbitrary element in the dual of a reflexive facially symmetric space was obtained by using the basic notions of orthogonality, protective unit, norm exposed face, symmetric face, generalized tripotent and generalized Peirce projection, which were introduced and developed in this purely geometric setting.
APA, Harvard, Vancouver, ISO, and other styles
48

Johson, W. B., J. Lindenstrauss, and G. Schechtman. "Banach spaces determined by their uniform structures." Geometric and Functional Analysis 6, no. 3 (May 1996): 430–70. http://dx.doi.org/10.1007/bf02249259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Botelho, G., D. Diniz, V. V. Fávaro, and D. Pellegrino. "Spaceability in Banach and quasi-Banach sequence spaces." Linear Algebra and its Applications 434, no. 5 (March 2011): 1255–60. http://dx.doi.org/10.1016/j.laa.2010.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Smith, Richard J. "Topology, isomorphic smoothness and polyhedrality in Banach spaces." Topology and its Applications 266 (October 2019): 106848. http://dx.doi.org/10.1016/j.topol.2019.106848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography