To see the other types of publications on this topic, follow the link: Germanium – Magnetic properties.

Journal articles on the topic 'Germanium – Magnetic properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Germanium – Magnetic properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liou, Y., and Y. L. Shen. "Magnetic Properties of Germanium Quantum Dots." Advanced Materials 20, no. 4 (February 18, 2008): 779–83. http://dx.doi.org/10.1002/adma.200701248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weinert, Charles S. "G73e Nuclear Magnetic Resonance Spectroscopy of Germanium Compounds." ISRN Spectroscopy 2012 (November 14, 2012): 1–18. http://dx.doi.org/10.5402/2012/718050.

Full text
Abstract:
The field of G73e NMR spectroscopy is reviewed in this paper, from early developments in the 1950s to present day research. Specific attention is paid to recent investigations, including the observation of fluxional behavior of hypervalent germanium species having five or six attached ligands by 73Ge NMR spectroscopy, the spectral properties of linear and branched oligogermanes that contain single germanium-germanium bonds, and the relatively new field of solid-state germanium-73 NMR.
APA, Harvard, Vancouver, ISO, and other styles
3

Shaldin, Yu V. "Magnetic Properties of Germanium-Doped Cadmium Telluride." Semiconductors 38, no. 2 (2004): 169. http://dx.doi.org/10.1134/1.1648370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tunstall, D. P., P. J. Mason, A. N. Ionov, R. Rentzsch, and B. Sandow. "Just-metallic germanium doped with arsenic: magnetic properties." Journal of Physics: Condensed Matter 9, no. 2 (January 13, 1997): 403–11. http://dx.doi.org/10.1088/0953-8984/9/2/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rowell, Nelson L., and David J. Lockwood. "Germanium Nanocrystal Properties from Photoluminescence." ECS Journal of Solid State Science and Technology 10, no. 8 (August 1, 2021): 085003. http://dx.doi.org/10.1149/2162-8777/ac1c59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Palummo, M., G. Onida, and R. Del Sole. "Optical Properties of Germanium Nanocrystals." physica status solidi (a) 175, no. 1 (September 1999): 23–31. http://dx.doi.org/10.1002/(sici)1521-396x(199909)175:1<23::aid-pssa23>3.0.co;2-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crowley, Timothy A., Brian Daly, Michael A. Morris, Donats Erts, Olga Kazakova, John J. Boland, Bin Wu, and Justin D. Holmes. "Probing the magnetic properties of cobalt–germanium nanocable arrays." Journal of Materials Chemistry 15, no. 24 (2005): 2408. http://dx.doi.org/10.1039/b502155c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pang, Qing, Yan Zhang, Jian-Min Zhang, Vincent Ji, and Ke-Wei Xu. "Electronic and magnetic properties of perfect and defected germanium nanoribbons." Materials Chemistry and Physics 130, no. 1-2 (October 2011): 140–46. http://dx.doi.org/10.1016/j.matchemphys.2011.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Palummo, M., G. Onida, R. Del Sole, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman. "Optical Properties of Germanium Quantum Dots." physica status solidi (b) 224, no. 1 (March 2001): 247–51. http://dx.doi.org/10.1002/1521-3951(200103)224:1<247::aid-pssb247>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bihler, C., C. Jaeger, T. Vallaitis, M. Gjukic, M. S. Brandt, E. Pippel, J. Woltersdorf, and U. Gösele. "Structural and magnetic properties of Mn5Ge3 clusters in a dilute magnetic germanium matrix." Applied Physics Letters 88, no. 11 (March 13, 2006): 112506. http://dx.doi.org/10.1063/1.2185448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Trivedi, Ravi, Kapil Dhaka, and Debashis Bandyopadhyay. "Study of electronic properties, stabilities and magnetic quenching of molybdenum-doped germanium clusters: a density functional investigation." RSC Adv. 4, no. 110 (2014): 64825–34. http://dx.doi.org/10.1039/c4ra11825a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Paul, William, Scott J. Jones, Warren A. Turner, and Paul Wickboldt. "Structural properties of amorphous hydrogenated germanium." Journal of Non-Crystalline Solids 141 (January 1992): 271–86. http://dx.doi.org/10.1016/s0022-3093(05)80542-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hattori, Takeshi, Tetsuyuki Kurata, Eiji Fujii, Akiyoshi Mitsuishi, and Yoichi Kamiura. "Far-Infrared Optical Properties of Quenched Germanium. II. Magnetic Field Effects." Japanese Journal of Applied Physics 24, Part 1, No. 6 (June 20, 1985): 689–98. http://dx.doi.org/10.1143/jjap.24.689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Markowski, Piotr, Eugeniusz Prociów, and Łukasz Urbaniak. "Thermoelectric properties of thin-film germanium-based layers." Microelectronics International 32, no. 3 (August 3, 2015): 115–21. http://dx.doi.org/10.1108/mi-02-2015-0014.

Full text
Abstract:
Purpose – The purpose of this paper is to determine the thermoelectric properties of the germanium-based thin films and selecting the most suitable ones for fabrication of micrognerators. Design/methodology/approach – The germanium layers were deposited by low pressure magnetron sputtering method, in the pressure of 10−3/104 mbar range. The amount of dopants (germanium or vanadium) was changed in a limited extent. The influence of such changes on the layers output properties was studied. Post-processing heat treatment at temperature below 823 K was applied to activate the layers. It leads to improve the electrical and thermoelectrical performance. Findings – The special attention was paid to the power factor (PF = S2/ρ) of the layers. To estimate power factor (PF) electrical resistivity (ρ) and Seebeck coefficient (S) were determined. The achieved Seebeck coefficient value was 185 Volt/Kelvin (μV/K) for germanium doped with vanadium (Ge:V1.15) and 225 μV/K for germanium doped with gold(Ge:Au3.13) layers at room temperature. After activation process, the PF reached a value of 2.5 × 10−4 W/m · K2 for the Ge:Au3.13 and 1.1 × 10−4 W/m · K2 for the Ge:V1.15 layers. Originality/value – The fabricated thermoelectric layers can be thermally annealed in temperature up to 823 K in the air and in 1,023 K under a nitrogen atmosphere. This enables integration of thin layers with thick-film technology. Corning glass or low temperature cofired ceramic was used as a substrate.
APA, Harvard, Vancouver, ISO, and other styles
15

KIM, K., K. K. D. RATHNAYAKA, I. F. LYUKSYUTOV, and D. G. NAUGLE. "SUPERCONDUCTING FILM WITH AN ARRAY OF MAGNETIC NANOSTRIPES." International Journal of Modern Physics B 27, no. 15 (June 4, 2013): 1362020. http://dx.doi.org/10.1142/s0217979213620208.

Full text
Abstract:
We present studies of the transport properties of a Sn superconducting film with an array of parallel nickel magnetic nanostripes (800 nm period) deposited on top of a germanium insulating layer covering the Sn film surface. The critical current parallel to the stripes is larger than the critical current perpendicular to the stripes. Both critical currents demonstrate strong hysteresis and matching field effects. We have observed strong hysteresis in the resistance dependence on the magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
16

Brudnyı̆, V. N. "Electronic Properties of Silicon with Ultrasmall Germanium Clusters." Physics of the Solid State 47, no. 11 (2005): 2020. http://dx.doi.org/10.1134/1.2131138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Davidenko, I. I., N. A. Davidenko, and S. L. Gnatchenko. "Electrical and Photophysical Properties of Manganese-Germanium Garnets." physica status solidi (a) 189, no. 3 (February 2002): 631–35. http://dx.doi.org/10.1002/1521-396x(200202)189:3<631::aid-pssa631>3.0.co;2-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Amollo, Tabitha A., Genene T. Mola, and Vincent O. Nyamori. "Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties." Nanotechnology 28, no. 49 (November 13, 2017): 495703. http://dx.doi.org/10.1088/1361-6528/aa9299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chatterjee, Sukti. "The optoelectronic properties of titania–germanium nanocomposites." Journal of Physics D: Applied Physics 41, no. 5 (February 8, 2008): 055301. http://dx.doi.org/10.1088/0022-3727/41/5/055301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lauwaert, J., S. H. Segers, F. Moens, K. Opsomer, P. Clauws, F. Callens, E. Simoen, and H. Vrielinck. "Electronic properties of manganese impurities in germanium." Journal of Physics D: Applied Physics 48, no. 17 (March 25, 2015): 175101. http://dx.doi.org/10.1088/0022-3727/48/17/175101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fedorchenko, I. V., A. Rumiantsev, T. Kuprijanova, L. Kilanski, R. A. Szymczak, W. Dobrowolski, and L. A. Koroleva. "Making Ferromagnetic Heterostructures Si/Zn(1-X)MnXSiAs2 and Ge/Zn(1-X)MnXGeAs2." Solid State Phenomena 168-169 (December 2010): 313–16. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.313.

Full text
Abstract:
The heterostructure ferromagnetic/semiconductor ZnSiAs2<Mn>/Si was obtained by using the Si-ZnAs2 phase diagram. The magnetic properties of Zn1-XMnXSiAs2 bulk crystals and ferromagnetic layered heterostructures were similar. The same method was used for preparing a ferromagnetic layer ZnGeAs2<Mn> on a germanium substrate.
APA, Harvard, Vancouver, ISO, and other styles
22

Sahnoun, M., C. Daul, R. Khenata, and H. Baltache. "Optical properties of germanium dioxide in the rutile structure." European Physical Journal B 45, no. 4 (June 2005): 455–58. http://dx.doi.org/10.1140/epjb/e2005-00219-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Song, Aijiang Lu, Ruikuan Xie, Huaizhong Xing, Yijie Zeng, Yan Huang, and Xiaoshuang Chen. "Tunable Electronic and Magnetic Properties of Functionalized (H, Cl, OH) Germanium Carbide Sheet." Journal of Nanoscience and Nanotechnology 17, no. 6 (June 1, 2017): 3927–33. http://dx.doi.org/10.1166/jnn.2017.13083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Saripalli, Satya, Puneet Sharma, P. Reusswig, and Vikram Dalal. "Transport properties of nanocrystalline silicon and silicon–germanium." Journal of Non-Crystalline Solids 354, no. 19-25 (May 2008): 2426–29. http://dx.doi.org/10.1016/j.jnoncrysol.2007.10.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chui, C. O., F. Ito, and K. C. Saraswat. "Scalability and Electrical Properties of Germanium Oxynitride MOS Dielectrics." IEEE Electron Device Letters 25, no. 9 (September 2004): 613–15. http://dx.doi.org/10.1109/led.2004.833830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mayoufi, M., F. Sar, L. Anno, and J. G. Gasser. "Electronic transport properties of liquid gallium–germanium alloys." Physics and Chemistry of Liquids 46, no. 2 (April 2008): 191–201. http://dx.doi.org/10.1080/00319100701548327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Conte, G., D. Della Sala, F. Galluzzi, G. Grillo, C. Ostrifate, and C. Reita. "Optoelectronic properties of amorphous hydrogenated silicon-germanium alloys." Semiconductor Science and Technology 5, no. 8 (August 1, 1990): 890–93. http://dx.doi.org/10.1088/0268-1242/5/8/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hsu, H. "Properties of silicon germanium and SiGe: carbon [Book Review]." IEEE Circuits and Devices Magazine 17, no. 4 (July 2001): 36–37. http://dx.doi.org/10.1109/mcd.2001.950075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Contreras, G., L. Tapfer, A. K. Sood, and M. Cardona. "Physical Properties of Ion-Implanted Laser Annealed n-Type Germanium." physica status solidi (b) 131, no. 2 (October 1, 1985): 475–87. http://dx.doi.org/10.1002/pssb.2221310208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mao, Yuliang, Gang Guo, Jianmei Yuan, and Jianxin Zhong. "Edge-doping effects on the electronic and magnetic properties of zigzag germanium selenide nanoribbon." Applied Surface Science 464 (January 2019): 236–42. http://dx.doi.org/10.1016/j.apsusc.2018.09.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bichler, Daniel, Herta Slavik, and Dirk Johrendt. "Low-temperature Crystal Structures and Magnetic Properties of the V4-Cluster Compounds Ga1-xGexV4S8." Zeitschrift für Naturforschung B 64, no. 8 (August 1, 2009): 915–21. http://dx.doi.org/10.1515/znb-2009-0807.

Full text
Abstract:
Solid solutions Ga1−xGexV4S8 (x = 0−1) were synthesized by solid-state reactions and characterized by temperature-dependent X-ray powder diffraction and static magnetic susceptibility measurements. The compounds crystallize in the cubic GaMo4S8-type structure (space group F43m), built up by heterocubane-like [V4S4](5−x)+ cubes and [Ga1−xGexS4](5−x)− tetrahedra arranged in a NaCllike manner. The successive substitution of Ga3+ by Ge4+ increases the electron count in the molecular orbitals (MO’s) of the V4-cluster gradually from seven to eight. We observe an almost linear increase of the magnetic moments, connected with a transition from ferromagnetic to antiferromagnetic ordering around x ≈ 0.5. Remarkably, low-temperature structural phase transitions as known from the ternary compounds were also detected in the solid solutions. The gallium-rich compounds (0 ≤ x < 0.5) undergo rhombohedral distortions like GaV4S8 (space group R3m), whereas distortions to orthorhombic symmetry (space group Imm2) as known from GeV4S8 occur in the germanium-rich part of the solid solutions (0.5 ≤ x ≤ 1)
APA, Harvard, Vancouver, ISO, and other styles
32

