Academic literature on the topic 'Gesture Recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gesture Recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gesture Recognition"
Patil, Anuradha, Chandrashekhar M. Tavade, and . "Methods on Real Time Gesture Recognition System." International Journal of Engineering & Technology 7, no. 3.12 (July 20, 2018): 982. http://dx.doi.org/10.14419/ijet.v7i3.12.17617.
Full textBadagan, Sana, Deeksha R, K. Tarun Sai Teja, and Chetan J. "HAND GESTURE RECOGNITION." International Journal of Engineering Applied Sciences and Technology 8, no. 6 (October 1, 2023): 56–59. http://dx.doi.org/10.33564/ijeast.2023.v08i06.007.
Full textMa, Xianmin, and Xiaofeng Li. "Dynamic Gesture Contour Feature Extraction Method Using Residual Network Transfer Learning." Wireless Communications and Mobile Computing 2021 (October 13, 2021): 1–11. http://dx.doi.org/10.1155/2021/1503325.
Full textJasim, Mahmood, Tao Zhang, and Md Hasanuzzaman. "A Real-Time Computer Vision-Based Static and Dynamic Hand Gesture Recognition System." International Journal of Image and Graphics 14, no. 01n02 (January 2014): 1450006. http://dx.doi.org/10.1142/s0219467814500065.
Full textK, Srinivas, and Manoj Kumar Rajagopal. "STUDY OF HAND GESTURE RECOGNITION AND CLASSIFICATION." Asian Journal of Pharmaceutical and Clinical Research 10, no. 13 (April 1, 2017): 25. http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19540.
Full textKotavenuka, Swetha, Harshitha Kodakandla, Nimmakayala Sai Krishna, and Dr S. P. V. Subba Rao. "Hand Gesture Recognition." International Journal for Research in Applied Science and Engineering Technology 11, no. 1 (January 31, 2023): 331–35. http://dx.doi.org/10.22214/ijraset.2023.48557.
Full textChavan, Yogita. "Emotion and Gesture Recognition." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 04 (April 30, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem31827.
Full textPark, Jisun, Yong Jin, Seoungjae Cho, Yunsick Sung, and Kyungeun Cho. "Advanced Machine Learning for Gesture Learning and Recognition Based on Intelligent Big Data of Heterogeneous Sensors." Symmetry 11, no. 7 (July 16, 2019): 929. http://dx.doi.org/10.3390/sym11070929.
Full textNyirarugira, Clementine, Hyo-rim Choi, and TaeYong Kim. "Hand Gesture Recognition Using Particle Swarm Movement." Mathematical Problems in Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/1919824.
Full textFan, Jinlong, Yang Yue, Yu Wang, Bei Wan, Xudong Li, and Gengpai Hua. "A Continuous Gesture Segmentation and Recognition Method for Human-Robot Interaction." Journal of Physics: Conference Series 2213, no. 1 (March 1, 2022): 012039. http://dx.doi.org/10.1088/1742-6596/2213/1/012039.
Full textDissertations / Theses on the topic "Gesture Recognition"
Davis, James W. "Gesture recognition." Honors in the Major Thesis, University of Central Florida, 1994. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/126.
Full textBachelors
Arts and Sciences
Computer Science
Cheng, You-Chi. "Robust gesture recognition." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53492.
Full textKaâniche, Mohamed Bécha. "Human gesture recognition." Nice, 2009. http://www.theses.fr/2009NICE4032.
Full textIn this thesis, we aim to recognize gestures (e. G. Hand raising) and more generally short actions (e. G. Fall, bending) accomplished by an individual. Many techniques have already been proposed for gesture recognition in specific environment (e. G. Laboratory) using the cooperation of several sensors (e. G. Camera network, individual equipped with markers). Despite these strong hypotheses, gesture recognition is still brittle and often depends on the position of the individual relatively to the cameras. We propose to reduce these hypotheses in order to conceive general algorithm enabling the recognition of the gesture of an individual involving in an unconstrained environment and observed through limited number of cameras. The goal is to estimate the likelihood of gesture recognition in function of the observation conditions. Our method consists of classifying a set of gestures by learning motion descriptors. These motion descriptors are local signatures of the motion of corner points which are associated with their local textural description. We demonstrate the effectiveness of our motion descriptors by recognizing the actions of the public KTH database
Semprini, Mattia. "Gesture Recognition: una panoramica." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15672/.
Full textGingir, Emrah. "Hand Gesture Recognition System." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612532/index.pdf.
Full textDang, Darren Phi Bang. "Template based gesture recognition." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/41404.
Full textIncludes bibliographical references (p. 65-66).
by Darren PHi Bang Dang.
M.S.
Wang, Lei. "Personalized Dynamic Hand Gesture Recognition." Thesis, KTH, Medieteknik och interaktionsdesign, MID, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231345.
Full textMänniskliga gester, med spatiala/temporala variationer, är svåra att känna igen med en generisk modell eller klassificeringsmetod. För att komma till rätta med problemet, föreslås personifierade, dynamiska gest igenkänningssätt baserade på Dynamisk Time Warping (DTW) och ett nytt koncept: Subjekt-Relativt Nätverk för att beskriva likheter vid utförande av dynamiska gester, vilket ger en ny syn på gest igenkänning. Genom att klustra eller ordna träningssubjekt baserat på nätverket föreslås två personifieringsalgoritmer för generativa och diskriminerande modeller. Dessutom jämförs och integreras tre grundläggande igenkänningsmetoder, DTW-baserad mall-matchning, Hidden Markov Model (HMM) och Fisher Vector-klassificering i den föreslagna personifierade gestigenkännande ansatsen. De föreslagna tillvägagångssätten utvärderas på ett utmanande, dynamiskt handmanipulerings dataset DHG14/28, som innehåller djupbilderna och skelettkoordinaterna som returneras av Intels RealSense-djupkamera. Experimentella resultat visar att de föreslagna personifierade algoritmerna kan förbättra prestandan i jämfört medgrundläggande generativa och diskriminerande modeller och uppnå den högsta nivån på 86,2%.
Espinoza, Victor. "Gesture Recognition in Tennis Biomechanics." Master's thesis, Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/530096.
Full textM.S.E.E.
The purpose of this study is to create a gesture recognition system that interprets motion capture data of a tennis player to determine which biomechanical aspects of a tennis swing best correlate to a swing efficacy. For our learning set this work aimed to record 50 tennis athletes of similar competency with the Microsoft Kinect performing standard tennis swings in the presence of different targets. With the acquired data we extracted biomechanical features that hypothetically correlated to ball trajectory using proper technique and tested them as sequential inputs to our designed classifiers. This work implements deep learning algorithms as variable-length sequence classifiers, recurrent neural networks (RNN), to predict tennis ball trajectory. In attempt to learn temporal dependencies within a tennis swing, we implemented gate-augmented RNNs. This study compared the RNN to two gated models; gated recurrent units (GRU), and long short-term memory (LSTM) units. We observed similar classification performance across models while the gated-methods reached convergence twice as fast as the baseline RNN. The results displayed 1.2 entropy loss and 50 % classification accuracy indicating that the hypothesized biomechanical features were loosely correlated to swing efficacy or that they were not accurately depicted by the sensor
Temple University--Theses
Nygård, Espen Solberg. "Multi-touch Interaction with Gesture Recognition." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9126.
Full textThis master's thesis explores the world of multi-touch interaction with gesture recognition. The focus is on camera based multi-touch techniques, as these provide a new dimension to multi-touch with its ability to recognize objects. During the project, a multi-touch table based on the technology Diffused Surface Illumination has been built. In addition to building a table, a complete gesture recognition system has been implemented, and different gesture recognition algorithms have been successfully tested in a multi-touch environment. The goal with this table, and the accompanying gesture recognition system, is to create an open and affordable multi-touch solution, with the purpose of bringing multi-touch out to the masses. By doing this, more people will be able to enjoy the benefits of a more natural interaction with computers. In a larger perspective, multi-touch is just the beginning, and by adding additional modalities to our applications, such as speech recognition and full body tracking, a whole new level of computer interaction will be possible.
Khan, Muhammad. "Hand Gesture Detection & Recognition System." Thesis, Högskolan Dalarna, Datateknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:du-6496.
Full textBooks on the topic "Gesture Recognition"
Escalera, Sergio, Isabelle Guyon, and Vassilis Athitsos, eds. Gesture Recognition. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1.
Full textKonar, Amit, and Sriparna Saha. Gesture Recognition. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62212-5.
Full textDempsey, R. Dataglove gesture recognition using a neural network. Manchester: UMIST, 1993.
Find full textChaudhary, Ankit. Robust Hand Gesture Recognition for Robotic Hand Control. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4798-5.
Full textYang, Ming-Hsuan, and Narendra Ahuja. Face Detection and Gesture Recognition for Human-Computer Interaction. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1423-7.
Full text1950-, Ahuja Narendra, ed. Face detection and gesture recognition for human-computer interaction. Boston: Kluwer Academic, 2001.
Find full textYang, Ming-Hsuan. Face Detection and Gesture Recognition for Human-Computer Interaction. Boston, MA: Springer US, 2001.
Find full textHuman activity recognition and gesture spotting with body-worn sensors. Konstanz: Hartung-Gorre Verlag, 2005.
Find full textSowa, Timo. Understanding coverbal iconic gestures in shape descriptions. Berlin: Akademische Verlagsgesellschaft Aka, 2006.
Find full textMäntylä, Vesa-Matti. Discrete hidden Markov models with application to isolated user-dependent hand gesture recognition. Espoo [Finland]: Technical Research Centre of Finland, 2001.
Find full textBook chapters on the topic "Gesture Recognition"
Escalera, Sergio, Vassilis Athitsos, and Isabelle Guyon. "Challenges in Multi-modal Gesture Recognition." In Gesture Recognition, 1–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_1.
Full textFanello, Sean Ryan, Ilaria Gori, Giorgio Metta, and Francesca Odone. "Keep It Simple and Sparse: Real-Time Action Recognition." In Gesture Recognition, 303–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_10.
Full textWan, Jun, Qiuqi Ruan, Wei Li, and Shuang Deng. "One-Shot Learning Gesture Recognition from RGB-D Data Using Bag of Features." In Gesture Recognition, 329–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_11.
Full textKonečný, Jakub, and Michal Hagara. "One-Shot-Learning Gesture Recognition Using HOG-HOF Features." In Gesture Recognition, 365–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_12.
Full textJiang, Feng, Shengping Zhang, Shen Wu, Yang Gao, and Debin Zhao. "Multi-layered Gesture Recognition with Kinect." In Gesture Recognition, 387–416. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_13.
Full textWu, Jiaxiang, and Jian Cheng. "Bayesian Co-Boosting for Multi-modal Gesture Recognition." In Gesture Recognition, 417–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_14.
Full textGoussies, Norberto A., Sebastián Ubalde, and Marta Mejail. "Transfer Learning Decision Forests for Gesture Recognition." In Gesture Recognition, 443–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_15.
Full textPitsikalis, Vassilis, Athanasios Katsamanis, Stavros Theodorakis, and Petros Maragos. "Multimodal Gesture Recognition via Multiple Hypotheses Rescoring." In Gesture Recognition, 467–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_16.
Full textGillian, Nicholas, and Joseph A. Paradiso. "The Gesture Recognition Toolkit." In Gesture Recognition, 497–502. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_17.
Full textNguyen-Dinh, Long-Van, Alberto Calatroni, and Gerhard Tröster. "Robust Online Gesture Recognition with Crowdsourced Annotations." In Gesture Recognition, 503–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57021-1_18.
Full textConference papers on the topic "Gesture Recognition"
Nyaga, Casam, and Ruth Wario. "Towards Kenyan Sign Language Hand Gesture Recognition Dataset." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003281.
Full textPatel, Shubh, and R. Deepa. "Hand Gesture Recognition Used for Functioning System Using OpenCV." In International Research Conference on IOT, Cloud and Data Science. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-4589o3.
Full textZhang, Hong, and Jeong-Hoi Koo. "Development of a Wearable Gesture Recognition System." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80061.
Full textChen, Haodong, Wenjin Tao, Ming C. Leu, and Zhaozheng Yin. "Dynamic Gesture Design and Recognition for Human-Robot Collaboration With Convolutional Neural Networks." In 2020 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/isfa2020-9609.
Full textYi, Zhigang, Mingyu Zhou, Dan Xue, and Shusheng Peng. "Static Gesture Recognition in the cabin Based on 3D-TOF and Low Computing Power." In SAE 2023 Intelligent and Connected Vehicles Symposium. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-7068.
Full textRadkowski, Rafael, and Christian Stritzke. "Comparison Between 2D and 3D Hand Gesture Interaction for Augmented Reality Applications." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48155.
Full textMiral Kazmi, Syeda. "Hand Gesture Recognition for Sign language." In Human Interaction and Emerging Technologies (IHIET-AI 2022) Artificial Intelligence and Future Applications. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe100925.
Full textTeng, Zhiqiang, Haodong Chen, Qitao Hou, Wanbing Song, Chenchen Gu, and Ping Zhao. "Design of a Cognitive Rehabilitation System Based on Gesture Recognition." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23579.
Full textZhukovskaya, V. A., and A. V. Pyataeva. "Recurrent Neural Network for Recognition of Gestures of the Russian Language, Taking into Account the Language Dialect of the Siberian Region." In 32nd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/graphicon-2022-538-547.
Full textWei, Jian, Jiaqi Guo, Xiaoyuan Guo, Yong Jia, Qi Wang, and Shigang Wang. "Synchronous Gesture Interaction for Flat-Panel+Integral Imaging." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/dh.2022.w5a.8.
Full textReports on the topic "Gesture Recognition"
Yang, Jie, and Yangsheng Xu. Hidden Markov Model for Gesture Recognition. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada282845.
Full textMorton, Paul R., Edward L. Fix, and Gloria L. Calhoun. Hand Gesture Recognition Using Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada314933.
Full textVira, Naren. Gesture Recognition Development for the Interactive Datawall. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada476755.
Full textLampton, Donald R., Bruce W. Knerr, Bryan R. Clark, Glenn A. Martin, and Donald A. Washburn. Gesture Recognition System for Hand and Arm Signals. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada408459.
Full textVenetsky, Larry, Mark Husni, and Mark Yager. Gesture Recognition for UCAV-N Flight Deck Operations. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada422629.
Full text