Academic literature on the topic 'Germanium – Magnetic properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Germanium – Magnetic properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Germanium – Magnetic properties"

1

Liou, Y., and Y. L. Shen. "Magnetic Properties of Germanium Quantum Dots." Advanced Materials 20, no. 4 (February 18, 2008): 779–83. http://dx.doi.org/10.1002/adma.200701248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weinert, Charles S. "G73e Nuclear Magnetic Resonance Spectroscopy of Germanium Compounds." ISRN Spectroscopy 2012 (November 14, 2012): 1–18. http://dx.doi.org/10.5402/2012/718050.

Full text
Abstract:
The field of G73e NMR spectroscopy is reviewed in this paper, from early developments in the 1950s to present day research. Specific attention is paid to recent investigations, including the observation of fluxional behavior of hypervalent germanium species having five or six attached ligands by 73Ge NMR spectroscopy, the spectral properties of linear and branched oligogermanes that contain single germanium-germanium bonds, and the relatively new field of solid-state germanium-73 NMR.
APA, Harvard, Vancouver, ISO, and other styles
3

Shaldin, Yu V. "Magnetic Properties of Germanium-Doped Cadmium Telluride." Semiconductors 38, no. 2 (2004): 169. http://dx.doi.org/10.1134/1.1648370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tunstall, D. P., P. J. Mason, A. N. Ionov, R. Rentzsch, and B. Sandow. "Just-metallic germanium doped with arsenic: magnetic properties." Journal of Physics: Condensed Matter 9, no. 2 (January 13, 1997): 403–11. http://dx.doi.org/10.1088/0953-8984/9/2/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rowell, Nelson L., and David J. Lockwood. "Germanium Nanocrystal Properties from Photoluminescence." ECS Journal of Solid State Science and Technology 10, no. 8 (August 1, 2021): 085003. http://dx.doi.org/10.1149/2162-8777/ac1c59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Palummo, M., G. Onida, and R. Del Sole. "Optical Properties of Germanium Nanocrystals." physica status solidi (a) 175, no. 1 (September 1999): 23–31. http://dx.doi.org/10.1002/(sici)1521-396x(199909)175:1<23::aid-pssa23>3.0.co;2-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crowley, Timothy A., Brian Daly, Michael A. Morris, Donats Erts, Olga Kazakova, John J. Boland, Bin Wu, and Justin D. Holmes. "Probing the magnetic properties of cobalt–germanium nanocable arrays." Journal of Materials Chemistry 15, no. 24 (2005): 2408. http://dx.doi.org/10.1039/b502155c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pang, Qing, Yan Zhang, Jian-Min Zhang, Vincent Ji, and Ke-Wei Xu. "Electronic and magnetic properties of perfect and defected germanium nanoribbons." Materials Chemistry and Physics 130, no. 1-2 (October 2011): 140–46. http://dx.doi.org/10.1016/j.matchemphys.2011.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Palummo, M., G. Onida, R. Del Sole, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman. "Optical Properties of Germanium Quantum Dots." physica status solidi (b) 224, no. 1 (March 2001): 247–51. http://dx.doi.org/10.1002/1521-3951(200103)224:1<247::aid-pssb247>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bihler, C., C. Jaeger, T. Vallaitis, M. Gjukic, M. S. Brandt, E. Pippel, J. Woltersdorf, and U. Gösele. "Structural and magnetic properties of Mn5Ge3 clusters in a dilute magnetic germanium matrix." Applied Physics Letters 88, no. 11 (March 13, 2006): 112506. http://dx.doi.org/10.1063/1.2185448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Germanium – Magnetic properties"

1

Ring, Andrew Phillip. "Investigation of magnetic and magnetoelastic properties of novel materials involving cobalt ferrite and terbium silicon germanium systems." [Ames, Iowa : Iowa State University], 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Porret, Clément. "Effet du manganèse sur l'épitaxie par jets moléculaires de nanofils de silicium et de germanium et fonctionnalisation de nanofils de germanium en vue d'applications en spintronique." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00638725.

Full text
Abstract:
Ce mémoire présente une étude de la synthèse par la méthode Vapeur-Liquide-Solide (VLS) de nanofils de silicium et de germanium par Epitaxie par Jets Moléculaires ainsi que de l'effet de la présence de manganèse sur leur croissance. La croissance des nanofils est fortement modifiée par la présence de manganèse. Les nanofils de silicium élaborés sous un faible flux de manganèse présentent des propriétés morphologiques et structurales remarquables. La présence de manganèse modifie le diamètre d'équilibre des gouttes AuSi utilisées pour la croissance par voie VLS et permet l'élaboration de nanofils de silicium de longueurs élevées et de faibles diamètres. De plus, leur qualité cristalline est considérablement améliorée par rapport aux nanofils de silicium formés sans apport de manganèse. Dans ce mémoire nous proposons quelques explications à ce phénomène. Dans le cas des nanofils de germanium, l'incorporation de manganèse n'a pu être obtenue par codépôt. Aussi, (i) le dopage par implantation ionique de nanofils de germanium et (ii) la fonctionnalisation de nanofils de germanium par la formation d'hétérostructures type cœur/coquille Ge/GeMn ont été considérés : - les mesures d'aimantation effectuées sur des nanofils de germanium implantés au manganèse démontrent l'existence de propriétés ferromagnétiques avec des températures de Curie supérieures à 400K. Il s'agit d'un résultat très prometteur en vue d'applications utilisant des nanofils de germanium ferromagnétiques à température ambiante ; - pour accéder aux propriétés magnétiques des nanofils de germanium fonctionnalisés par dépôt de GeMn, nous avons mis au point une procédure de prises de contacts adaptée à la mesure de leurs propriétés de magnétotransport. Les caractéristiques électriques de ces dispositifs montrent que les propriétés de transport sont dominées par la présence de la couche coquille de GeMn, surtout à basse température. Des mesures de magnétotransport effectuées à 100K indiquent l'existence d'effets de magnétorésistance liés aux propriétés ferromagnétiques des nanofils de Ge ainsi fonctionnalisés.
APA, Harvard, Vancouver, ISO, and other styles
3

Hirvonen, Grytzelius Joakim. "Thin Mn silicide and germanide layers studied by photoemission and STM." Doctoral thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-14488.

Full text
Abstract:
The research presented in this thesis concerns experimental studies of thin manganese silicide and germanide layers, grown by solid phase epitaxy on the Si(111)7×7 and the Ge(111)c(2×8) surfaces, respectively. The atomic and electronic structures, as well as growth modes of the epitaxial Mn-Si and Mn-Ge layers, were investigated by low-energy electron diffraction (LEED), angle-resolved photoelectron spectroscopy (ARPES), core-level spectroscopy (CLS), and scanning tunneling microscopy and spectroscopy (STM and STS). The magnetic properties of the Mn-Ge films were investigated by X-ray magnetic circular dichroism (XMCD). The Mn-Si layers, annealed at 400 °C, showed a √3×√3 LEED pattern, consistent with the formation of the stoichiometric monosilicide MnSi. Up to 4 monolayers (ML) of Mn coverage, island formation was observed. For higher Mn coverages, uniform film growth was found. Our results concerning morphology and the atomic and electronic structure of the Mn/Si(111)-√3×√3 surface, are in good agreement with a recent theoretical model for a layered MnSi structure and the √3×√3 surface structure. Similar to the Mn-Si case, the grown Mn-Ge films, annealed at 330 °C and 450 °C, showed a √3×√3 LEED pattern. This indicated the formation of the ordered Mn5Ge3 germanide. A strong tendency to island formation was observed for the Mn5Ge3 films, and a Mn coverage of about 32 ML was needed to obtain a continuous film. Our STM and CLS results are in good agreement with the established model for the bulk Mn5Ge3 germanide, with a surface termination of Mn atoms arranged in a honeycomb pattern. Mn-Ge films grown at a lower annealing temperature, 260 °C, showed a continuous film at lower coverages, with a film structure that is different compared to the structure of the Mn5Ge3 film. XMCD studies showed that the low-temperature films are ferromagnetic for 16 ML Mn coverage and above, with a Curie temperature of ~250 K.
APA, Harvard, Vancouver, ISO, and other styles
4

Lahiouel, Rachid. "Evolution du réseau Kondo en fonction de l'hybridation : les systèmes CeIn(Ag,Cu)2 et Ce(Ge,Si)2." Grenoble 1, 1987. http://www.theses.fr/1987GRE10054.

Full text
Abstract:
Observation du passage d'un regime kondo mixte a un regime kondo pur ou a un regime de valence intermediaire sous l'effet de la pression chimique. Etude du diagramme de phases magnetiques. Determination du coefficient de couplage entre electrons 4 f et la bande de conduction jn(e::(f)). Coefficient de la chaleur specifique, temperature de kondo et coefficient de grueneisen electronique de ceincu::(2)
APA, Harvard, Vancouver, ISO, and other styles
5

François, Michel. "Propriétés structurales, magnétisme et supraconductivité de germaniures et stannures ternaires de métaux de transition et lanthanoides ou alcalino-terreux." Nancy 1, 1986. http://www.theses.fr/1986NAN10132.

Full text
Abstract:
Description de nouveaux germaniures isotypes de U::(4)RE::(7)SI::(6), THCR::(2)SI::(2) ou CABE::(2)GE::(2). Ces phases sont classées en fonction des tailles relatives de leurs constituants métalliques. Comportement magnétique de germaniures RRU::(2)GE::(2) et RRH::(2)GE::(2). Étude de nouveaux germaniures et stannures isotypes de cenisi::(2). Présentation d'une nouvelle famille de germaniures ternaires, apparentée à celle des isotypes de SC::(5)CO::(4)SI::(10). Structure cristalline de ynisn
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Kai-Chih, and 詹凱智. "Magnetic interactions and phonon properties of silica-embedded germanium nanostructures." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/02121937261533682759.

Full text
Abstract:
碩士
國立東華大學
應用物理研究所
96
In the semiconductor industry, germanium is an important semiconductor material for its electrical, magnetic and optical properties are worth to study. In this study, we use the sputter system and the heat method to grow germanium nano-structure. Next, squid is employed to measure the magnetic to observe the magnetic interaction in the germanium nano-structure. The result is then further compared with the magnetic moment simulation result. The temperature change in the raman spectrum shows the photon in the germanium nano-structure exhibited unexpected behavior upon the room temperature, this result is implicit the relevance of photon systems and the magnetic structure. In 2002, JMD Coey [1] research the graphite meteorite samples. With the exclusion of the effect of iron, he proves the carbon compounds with magnetic properties. In 2005 Talapatra [2] also found that carbon, nitrogen attached to the diamond have the magnetic properties. However, the bulk of carbon does not have magnetic. But the magnetic properties have been found in the nano-scale of the carbon. Though in the state of bulk,Ge is not a magnetic, Y. Liou provides the evidence that germanium-nanometer particles is magnetic at room temperature [3]. Nonetheless, the magnetic interaction of germanium still remains to be discovered. In this study, we use the squid to measure magnetic. Besides discovering Ge is the paramagnetic at the temperature down to 230k, a reversal of the hysteresis curve at tempreture 5k is also found. In 2002, YZ Wu [4] also found the hysteresis curve inversion phenomenon in Co/Mn material. As for the raman spectrum, experimental temperature, an anharmonic effect is found in the range from 83K to 853K. In the figure of temperature to width, upon the room temperature deviate the theory prediction, the sound of this abnormal behavior in the temperature range close to germanium nanostructure curie temperature. The implied germanium particles of the phonon performance of the magnetic phase transition effects, is worthy for future discussion.
APA, Harvard, Vancouver, ISO, and other styles
7

Chang, Chao Chih, and 張詔智. "On the electric magnetic and structural properties of Germanium doped Sodium Tungsten bronze." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/07830234902792010573.

Full text
Abstract:
碩士
淡江大學
物理學系
91
Tungsten bronze wire single crystal and cubic crystal were attained through changing germanium concentration, the wires grew on the surface and the cubic crystals were inside the bulk. The crystalline structure of cubic crystal is cubic, the same as that of Na0.73WO3, the crystalline structure of wire is orthorhombic, the same as that of WO2.625 . The weak resistivity transition at 13K was observed for bulk Na0.25GexWO3 with germanium concentration ranging x from 0.05 to 0.09, but this transition were not observed for the cubic crystal and the wire. The resistivity transition also was occurred for the cubic crystal at high temperature ranging from 300 K to 400 K .The weak magnetism transition at 100 K was observed for Tungsten bronze wire. The anomalistic magnetism was observed for the cubic crystal at temperature ranging from 50 K to 280 K.
APA, Harvard, Vancouver, ISO, and other styles
8

"Magnetic and magnetoelastic properties of M-substituted cobalt ferrites (M= manganese, chromium, gallium, germanium)." IOWA STATE UNIVERSITY, 2008. http://pqdtopen.proquest.com/#viewpdf?dispub=3287431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Properties of magnetic layers fabricated by metal vapor vacuum arc (MEVVA) ion implantation into germanium." 2001. http://library.cuhk.edu.hk/record=b6073345.

Full text
Abstract:
by Ranganathan Venugopal.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2001.
Includes bibliographical references (p. 150-165).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Mode of access: World Wide Web.
Abstracts in English and Chinese.
APA, Harvard, Vancouver, ISO, and other styles
10

Nehete, Umesh Namdeo. "Synthesis, Spectral Studies, Structural Elucidation and Magnetic Properties of Metallasiloxanes containing Main Group and Transition Metals." Doctoral thesis, 2005. http://hdl.handle.net/11858/00-1735-0000-0006-B0D0-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Germanium – Magnetic properties"

1

Pardasani, R. T., and P. Pardasani. "Magnetic properties of tetrahedral V4 cluster; vanadium germanium chalcogenide." In Magnetic Properties of Paramagnetic Compounds, 277–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54228-6_153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pardasani, R. T., and P. Pardasani. "Magnetic properties of europium germanide." In Magnetic Properties of Paramagnetic Compounds, 1266. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54237-8_701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katkar, Amar S. "Magnetic properties of doped germanium nanostructures." In Fundamentals and Properties of Multifunctional Nanomaterials, 213–34. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822352-9.00021-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Germanium – Magnetic properties"

1

Umran, Nibras Mossa, and Ranjan Kumar. "Effect on magnetic properties of germanium encapsulated C[sub 60] fullerene." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Soni, Himadri R., and Prafulla K. Jha. "Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Minami, K., J. Jogo, M. Mori, T. Ishibashi, and K. Sato. "Magnetic properties of manganese germanium diphosphide and manganese phosphide grown by molecular beam epitaxy technique." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1463564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography