Academic literature on the topic 'Geostatistic methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Geostatistic methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Geostatistic methods"
Daniel Maramis, Stefan, Rika Ernawati, and Waterman Sulistyana Bargawa. "Distribution Analysis of Heavy Metal Contaminants in Soil With Geostatistic Methods; Paper Review." Eduvest - Journal Of Universal Studies 1, no. 7 (July 20, 2021): 620–28. http://dx.doi.org/10.36418/edv.v1i7.111.
Full textNagy, Ildikó, and János Tamás. "Optimization of Density of Sugar Beet (Beta vulgaris L.) Production Quotas by Pointwise Geostatistic Methods." Acta Agraria Debreceniensis, no. 18 (March 4, 2005): 46–50. http://dx.doi.org/10.34101/actaagrar/18/3246.
Full textCesaroni, Donatella, Pasquale Matarazzo, Giuliana Allegrucci, and Valerio Sbordoni. "Comparing patterns of geographic variation in cave crickets by combining geostatistic methods and Mantel tests." Journal of Biogeography 24, no. 4 (July 1997): 419–31. http://dx.doi.org/10.1111/j.1365-2699.1997.00104.x.
Full textDenis, Alain, and Francis Cremoux. "Traitement et analyse des paramètres de pilotage d'un tunnelier." Canadian Geotechnical Journal 39, no. 2 (April 1, 2002): 451–62. http://dx.doi.org/10.1139/t01-093.
Full textSadeghi, S. H., A. Allbuali, and R. Ghazavi. "Investigation of Temporal and Spatial Trends of Water Quality Parameters Change Using Geostatistic Methods in Kashan Plain." Journal of Water and Soil Science 20, no. 76 (August 1, 2016): 73–83. http://dx.doi.org/10.18869/acadpub.jstnar.20.76.73.
Full textPomortseva, Olena, Sergiy Kobzan, Oleksii Voronkov, and Andrey Yevdokimov. "Geospatial modeling of the infrastructure facility optimal location." E3S Web of Conferences 280 (2021): 11013. http://dx.doi.org/10.1051/e3sconf/202128011013.
Full textSales, Maria Clécia Gomes, Elilson Gomes de Brito Filho, Milton César Costa Campos, José Maurício da Cunha, Guilherme Abadia Silva, Elyenayra Nogueira Pinheiro, Douglas Marcelo Pinheiro da Silva, Flávio Pereira de Oliveira, and Fernando Gomes de Souza. "Behavior of Soil Chemical Attributes in Field-Forest Succession in Southern Amazonas." Journal of Agricultural Studies 8, no. 3 (June 4, 2020): 807. http://dx.doi.org/10.5296/jas.v8i3.16846.
Full textVolfová, Adéla, and Martin Šmejkal. "Geostatistical Methods in R." Geoinformatics FCE CTU 8 (October 14, 2012): 29–54. http://dx.doi.org/10.14311/gi.8.3.
Full textSyaeful, Heri, and Suharji Suharji. "Geostatistics Application On Uranium Resources Classification: Case Study of Rabau Hulu Sector, Kalan, West Kalimantan." EKSPLORIUM 39, no. 2 (January 31, 2019): 131. http://dx.doi.org/10.17146/eksplorium.2018.39.2.4960.
Full textPenížek, V., and L. Borůvka. "Processing of conventional soil survey data using geostatistical methods." Plant, Soil and Environment 50, No. 8 (December 10, 2011): 352–57. http://dx.doi.org/10.17221/4043-pse.
Full textDissertations / Theses on the topic "Geostatistic methods"
Reyes, Gómez Sandra Tatiana. "Avaliação da distribuição espacial de poluentes de origem industrial na bacia hidrográfica Taquari-Antas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/150545.
Full textThe water resources represent an important roll for society and the environment. In terms of society we relate the multiple uses that are made of them, without forgetting that their main use is for consumption and supply of primary needs. On the environmental side we know that they are the pillar for the support and development of biodiversity and production of biomass on earth. The destination of the industrial residues are a concern today, despite the industries being obliged to treat their waste before disposing them into any body of water, it’s not being done efficiently. Some of the reasons that lead to this situation are the lack of knowledge of the effects that may result from their residues, pushing them aside. Another reason is the elevated budget required to invest in an industrial wastewater treatment station (ETI), considering not only construction but also the demand that requires its maintenance. Increasingly, the integration of geostatistic methods, Remote Sensing and GIS are being used for environmental contamination studies. Its advantages and wide variety of tools allow an initial quality access to all these matters and information that are costly and sometimes unknown. Seeking solutions of this issue and, through the principal component analysis technique, it has established a suitable tool for the diagnosis of spatial concentration distribution of industrial effluents emissions, having as the subject of study the Taquari-Antas watershed. A total of 393 industries were classified into 24 sectors. Water metals pollution potential (MA), Water Toxics (TA), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) to water were estimated by The Industrial Pollution Projection System (IPPS) methodology. Values were generated for concentrations of pollutants for each month of the year, using a historical series of 26 years of stream flow in the watershed. The temporal patterns for monthly concentrations were verified by means of statistical tests of ANOVA models and TukeyHSD tests for each type of pollutant. The main temporal trends found for the four types of pollutants are the autumn transition to winter, where there is a decrease of concentration values due to increased river flows (flood season). From spring to autumn the values will grow again till becoming the highest. Following the temporal trends were generated contour maps for estimated pollution potential and monthly concentrations as well as areas of classification maps of the watershed according to CONAMA legislation.
Giorgi, Emanuele. "Geostatistical methods for disease prevalence mapping." Thesis, Lancaster University, 2015. http://eprints.lancs.ac.uk/75770/.
Full textJohansson, Björn. "Statistical Methods for Mineral Models of Drill Cores." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279848.
Full textI den moderna gruvindustrin har nya resurseffektiva och klimatbeständiga metoder ökat i efterfråga. Beställda projekt för att förbättra effektiviteten gällande den europeiska gruvdriften bidrar till denna effekt ytterligare. Orexplore AB:s röntgenteknologi för analys av borrkärnor är för närvarande involverad i två sådana projekt. Orexplore AB vill integrera geostatistik (spatial statistik) i sin analysprocess för att ytterligare vidga informationen från mineraldatan. Den geostatistiska metoden som implementeras här är ordinary kriging, som är en interpolationsmetod som, givet uppmätta data, skattar mellanliggande värden betingade av kovariansmodeller. Ordinary kriging tillåter skattning av mineralkoncentrationer på ett kontinuerligt nät i 1-D upp till 3-D. Mellanliggande värden skattas enligt en Gaussisk process-regressionslinje. Kovariansen modelleras genom att passa en modell till ett beräknat experimentellt variogram. Mineralkoncentrationer är tillgängliga längs borrkärnans mantelyta. Ordinary kriging implementeras för att sekventiellt skatta mineralkoncentrationer på kortare delar av borrkärnan, ett mineral i taget. Interpolering av mineralkoncentrationer utförs på datan betraktad i 1-D och 3-D. Valideringen utförs genom att utifrån de skattade koncentrationerna beräkna den motsvarande densiteten vid varje sektion som koncentrationer skattas på och jämföra varje sådant värde med uppmätta densiteter. Undersökning av modellen utförs genom subjektiv visuell utvärdering av interpolationslinjens passning av datan, dess mjukhet, tillsammans med variansen. Dessutom testas passformen genom korsvalidering med olika mätvärden som utvärderar varians- och skattningsfel för olika modeller. Slutsatsen från resultaten är att denna metod reproducerar de uppmätta koncentrationerna väl samtidigt som den presterar bra enligt de mätvärden som utvärderas, men överträffar ej de uppmätta koncentrationerna vid utvärdering mot de uppmätta densiteterna. Metoden var emellertid framgångsrik med att tillhandahålla information om mineralerna i borrkärnan genom att producera mineralkoncentrationer på ett kontinuerligt rutnät. Metoden producerade också mineralkoncentrationer i 3-D som reproducerade de uppmätta densiteterna väl. Slutsatsen dras att ordinary kriging, implementerad enligt den metod som beskrivs i denna rapport, effektivt skattar mineralkoncentrationer som kan användas för att få information om fördelningen av koncentrationer i det inre av borrkärnan.
YATES, SCOTT RAYMOND. "GEOSTATISTICAL METHODS FOR ESTIMATING SOIL PROPERTIES (KRIGING, COKRIGING, DISJUNCTIVE)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187990.
Full textAló, Lívia Lanzi. "Uso de componentes de imagens de satélites na modelagem espacial do volume em povoamento de Eucalyptus sp." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/8934.
Full textApproved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-08T17:10:37Z (GMT) No. of bitstreams: 1 ALO_Livia_2016.pdf: 35886856 bytes, checksum: e8f725fab0ed2763bd7a05881893a6d8 (MD5)
Approved for entry into archive by Milena Rubi (milenarubi@ufscar.br) on 2017-08-08T17:10:47Z (GMT) No. of bitstreams: 1 ALO_Livia_2016.pdf: 35886856 bytes, checksum: e8f725fab0ed2763bd7a05881893a6d8 (MD5)
Made available in DSpace on 2017-08-08T17:11:12Z (GMT). No. of bitstreams: 1 ALO_Livia_2016.pdf: 35886856 bytes, checksum: e8f725fab0ed2763bd7a05881893a6d8 (MD5) Previous issue date: 2016-05-17
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Forest inventory is an important tool used to estimate forest wood production. However, some methodologies used in forest inventory are based in Classical Statistics, which disregards any spatial continuity that may exist between sample unities. Some geostatistic interpolators such as ordinary kriging (OK) and external drift kriging (EDK) allow us to assess this spatial structure. Furthermore, besides spatial variability, interpolators as EDK use one or more auxiliary variables. Satellite images have different components that interrelate with dendrometric variables and that can be used as auxiliary variables in order to increase the degree of precision of estimates. The aim of this study was to assess EDK performance on the volume estimation of Eucalyptus sp. stands using satellite image components as secondary variables and to compare it with OK performance. With this purpose, a forest inventory of 210 circular plots of 500 m² was carried out in order to estimate the volume (m³ ha-1 ) in each plot. Images obtained of studied area had blue, green, red and near infrared band. From these bands, it were extracted: gray level in each band, the ratio between bands, vegetation index (NDVI, SAVI e ARVI), texture measures and index generated from textures related to plot area. Covariance model adjustement throughout Stepwise method and selection by AIC (Akaike Information Criterion) method were made to EDK geostatistic. EDK and OK semivariograms were adjusted by different theoretical models through Ordinary Least Squares (OLS) method and the choice of the best model was given by the lowest value of residual standard error. From statistic analysis of images and correlation matrix, it was observed a correlation of variables with volume and also autocorrelation between these variables. The best covariance model selected was composed by band 2, measure of COR texture of band 2, MULCOR texture index of band 1 and by age. In the two semivariograms, the best model adjusted was the exponential one. Analysing the results, volume estimates generated by EDK produced better results than OK estimates and had the lowest value of residual standard error and the best area under curve (AUC) in receiver operating characteristic (ROC) curve analysis.
O inventário florestal é uma importante ferramenta utilizada para estimar a produção dos povoamentos florestais. Contudo, algumas metodologias utilizadas no inventário são embasadas na Estatística Clássica, que desconsidera qualquer continuidade espacial que possa existir entre as unidades amostrais. Alguns interpoladores geoestatísticos, tais como a krigagem ordinária (KO) e a krigagem de deriva externa (KDE), permitem avaliar essa estrutura espacial. Além disso, interpoladores como a KDE utilizam, além da variável espacial, uma ou mais variáveis auxiliares. As imagens de satélites possuem diferentes componentes que se correlacionam com as variáveis dendrométricas podendo ser usados como variáveis auxiliares, visando o aumento do grau de precisão das estimativas. O objetivo deste estudo foi avaliar o desempenho da KDE na estimativa do volume de povoamentos florestais de Eucalyptus sp., utilizando os componentes de imagens de satélites como variáveis auxiliares e compará-la com o desempenho da KO. Com esse propósito, processouse um inventário florestal de 210 parcelas circulares de 500 m², a fim de estimar o volume (m³ ha-1 ) por parcela. As imagens obtidas da área do estudo continham as bandas azul, verde, vermelho e infravermelho próximo. A partir destas, foram extraídos o nível de cinza (NC) de cada banda, da razão simples entre as bandas, índices de vegetação (NDVI, SAVI e ARVI), medidas de textura e índices gerados a partir das texturas referentes à área da parcela. Para a geoestatística KDE, foi feito o ajuste do modelo de covariância através do método Stepwise e a seleção pelo método AIC (Critério de Informação de Akaike). Os semivariogramas da KDE e da KO foram ajustados por diferentes modelos teóricos por meio do método dos Mínimos Quadrados Ordinários (MQO) e a escolha do melhor modelo se deu pelo menor valor do erro padrão residual. Nas análises das estatísticas das imagens e da matriz de correlação geradas, foi possível observar a correlação das variáveis com o volume e também a autocorrelação existente entre as variáveis. O melhor modelo de covariância selecionado foi composto por banda 2, medida de textura COR (correlação) da banda 2, índice de textura MULCOR (correlação multiplicado pela banda) da banda 1 e pela idade. Nos dois semivariogramas, o modelo que melhor se ajustou foi o exponencial. Nas análises dos resultados, as estimativas de volume geradas pela KDE produziram melhores resultados que as estimativas da KO, obtendo o menor valor de erro padrão residual e a melhor área sob a curva (AUC) na análise da curva ROC (Receiver Operating Characteristic).
Nogueira, Neto Joao Antunes 1952. "APPLICATION OF GEOSTATISTICS TO AN OPERATING IRON ORE MINE." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276417.
Full textLong, Andrew Edmund. "Cokriging, kernels, and the SVD: Toward better geostatistical analysis." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186892.
Full textGhassemi, Ali. "Nonparametric geostatistical estimation of soil physical properties." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63904.
Full textMOURA, PEDRO NUNO DE SOUZA. "LSHSIM: A LOCALITY SENSITIVE HASHING BASED METHOD FOR MULTIPLE-POINT GEOSTATISTICS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32005@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
A modelagem de reservatórios consiste em uma tarefa de muita relevância na medida em que permite a representação de uma dada região geológica de interesse. Dada a incerteza envolvida no processo, deseja-se gerar uma grande quantidade de cenários possíveis para se determinar aquele que melhor representa essa região. Há, então, uma forte demanda de se gerar rapidamente cada simulação. Desde a sua origem, diversas metodologias foram propostas para esse propósito e, nas últimas duas décadas, Multiple-Point Geostatistics (MPS) passou a ser a dominante. Essa metodologia é fortemente baseada no conceito de imagem de treinamento (TI) e no uso de suas características, que são denominadas de padrões. No presente trabalho, é proposto um novo método de MPS que combina a aplicação de dois conceitos-chave: a técnica denominada Locality Sensitive Hashing (LSH), que permite a aceleração da busca por padrões similares a um dado objetivo; e a técnica de compressão Run-Length Encoding (RLE), utilizada para acelerar o cálculo da similaridade de Hamming. Foram realizados experimentos com imagens de treinamento tanto categóricas quanto contínuas que evidenciaram que o LSHSIM é computacionalmente eciente e produz realizações de boa qualidade, enquanto gera um espaço de incerteza de tamanho razoável. Em particular, para dados categóricos, os resultados sugerem que o LSHSIM é mais rápido do que o MS-CCSIM, que corresponde a um dos métodos componentes do estado-da-arte.
Reservoir modeling is a very important task that permits the representation of a geological region of interest. Given the uncertainty involved in the process, one wants to generate a considerable number of possible scenarios so as to find those which best represent this region. Then, there is a strong demand for quickly generating each simulation. Since its inception, many methodologies have been proposed for this purpose and, in the last two decades, multiple-point geostatistics (MPS) has been the dominant one. This methodology is strongly based on the concept of training image (TI) and the use of its characteristics, which are called patterns. In this work, we propose a new MPS method that combines the application of a technique called Locality Sensitive Hashing (LSH), which permits to accelerate the search for patterns similar to a target one, with a Run-Length Encoding (RLE) compression technique that speeds up the calculation of the Hamming similarity. We have performed experiments with both categorical and continuous images which showed that LSHSIM is computationally efficient and produce good quality realizations, while achieving a reasonable space of uncertainty. In particular, for categorical data, the results suggest that LSHSIM is faster than MS-CCSIM, one of the state-of-the-art methods.
Mandallaz, Daniel. "Geostatistical methods for double sampling schemes : application to combined forest inventories /." Zürich : Chair of Forest Inventory and Planning, Swiss Federal Institute of Technology (ETH), 1993. http://e-collection.ethbib.ethz.ch/show?type=habil&nr=19.
Full textBooks on the topic "Geostatistic methods"
Yates, S. R. Geostatistics for waste management: User's manual for the GEOPACK (version 1.0) geostatistical software system. Ada, OK: U.S. Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory, 1990.
Find full textPierre, Delfiner, ed. Geostatistics: Modeling spatial uncertainty. New York: Wiley, 1999.
Find full textYates, S. R. Geostatistics for waste management: A user's manual for the GEOPACK (version 1.0) geostatistical software system. Ada, Okla: Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1990.
Find full textMohan, Srivastava R., ed. Applied geostatistics. New York: Oxford University Press, 1989.
Find full textZorilescu, Dan. Introducere în geostatistica informațională. București: Editura Academiei Republicii Socialiste România, 1986.
Find full text1974-, Leuangthong Oy, and Deutsch Clayton V, eds. Geostatistics Banff 2004. Dordrecht: Springer, 2005.
Find full textBook chapters on the topic "Geostatistic methods"
Wackernagel, Hans, Pierre Petitgas, and Yves Touffait. "Overview of Methods for Coregionalization Analysis." In Geostatistics, 409–20. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-6844-9_31.
Full textBoulanger, F. "Geostatistique ET Processus Autoregressifs : Une Nouvelle Methode de Modelisation." In Geostatistics, 259–71. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-6844-9_19.
Full textMaliva, Robert G. "Geostatistical Methods and Applications." In Springer Hydrogeology, 595–617. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32137-0_20.
Full textMa, Y. Z. "Geostatistical Estimation Methods: Kriging." In Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling, 373–401. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17860-4_16.
Full textMaurya, S. P., N. P. Singh, and K. H. Singh. "Geostatistical Inversion." In Seismic Inversion Methods: A Practical Approach, 177–216. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45662-7_7.
Full textFilzmoser, Peter, and Clemens Reimann. "Robust Multivariate Methods in Geostatistics." In Studies in Classification, Data Analysis, and Knowledge Organization, 429–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-55991-4_46.
Full textAbrahamsen, Petter. "Combining Methods for Subsurface Prediction." In Geostatistics Banff 2004, 601–10. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/978-1-4020-3610-1_61.
Full textArroyo, Daisy, Xavier Emery, and María Peláez. "Sequential Simulation with Iterative Methods." In Geostatistics Oslo 2012, 3–14. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4153-9_1.
Full textPyrcz, Michael J., Peter Janele, Doug Weaver, and Sebastien Strebelle. "Geostatistical Methods for Unconventional Reservoir Uncertainty Assessments." In Geostatistics Valencia 2016, 671–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46819-8_45.
Full textAkin, Hikmet, and Heinrich Siemes. "Überblick der Fortgeschrittenen Methoden der Geostatistik." In Praktische Geostatistik, 189–213. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73542-4_6.
Full textConference papers on the topic "Geostatistic methods"
Faucheux, Claire, and Nicolas Jeanne´e. "Industrial Experience Feedback of a Geostatistical Estimation of Contaminated Soil Volumes." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59181.
Full textZaytsev*, V. N., P. Biver, H. Wackernagel, and D. Allard. "Geostatistical Simulations on Irregular Reservoir Models Using Methods of Nonlinear Geostatistics." In Petroleum Geostatistics 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201413618.
Full textDesnoyers, Yvon, and Didier Dubot. "Geostatistical Methodology for Waste Optimization of Contaminated Premises." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59344.
Full textde Figueiredo, L. Passos, D. Grana, M. Roisenberg, and B. Rodrigues. "Markov Chain Monte Carlo Methods for High-dimensional Mixture Distributions." In Petroleum Geostatistics 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902273.
Full textChen*, Y. "Keynote - Geologically Consistent History Matching Using the Ensemble based Methods." In Petroleum Geostatistics 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201413627.
Full textGazizov, R., A. Bezrukov, and B. Feoktistov. "Stochastic Realizations of Gaussian Random Fields: Analysis and Comparison of Modeling Methods." In Petroleum Geostatistics 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902181.
Full textRaanes, P. N., G. Evensen, and A. S. Stordal. "Revising the Method of Ensemble Randomized Maximum Likelihood." In Petroleum Geostatistics 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902205.
Full textJuda, P., J. Straubhaar, and P. Renard. "Simplified Direct Sampling Method for Geostatistical Multiple-point Simulations." In Petroleum Geostatistics 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902227.
Full textRenard, P., C. Jäggli, Y. Dagasan, and J. Straubhaar. "The Posterior Population Expansion Ensemble Method to Invert Categorical Fields." In Petroleum Geostatistics 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902270.
Full textYarus*, J., C. Rodriguez, J. Dahl, C. Davila, and J. Spaid. "Interactive Earth Modeling in Unconventional Reservoirs - Principles, Methods, and a Case Study from the Mississippian, Barnett Shale." In Petroleum Geostatistics 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201413600.
Full textReports on the topic "Geostatistic methods"
SVITELMAN, Valentina, and Oleg DINARIEV. The method of spherical harmonics in rock microstructural geostatistics. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0048.
Full textNOVAK ZELENIKA, Kristina, Josipa VELIĆ, Tomislav MALVIĆ, and Marko CVETKOVIĆ. Geological Variables Fitting in Normal Distribution and Application in Indicator Geostatistical Methods. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0230.
Full textOliver, Margaret A. Application of Geostatistical Methods and Wavelets to the Analysis of Hyperspectral Imagery and the Testing of a Moving Variogram. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada393009.
Full text