Academic literature on the topic 'Geospatial data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geospatial data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geospatial data"
Heipke, Christian. "Crowdsourcing geospatial data." ISPRS Journal of Photogrammetry and Remote Sensing 65, no. 6 (November 2010): 550–57. http://dx.doi.org/10.1016/j.isprsjprs.2010.06.005.
Full textVenkatapuram, Sreeharsha S., and Avinash Gogineni. "Leveraging Open Geospatial Data for Public Visualization." International Journal of Research Publication and Reviews 5, no. 1 (January 24, 2024): 4340–49. http://dx.doi.org/10.55248/gengpi.5.0124.0328.
Full textHe, Lianlian, and Ruixiang Liu. "Discovering Links between Geospatial Data Sources in the Web of Data: The Open Geospatial Engine Approach." ISPRS International Journal of Geo-Information 13, no. 5 (April 28, 2024): 143. http://dx.doi.org/10.3390/ijgi13050143.
Full textKoh, Keumseok, Ayaz Hyder, Yogita Karale, and Maged N. Kamel Boulos. "Big Geospatial Data or Geospatial Big Data? A Systematic Narrative Review on the Use of Spatial Data Infrastructures for Big Geospatial Sensing Data in Public Health." Remote Sensing 14, no. 13 (June 23, 2022): 2996. http://dx.doi.org/10.3390/rs14132996.
Full textKay, Sissiel E. "Challenges in sharing of geospatial data by data custodians in South Africa." Proceedings of the ICA 1 (May 16, 2018): 1–6. http://dx.doi.org/10.5194/ica-proc-1-60-2018.
Full textMooney, P., and M. Minghini. "GEOSPATIAL DATA EXCHANGE USING BINARY DATA SERIALIZATION APPROACHES." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-4/W1-2022 (August 6, 2022): 307–13. http://dx.doi.org/10.5194/isprs-archives-xlviii-4-w1-2022-307-2022.
Full textAlbakri, Maythm. "Development of Spatial Data Infrastructure based on Free Data Integration." Journal of Engineering 21, no. 10 (October 1, 2015): 133–49. http://dx.doi.org/10.31026/j.eng.2015.10.09.
Full textPlante, Katherine, and Marc Gervais. "Geospatial Data Quality Guarantee." GEOMATICA 69, no. 1 (March 2015): 29–48. http://dx.doi.org/10.5623/cig2015-102.
Full textLage, Kathryn. "Cataloging Digital Geospatial Data." Journal of Map & Geography Libraries 3, no. 1 (April 23, 2007): 39–55. http://dx.doi.org/10.1300/j230v03n01_04.
Full textSun, Kai, Yunqiang Zhu, Peng Pan, Zhiwei Hou, Dongxu Wang, Weirong Li, and Jia Song. "Geospatial data ontology: the semantic foundation of geospatial data integration and sharing." Big Earth Data 3, no. 3 (July 3, 2019): 269–96. http://dx.doi.org/10.1080/20964471.2019.1661662.
Full textDissertations / Theses on the topic "Geospatial data"
Xiao, Jun. "WWW access to geospatial data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0033/MQ65529.pdf.
Full textLee, Donald C. "Geospatial data sharing in Saudi Arabia." University of Southern Queensland, Faculty of Engineering and Surveying, 2003. http://eprints.usq.edu.au/archive/00001458/.
Full textBerndtsson, Carl. "Open Geospatial Data for Energy Planning." Thesis, KTH, Energisystemanalys, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186392.
Full textGeografiska informationssystem (GIS) används i allt större utsträckning inom energiplanering och av privata aktörer. Genom kvalitativa intervjuer med 49 ledande aktörer i offentlig och privat sektor redogör denna rapport för de viktigaste dataseten för aktörer, befintliga källor för öppen data och vilka informationsluckor som finns i dessa källor. Intervjuerna visade att dataseten gällande energiinfrastruktur, befolkningstäthet, potential för förnybar energi och energiutgifter var viktigast för både offentlig och privat sektor. Privat sektor hade ett större fokus på land, vatten och klimatdata, som alla är viktiga för att avgöra ett områdes potential för förnybar energi. Offentlig sektor hade ett större intresse av socioekonomiska faktorer och energiutgifter. En dataaggregation och analys visade att de mest eftertraktade dataseten fanns öppet tillgängliga med undantag för energiutgifter. En modell för energialternativ till lägsta kostnad utvecklad av KTH-dESA har visat sig vara ett kraftfullt verktyg för att kostnadsbedöma en landsomfattande elektrifiering. I en fallstudie för Tanzania jämför denna rapport den genomsnittliga kostnaden för hushåll för en implementering av en sådan elektrifiering med en beräknad genomsnittlig hushållsinkomst. Jämförelsen visade att kostnaden för hushållen som andel av total hushållsinkomst varierar kraftigt mellan regioner. Den genomsnittliga andelen av hushållsinkomsten som skulle läggas på elektricitet i de västra regionerna av Tanzania var betydligt högre jämfört med de centrala och östra regionerna. Jämförelsen kombinerade även detta resultat med den geografiska positionen hos biståndsstödda energiprojekt. vilken visade att majoriteten av dessa projekt fanns i de centrala delarna av landet och inte i de mest utsatta regionerna som präglas av låg genomsnittlig inkomst och långa avstånd till det nationella kraftnätet. För att framgångsrikt kunna genomföra en landsomfattande elektrifiering behöver mer stöd ges till dessa regioner. Aggregation av öppen data och koordinering är nyckeln till att framgångsrikt utveckla GIS som stöd vid framtida energiprojekt som syftar till att ge fler tillgång till elektricitet. Trots att flertalet datakällor kunde identifieras är dessa spridda vilket leder till att data behöver samlas in gång på gång. Koordinerade insatser för att öka möjligheten till att dela redan insamlad öppen och uppdaterad data kan bidra till att minska transaktionskostnader och därmed minska energifattigdomen
Swain, Bradley Andrew. "Path understanding using geospatial natural language." [Pensacola, Fla.] : University of West Florida, 2009. http://purl.fcla.edu/fcla/etd/WFE0000182.
Full textSubmitted to the Dept. of Computer Science. Title from title page of source document. Document formatted into pages; contains 45 pages. Includes bibliographical references.
Joshi, Kripa. "Combining Geospatial and Temporal Ontologies." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/JoshiK2007.pdf.
Full textBanks, Mitchakima D. "Maintaining Multimedia Data in a Geospatial Database." Thesis, Monterey, California. Naval Postgraduate School, 2012. http://hdl.handle.net/10945/17318.
Full textThe maintenance and organization of data in any profession, government or commercial, is becoming increasingly more challenging. Adding components, whether those components are two- or three dimensional, further increases the complexity of databases. It is harder to determine which database software to choose to meet the needs of the organization. This thesis evaluates the performance of two databases as spatial functions are executed on columns containing spatial data using benchmark testing. Evaluating the performance of spatial databases makes it possible to identify performance issues with spatial queries. The process of conducting a performance evaluation of multiple databases, in this thesis, focuses on the measurement of each elapsed time within each database. The work already implemented in evaluating the performance of spatial databases did not explore a databases performance as it returned large and small result sets. The overhead of returning large or small result sets was not considered. Therefore, a custom test was developed to engage the aspects of prior work found beneficial. Using a database the researchers built with well over one million records, the elapsed time in adding records was measured. The elapsed time of the spatial functions queries was measured next. The results showed areas where each database excelled given multiple conditions. A different look at PostgreSQL and MySQL as spatial databases was offered. Given their results, as each database produced result sets from zero to 100,000, it was learned that the performance of each database could differ depending on the volume of information it is expected to return.
Demšar, Urška. "Data mining of geospatial data: combining visual and automatic methods." Doctoral thesis, KTH, School of Architecture and the Built Environment (ABE), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3892.
Full textMost of the largest databases currently available have a strong geospatial component and contain potentially useful information which might be of value. The discipline concerned with extracting this information and knowledge is data mining. Knowledge discovery is performed by applying automatic algorithms which recognise patterns in the data.
Classical data mining algorithms assume that data are independently generated and identically distributed. Geospatial data are multidimensional, spatially autocorrelated and heterogeneous. These properties make classical data mining algorithms inappropriate for geospatial data, as their basic assumptions cease to be valid. Extracting knowledge from geospatial data therefore requires special approaches. One way to do that is to use visual data mining, where the data is presented in visual form for a human to perform the pattern recognition. When visual mining is applied to geospatial data, it is part of the discipline called exploratory geovisualisation.
Both automatic and visual data mining have their respective advantages. Computers can treat large amounts of data much faster than humans, while humans are able to recognise objects and visually explore data much more effectively than computers. A combination of visual and automatic data mining draws together human cognitive skills and computer efficiency and permits faster and more efficient knowledge discovery.
This thesis investigates if a combination of visual and automatic data mining is useful for exploration of geospatial data. Three case studies illustrate three different combinations of methods. Hierarchical clustering is combined with visual data mining for exploration of geographical metadata in the first case study. The second case study presents an attempt to explore an environmental dataset by a combination of visual mining and a Self-Organising Map. Spatial pre-processing and visual data mining methods were used in the third case study for emergency response data.
Contemporary system design methods involve user participation at all stages. These methods originated in the field of Human-Computer Interaction, but have been adapted for the geovisualisation issues related to spatial problem solving. Attention to user-centred design was present in all three case studies, but the principles were fully followed only for the third case study, where a usability assessment was performed using a combination of a formal evaluation and exploratory usability.
Demšar, Urška. "Data mining of geospatial data: combining visual and automatic methods /." Stockholm : Department of urban planning and environment, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3892.
Full textYang, Zhao. "Spatial Data Mining Analytical Environment for Large Scale Geospatial Data." ScholarWorks@UNO, 2016. http://scholarworks.uno.edu/td/2284.
Full textSherif, Mohamed Ahmed Mohamed. "Automating Geospatial RDF Dataset Integration and Enrichment." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-215708.
Full textBooks on the topic "Geospatial data"
Werner, Martin, and Yao-Yi Chiang, eds. Handbook of Big Geospatial Data. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55462-0.
Full textTapia-McClung, Rodrigo, Oscar Sánchez-Siordia, Karime González-Zuccolotto, and Hugo Carlos-Martínez, eds. Advances in Geospatial Data Science. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98096-2.
Full textKraak, M. J. Cartography: Visualization of geospatial data. 3rd ed. Harlow: Prentice Hall, 2010.
Find full text1942-, Ormeling Ferjan, ed. Cartography: Visualization of geospatial data. 3rd ed. Harlow: Prentice Hall, 2010.
Find full text1942-, Ormeling Ferjan, ed. Cartography: Visualization of geospatial data. 2nd ed. Harlow, England: Prentice Hall, 2003.
Find full textKundu, Sandeep Narayan, ed. Geospatial Data Analytics and Urban Applications. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7649-9.
Full textSarjakoski, Tapani, Maribel Yasmina Santos, and L. Tiina Sarjakoski, eds. Geospatial Data in a Changing World. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33783-8.
Full textKarimi, Hassan A., and Bobak Karimi, eds. Geospatial Data Science Techniques and Applications. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315228396.
Full textSchade, Sven. Ontology-driven translation of geospatial data. Heidelberg: AKA, 2010.
Find full textGeospatial, Autodesk, and Autodesk Inc, eds. Best practices for managing geospatial data. 2nd ed. San Rafael, Calif: Autodesk, 2007.
Find full textBook chapters on the topic "Geospatial data"
Arnold, Taylor, and Lauren Tilton. "Geospatial Data." In Quantitative Methods in the Humanities and Social Sciences, 95–111. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20702-5_7.
Full textUrquhart, Neil. "GeoSpatial Data." In Natural Computing Series, 147–60. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98108-2_7.
Full textBianconi, Francesco. "Geospatial Data." In Data and Process Visualisation for Graphic Communication, 141–55. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57051-3_10.
Full textNikolaou, Charalampos. "Geospatial Ontologies." In Geospatial Data Science, 67–84. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3581906.3581912.
Full textWang, Lily. "Interactive Geospatial Visualization." In Data Science for Infectious Disease Data Analytics, 131–58. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003256328-6.
Full textPantazi, Despina-Athanasia. "Linked Geospatial Data." In Geospatial Data Science, 85–98. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3581906.3581913.
Full textKoubarakis, Manolis. "Geospatial Data Modeling." In Geospatial Data Science, 9–30. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3581906.3581909.
Full textShekhar, Shashi, and Hui Xiong. "Geospatial Data Alignment." In Encyclopedia of GIS, 385. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_506.
Full textShekhar, Shashi, and Hui Xiong. "Geospatial Data Grid." In Encyclopedia of GIS, 385. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_507.
Full textShekhar, Shashi, and Hui Xiong. "Geospatial Data Reconciliation." In Encyclopedia of GIS, 386. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_508.
Full textConference papers on the topic "Geospatial data"
Rhyne, Theresa Marie, Alan MacEachern, and Theresa-Marie Rhyne. "Visualizing geospatial data." In the conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1103900.1103931.
Full textValachamy, Mageshwari, Shamsul Sahibuddin, Noor Azurati Ahmad, and Nur Azaliah Abu Bakar. "Geospatial Data Sharing." In ICSCA 2020: 2020 9th International Conference on Software and Computer Applications. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3384544.3384596.
Full textSahay, Rajat, and Andreas E. Savakis. "On aligning SAM to remote sensing data." In Geospatial Informatics XIV, edited by Kannappan Palaniappan and Gunasekaran Seetharaman. SPIE, 2024. http://dx.doi.org/10.1117/12.3014163.
Full textRahman, Zahidur, Leonid Roytman, Abdelhamid Kadik, Dilara Rosy, Pradipta Nandi, Shahedur Rahman, and Ataul Mahmud. "Public health precautions for preventing malaria using environmental data." In Geospatial Informatics XI, edited by Kannappan Palaniappan, Gunasekaran Seetharaman, and Joshua D. Harguess. SPIE, 2021. http://dx.doi.org/10.1117/12.2583919.
Full textYuan, Jie, Peng Yue, and Jianya Gong. "Intelligent geospatial data retrieval based on the geospatial grid portal." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815762.
Full textCumberbatch, Iman, and Stefan A. Robila. "An extended reality environment for urban area environmental data analysis." In Geospatial Informatics XIII, edited by Kannappan Palaniappan, Gunasekaran Seetharaman, and Joshua D. Harguess. SPIE, 2023. http://dx.doi.org/10.1117/12.2668407.
Full textQian, Lei, and Vadas Gintautas. "Fusing sensor data with publicly available information (PAI) for autonomy applications." In Geospatial Informatics IX, edited by Kannappan Palaniappan, Gunasekaran Seetharaman, and Peter J. Doucette. SPIE, 2019. http://dx.doi.org/10.1117/12.2518933.
Full textWang, F., and W. Reinhardt. "Spatial data quality concerns for field data collection in mobile GIS." In Geoinformatics 2006: Geospatial Information Science, edited by Jianya Gong and Jingxiong Zhang. SPIE, 2006. http://dx.doi.org/10.1117/12.712733.
Full textSun, Yumei, Xianfang Xing, Bin Chen, Zhou Huang, and Yu Fang. "Distributed geospatial data integration based on OGC standards-compliant geospatial data grid services." In 2010 18th International Conference on Geoinformatics. IEEE, 2010. http://dx.doi.org/10.1109/geoinformatics.2010.5567912.
Full textShangguan, Boyi, Peng Yue, Zhipeng Cao, and Bo Wang. "Towards a Geospatial Big Data Platform for Geospatial Information Services." In 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, 2019. http://dx.doi.org/10.1109/agro-geoinformatics.2019.8820437.
Full textReports on the topic "Geospatial data"
Snow, Meagan A. Preserving Geospatial Data. Digital Preservation Coalition, July 2023. http://dx.doi.org/10.7207/twr23-01.
Full textDilks, Kelly, Jeffery Miller, Amit Patel, and Jim Cookas. Geospatial Data Computer-Based Training. Fort Belvoir, VA: Defense Technical Information Center, February 2000. http://dx.doi.org/10.21236/ada375198.
Full textSears, G. Executive summary, geospatial data policy study. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/292107.
Full textRice, Matthew T., Fabiana I. Paez, Aaron P. Mulhollen, Brandon M. Shore, and Douglas R. Caldwell. Crowdsourced Geospatial Data: A Report on the Emerging Phenomena of Crowdsourced and User-Generated Geospatial Data. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada576607.
Full textPuttanapong, Nattapong, Arturo M. Martinez Jr, Mildred Addawe, Joseph Bulan, Ron Lester Durante, and Marymell Martillan. Predicting Poverty Using Geospatial Data in Thailand. Asian Development Bank, December 2020. http://dx.doi.org/10.22617/wps200434-2.
Full textMcGarva, Guy, Steve Morris, and Greg Janée. DPC Technology Watch Report Preserving Geospatial Data. Digital Preservation Coalition, May 2009. http://dx.doi.org/10.7207/twr09-01.
Full textWright, E. Federal environmental scan of geospatial building data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/314732.
Full textMitterling, Thomas, Katharina Fenz, Arturo Martinez Jr., Joseph Bulan, Mildred Addawe, Ron Lester Durante, and Marymell Martillan. Compiling Granular Population Data Using Geospatial Information. Asian Development Bank, December 2021. http://dx.doi.org/10.22617/wps210519-2.
Full textRuiz, Marilyn O. Geospatial Data Repository. Sharing Data Across the Organization and Beyond. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada392686.
Full textJohnson, Eric M., Robert Urquhart, and Maggie O'Neil. The Importance of Geospatial Data to Labor Market Information. RTI Press, June 2018. http://dx.doi.org/10.3768/rtipress.2018.pb.0017.1806.
Full text