Jin, Yuanyuan, Yonghong Tian, Xiaoyu Kuang, Cheng Lu, José Luis Cabellos, Sukanta Mondal, and Gabriel Merino. "Structural and Electronic Properties of Ruthenium-Doped Germanium Clusters." Journal of Physical Chemistry C 120, no. 15 (April 8, 2016): 8399–404. http://dx.doi.org/10.1021/acs.jpcc.6b02225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mishra, Ratikanta, Rainer Pöttgen, and Gunter Kotzyba. "New Metal-Rich Compounds NblrSi, NblrGe, and TalrSi -Synthesis, Structure, and Magnetic Properties." Zeitschrift für Naturforschung B 56, no. 6 (June 1, 2001): 463–68. http://dx.doi.org/10.1515/znb-2001-0603.

Full text
Abstract:
AbstractThe metal-rich intermetallic compounds NblrSi, NblrGe, and TalrSi were synthesized by arc-melting of the elements and subsequent annealing in glassy carbon crucibles in a high-frequency furnace. The three compounds were investigated by X-ray diffraction on powders and single crystals: TiNiSi type, Pnma, a = 641.27(3), b = 379.48(2), c = 727.70(3) pm, wR2 = 0.0773, 430 F2 values for NblrSi, a = 645.48(3), b = 389.21(2), c = 741.11(4) pm, wR2 = 0.0981, 297 F2 values for NblrGe, and a = 638.11(3), b = 378.69(2), c = 726.78(3) pm, wR2 = 0.0887, 290 F2 values for TalrSi with 20 variables for each refinement. The iridium and silicon (germanium) atoms form a three-dimensional network of puckered Ir3Si3 and Ir3Ge3 hexagons in which the niobium (tantalum) atoms fill larger cages. Magnetic susceptibility measurements on NblrSi and TalrSi indicate Pauli paramagnetism with room temperature susceptibilities of 0.30(5)·10-9 and 0.97(5)·10-9 m3/mol, respectively.
APA, Harvard, Vancouver, ISO, and other styles
34

Kaplunov, I. A., A. I. Kolesnikov, G. I. Kropotov, and V. E. Rogalin. "Optical Properties of Single-Crystal Germanium in the THz Range." Optics and Spectroscopy 126, no. 3 (March 2019): 191–94. http://dx.doi.org/10.1134/s0030400x19030093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Barmenkov, Yuri O., Alexander V. Kir’yanov, and Miguel V. Andrés. "Spectroscopic Properties of Holmium-Aluminum-Germanium Co-doped Silica Fiber." Fiber and Integrated Optics 39, no. 4 (July 3, 2020): 185–202. http://dx.doi.org/10.1080/01468030.2020.1826608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pushkarchuk, V. A., S. A. Kuten, A. P. Nizovtsev, and S. Ya Kilin. "Spin Properties of Germanium-Vacancy Centers in Bulk and Near-Surface Regions of Diamond." International Journal of Nanoscience 18, no. 03n04 (June 2019): 1940012. http://dx.doi.org/10.1142/s0219581x1940012x.

Full text
Abstract:
Germanium-vacancy (GeV) centers are now studied extensively due to perspectives of their applications in quantum information processing, nanometrology and nanoscale magnetic resonance imaging. One of the important requirements for these applications is a detailed understanding of the hyperfine interactions in such systems. Quantum chemistry simulation of the negatively charged GeV− color center in diamond is the primary goal of this paper in which we present preliminary results of computer simulation of the bulk H-terminated cluster C[Formula: see text][GeV−]H[Formula: see text], as well as of the surface cluster C[Formula: see text][GeV−]H[Formula: see text]_(100)_H[Formula: see text] having one dangling bond at (1 0 0) surface using the DFT/PW91/RI/def2-SVP level of theory.
APA, Harvard, Vancouver, ISO, and other styles
37

Babich, V. M., M. Ya Valakh, V. B. Kovalchuk, G. Yu Rudko, and N. I. Shakhraychuk. "Photoluminescence and Electrical Properties of Germanium-Doped and Thermally Annealed Silicon." physica status solidi (a) 117, no. 2 (February 16, 1990): K185—K188. http://dx.doi.org/10.1002/pssa.2211170255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Balasundaram, N., D. Mangalaraj, Sa K. Narayandass, and C. Balasubramanian. "Structure, dielectric, and AC conduction properties of amorphous germanium thin films." Physica Status Solidi (a) 130, no. 1 (March 16, 1992): 141–51. http://dx.doi.org/10.1002/pssa.2211300117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shevchenko, S. A., I. I. Khodos, and I. I. Snighireva. "Dislocation Dissociation and Electrical Properties of Plastically Deformed Germanium Single Crystals." physica status solidi (a) 91, no. 2 (October 16, 1985): 523–31. http://dx.doi.org/10.1002/pssa.2210910220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Khokhlov, A. F., A. I. Mashin, A. V. Ebshov, and Yu A. Mobdvinova. "The Properties of Amorphous Silicon Doped with the Isovalent Germanium Impurity." physica status solidi (a) 94, no. 1 (March 16, 1986): 379–84. http://dx.doi.org/10.1002/pssa.2210940148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Podkopaev, O. I., A. F. Shimanskii, N. O. Molotkovskaya, and T. V. Kulakovskaya. "Effect of the microstructure on electrical properties of high-purity germanium." Physics of the Solid State 55, no. 5 (May 2013): 949–51. http://dx.doi.org/10.1134/s1063783413050296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Venugopal, R., B. Sundaravel, I. H. Wilson, F. W. Wang, and X. X. Zhang. "Structural and magnetic properties of Fe–Ge layer produced by Fe ion-implantation into germanium." Journal of Applied Physics 91, no. 3 (February 2002): 1410–16. http://dx.doi.org/10.1063/1.1427135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pearsall, Thomas P. "Silicon-germanium alloys and heterostructures: Optical and electronic properties." Critical Reviews in Solid State and Materials Sciences 15, no. 6 (January 1989): 551–600. http://dx.doi.org/10.1080/10408438908243745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yongping, Duan, Zhao Qingming, Li Jiayun, Li Cong, Li Meili, Yan Yuan, and Sun Minhua. "Dynamics, thermodynamics properties and potential energy landscape of germanium dioxide." Journal of Non-Crystalline Solids 355, no. 52-54 (December 2009): 2663–67. http://dx.doi.org/10.1016/j.jnoncrysol.2009.08.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chambouleyron, I., F. Marques, J. Cisneros, F. Alvarez, S. Moehlecke, W. Losch, and I. Pereyra. "Optical properties of non-stoichiometric germanium nitride compounds (a-GeNx)." Journal of Non-Crystalline Solids 77-78 (December 1985): 1309–12. http://dx.doi.org/10.1016/0022-3093(85)90899-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dakhel, A. A. "Germanium Doping to Improve Carrier Mobility in CdO Films." Advances in OptoElectronics 2013 (April 3, 2013): 1–6. http://dx.doi.org/10.1155/2013/804646.

Full text
Abstract:
This investigation addresses the structural, optical, and electrical properties of germanium incorporated cadmium oxide (CdO : Ge) thin films. The focus was on the improvement in carrier mobility to achieve high transparency for near-infrared light and low resistivity at the same time. The properties were studied using X-ray diffraction, SEM, spectral photometry, and Hall measurements. All CdO : Ge films were polycrystalline with high texture orientation along [111] direction. It was observed that it is possible to control the carrier concentration () and mobility () with Ge-incorporation level. The mobility could be improved to a highest value of cm2/V·s with Ge doping of 0.25 wt% while maintaining the electrical resistivity as low as Ω·cm and good transparency % in the NIR spectral region. The results of the present work proved to select Ge as dopant to achieve high carrier mobility with low resistivity for application in transparent conducting oxide (TCO) field. Generally, the properties found make CdO : Ge films particularly interesting for the application in optoelectronic devices like thin-film solar cells.
APA, Harvard, Vancouver, ISO, and other styles
47

Ding, Yi, and Yanli Wang. "Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study." Physical Chemistry Chemical Physics 18, no. 33 (2016): 23080–88. http://dx.doi.org/10.1039/c6cp03724k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shojaei, Fazel, and Hong Seok Kang. "Electronic Structures and Li-Diffusion Properties of Group IV–V Layered Materials: Hexagonal Germanium Phosphide and Germanium Arsenide." Journal of Physical Chemistry C 120, no. 41 (October 6, 2016): 23842–50. http://dx.doi.org/10.1021/acs.jpcc.6b07903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Smith, Damon A., Vincent C. Holmberg, Michael R. Rasch, and Brian A. Korgel. "Optical Properties of Solvent-Dispersed and Polymer-Embedded Germanium Nanowires." Journal of Physical Chemistry C 114, no. 49 (November 16, 2010): 20983–89. http://dx.doi.org/10.1021/jp1055304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Khorkin, V. S., V. B. Voloshinov, A. I. Efimova, and L. A. Kulakova. "Acousto-Optic Properties of Germanium-, Selenium-, Silicon-, and Tellurium-Based Alloys." Optics and Spectroscopy 128, no. 2 (February 2020): 244–49. http://dx.doi.org/10.1134/s0030400x20020101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography