To see the other types of publications on this topic, follow the link: Gevrey classes.

Journal articles on the topic 'Gevrey classes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Gevrey classes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hua, Chen, and Luigi Rodino. "Paradifferential calculus in Gevrey classes." Journal of Mathematics of Kyoto University 41, no. 1 (2001): 1–31. http://dx.doi.org/10.1215/kjm/1250517647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kajitani, Kunihiko, and Seiichiro Wakabayashi. "Microhyperbolic operators in Gevrey classes." Publications of the Research Institute for Mathematical Sciences 25, no. 2 (1989): 169–221. http://dx.doi.org/10.2977/prims/1195173608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Colombini, Ferruccio, Nicola Orrù, and Giovanni Taglialatela. "Strong hyperbolicity in Gevrey classes." Journal of Differential Equations 272 (January 2021): 222–54. http://dx.doi.org/10.1016/j.jde.2020.09.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lascar, Bernard, and Richard Lascar. "FBI transforms in Gevrey classes." Journal d'Analyse Mathématique 72, no. 1 (December 1997): 105–25. http://dx.doi.org/10.1007/bf02843155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Calvo, Daniela, Alessandro Morando, and Luigi Rodino. "Inhomogeneous Gevrey classes and ultradistributions." Journal of Mathematical Analysis and Applications 297, no. 2 (September 2004): 720–39. http://dx.doi.org/10.1016/j.jmaa.2004.04.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Calvo, Daniela, and María del Carmen Gómez-Collado. "On some generalizations of Gevrey classes." Mathematische Nachrichten 284, no. 7 (April 6, 2011): 856–74. http://dx.doi.org/10.1002/mana.200910840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yonemura, Akiyoshi. "Newton polygons and formal Gevrey classes." Publications of the Research Institute for Mathematical Sciences 26, no. 1 (1990): 197–204. http://dx.doi.org/10.2977/prims/1195171666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jannelli, Enrico. "Regularly hyperbolic systems and Gevrey classes." Annali di Matematica Pura ed Applicata 140, no. 1 (December 1985): 133–45. http://dx.doi.org/10.1007/bf01776846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Albanese, Angela A., Andrea Corli, and Luigi Rodino. "Hypoellipticity and Local Solvability in Gevrey Classes." Mathematische Nachrichten 242, no. 1 (July 2002): 5–16. http://dx.doi.org/10.1002/1522-2616(200207)242:1<5::aid-mana5>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KAJITANI, Kunihiko, and Seiichiro WAKABAYASHI. "The hyperbolic mixed problem in Gevrey classes." Japanese journal of mathematics. New series 15, no. 2 (1989): 309–83. http://dx.doi.org/10.4099/math1924.15.309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

CICOGNANI, M., and L. ZANGHIRATI. "NONLINEAR HYPERBOLIC CAUCHY PROBLEMS IN GEVREY CLASSES." Chinese Annals of Mathematics 22, no. 04 (October 2001): 417–26. http://dx.doi.org/10.1142/s0252959901000413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Oliaro, Alessandro, Luigi Rodino, and Patrik Wahlberg. "Almost periodic pseudodifferential operators and Gevrey classes." Annali di Matematica Pura ed Applicata 191, no. 4 (May 10, 2011): 725–60. http://dx.doi.org/10.1007/s10231-011-0203-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liess, Otto, and Luigi Rodino. "Fourier integral operators and inhomogeneous Gevrey classes." Annali di Matematica Pura ed Applicata 150, no. 1 (December 1988): 167–262. http://dx.doi.org/10.1007/bf01761469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Calvo, Daniela, and L. Rodino. "Inhomogeneous Gevrey ultradistributions and Cauchy problem." Bulletin: Classe des sciences mathematiques et natturalles 133, no. 31 (2006): 176–86. http://dx.doi.org/10.2298/bmat0631176c.

Full text
Abstract:
After a short survey on Gevrey functions and ultradistributions, we present the inhomogeneous Gevrey ultradistributions introduced recently by the authors in collaboration with A. Morando, cf. [7]. Their definition depends on a given weight function ?, satisfying suitable hypotheses, according to Liess-Rodino [16]. As an application, we define (s, ?)-hyperbolic partial differential operators with constant coefficients (for s > 1), and prove for them the well-posedness of the Cauchy problem in the frame of the corresponding inhomogeneous ultradistributions. This sets in the dual spaces a similar result of Calvo [4] in the inhomogeneous Gevrey classes, that in turn extends a previous result of Larsson [14] for weakly hyperbolic operators in standard homogeneous Gevrey classes. AMS Mathematics Subject Classification (2000): 46F05, 35E15, 35S05.
APA, Harvard, Vancouver, ISO, and other styles
15

FUJITA, Keiko, and Mitsuo MORIMOTO. "Gevrey Classes on Compact Real Analytic Riemannian Manifolds." Tokyo Journal of Mathematics 18, no. 2 (December 1995): 341–55. http://dx.doi.org/10.3836/tjm/1270043467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rodino, Luigi. "Pseudodifferential operators with multiple characteristics and Gevrey classes." Banach Center Publications 19, no. 1 (1987): 263–67. http://dx.doi.org/10.4064/-19-1-263-267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Schmets, Jean, and Manuel Valdivia. "The Zahorski theorem is valid in Gevrey classes." Fundamenta Mathematicae 151, no. 2 (1996): 149–66. http://dx.doi.org/10.4064/fm-151-2-149-166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zanghirati, Luisa. "Pseudodifferential operators of infinite order and Gevrey classes." ANNALI DELL'UNIVERSITA' DI FERRARA 31, no. 1 (January 1985): 197–219. http://dx.doi.org/10.1007/bf02831766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bendib, Elmostafa, and Hicham Zoubeir. "Développement en série de fonctions holomorphes des fonctions d'une classe de Gevrey sur l'intervalle [-1;1]." Publications de l'Institut Math?matique (Belgrade) 98, no. 112 (2015): 287–93. http://dx.doi.org/10.2298/pim141101010b.

Full text
Abstract:
We characterize Gevrey functions on the unit interval [-1; 1] as sums of holomorphic functions in specific neighborhoods of [-1; 1]. As an application of our main theorem, we perform a simple proof for Dyn'kin's theorem of pseudoanalytic extension for Gevrey classes on [-1; 1].
APA, Harvard, Vancouver, ISO, and other styles
20

Chaumat, Jacques, and Anne-Marie Chollet. "Propriétés de l'intersection des classes de Gevrey et de certaines autres classes." Bulletin des Sciences Mathématiques 122, no. 6 (October 1998): 455–85. http://dx.doi.org/10.1016/s0007-4497(98)80003-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pilipovic, Stevan, Nenad Teofanov, and Filip Tomic. "Beyond gevrey regularity: Superposition and propagation of singularities." Filomat 32, no. 8 (2018): 2763–82. http://dx.doi.org/10.2298/fil1808763p.

Full text
Abstract:
We propose the relaxation of Gevrey regularity condition by using sequences which depend on two parameters, and define spaces of ultradifferentiable functions which contain Gevrey classes. It is shown that such a space is closed under superposition, and therefore inverse closed as well. Furthermore, we study partial differential operators whose coefficients are less regular then Gevrey-type ultradifferentiable functions. To that aim we introduce appropriate wave front sets and prove a theorem on propagation of singularities. This extends related known results in the sense that assumptions on the regularity of the coefficients are weakened.
APA, Harvard, Vancouver, ISO, and other styles
22

Ermine, Jean-Louis. "Développements asymptotiques et microfonctions dans les classes de Gevrey." Publications of the Research Institute for Mathematical Sciences 21, no. 4 (1985): 737–59. http://dx.doi.org/10.2977/prims/1195178927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

SANZ, J. "LINEAR CONTINUOUS EXTENSION OPERATORS FOR GEVREY CLASSES ON POLYSECTORS." Glasgow Mathematical Journal 45, no. 2 (May 2003): 199–216. http://dx.doi.org/10.1017/s0017089503001319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liess, Otto. "Microlocality of the cauchy problem in inhomogeneous gevrey classes." Communications in Partial Differential Equations 11, no. 13 (January 1986): 1379–437. http://dx.doi.org/10.1080/03605308608820468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Taniguchi, Kazuo. "On multi-products of pseudo-differential operators in Gevrey classes and its application to Gevrey hypoellipticity." Proceedings of the Japan Academy, Series A, Mathematical Sciences 61, no. 9 (1985): 291–93. http://dx.doi.org/10.3792/pjaa.61.291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Stepanets, A. I., A. S. Serdyuk, and A. L. Shidlich. "On relationship between classes of $(\Psi, \overline\upbeta)$ -differentiable functions and Gevrey classes." Ukrainian Mathematical Journal 61, no. 1 (January 2009): 171–77. http://dx.doi.org/10.1007/s11253-009-0189-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ider, Mostefa. "On the superpostition of functions in carleman classes." Bulletin of the Australian Mathematical Society 39, no. 3 (June 1989): 471–76. http://dx.doi.org/10.1017/s0004972700003397.

Full text
Abstract:
In this paper we deal with classes of infinitely differentiable functions known in the literature as Carleman classes. Our main result is a characterisation of those Carleman classes that are closed under superposition. This result enables us to give a complete solution to a problem that has been considered by Gevrey, Cartan and Bang.
APA, Harvard, Vancouver, ISO, and other styles
28

Zoubeir, Hicham. "Solvability in Gevrey Classes of Some Nonlinear Fractional Functional Differential Equations." International Journal of Differential Equations 2020 (June 29, 2020): 1–10. http://dx.doi.org/10.1155/2020/3739249.

Full text
Abstract:
Our purpose in this paper is to prove, under some regularity conditions on the data, the solvability in a Gevrey class of bound −1 on the interval −1,1 of a class of nonlinear fractional functional differential equations.
APA, Harvard, Vancouver, ISO, and other styles
29

Cicognani, Massimo, and Luisa Zanghirati. "Nonlinear weakly hyperbolic equations with Levi condition in Gevrey classes." Tsukuba Journal of Mathematics 25, no. 1 (June 2001): 85–102. http://dx.doi.org/10.21099/tkbjm/1496164214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Itoh, Shigeharu. "The cauchy problem for weakly hyperbolic equations in gevrey classes." Communications in Partial Differential Equations 14, no. 1 (January 1989): 27–61. http://dx.doi.org/10.1080/03605308908820590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shinkai, Kenzo, and Kazuo Taniguchi. "Fundamental solution for a degenerate hyperbolic operator in Gevrey classes." Publications of the Research Institute for Mathematical Sciences 28, no. 2 (1992): 169–205. http://dx.doi.org/10.2977/prims/1195168661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Castellanos, Jairo E., Paulo D. Cordaro, and Gerson Petronilho. "Gevrey vectors in involutive tube structures and Gevrey regularity for the solutions of certain classes of semilinear systems." Journal d'Analyse Mathématique 119, no. 1 (April 2013): 333–64. http://dx.doi.org/10.1007/s11854-013-0011-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Markin, Marat V. "Comment on “On the Carleman Classes of Vectors of a Scalar Type Spectral Operator”." International Journal of Mathematics and Mathematical Sciences 2018 (2018): 1–3. http://dx.doi.org/10.1155/2018/2135740.

Full text
Abstract:
The results of three papers, in which the author inadvertently overlooks certain deficiencies in the descriptions of the Carleman classes of vectors, in particular the Gevrey classes, of a scalar type spectral operator in a complex Banach space established in “On the Carleman Classes of Vectors of a Scalar Type Spectral Operator,” Int. J. Math. Math. Sci. 2004 (2004), no. 60, 3219–3235, are observed to remain true due to more recent findings.
APA, Harvard, Vancouver, ISO, and other styles
34

Komlov, A. V. "Estimates of the Gevrey classes of scattering data for polynomial potentials." Russian Mathematical Surveys 63, no. 4 (August 31, 2008): 788–89. http://dx.doi.org/10.1070/rm2008v063n04abeh004559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Colombini, F., and J. Rauch. "Sharp Finite Speed for Hyperbolic Problems Well Posed in Gevrey Classes." Communications in Partial Differential Equations 36, no. 1 (January 2011): 1–9. http://dx.doi.org/10.1080/03605302.2010.531859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Honda, Naofumi. "On the reconstruction theorem of holonomic modules in the Gevrey classes." Publications of the Research Institute for Mathematical Sciences 27, no. 6 (1991): 923–43. http://dx.doi.org/10.2977/prims/1195169005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Morando, Alessandro. "Hypoellipticity and local solvability of pseudolocal continuous linear operators in Gevrey classes." Tsukuba Journal of Mathematics 28, no. 1 (June 2004): 137–53. http://dx.doi.org/10.21099/tkbjm/1496164718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Colombini, Ferruccio, and Tatsuo Nishitani. "Systèmes fois fortement hyperboliques dans C∞ et dans les classes de Gevrey." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, no. 11 (June 2000): 969–72. http://dx.doi.org/10.1016/s0764-4442(00)00297-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Langenbruch, Michael. "Surjectivity of Partial Differential Operators on Gevrey Classes and Extension of Regularity." Mathematische Nachrichten 196, no. 1 (1998): 103–40. http://dx.doi.org/10.1002/mana.19981960106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Albanese, A. A., and P. Popivanov. "On the global solvability in Gevrey classes on the n-dimensional torus." Journal of Mathematical Analysis and Applications 297, no. 2 (September 2004): 659–72. http://dx.doi.org/10.1016/j.jmaa.2004.04.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kostic, Marko. "Regularization of some classes of ultradistribution semigroups and sines." Publications de l'Institut Math?matique (Belgrade) 87, no. 101 (2010): 9–37. http://dx.doi.org/10.2298/pim1001009k.

Full text
Abstract:
We systematically analyze regularization of different kinds of ultradistribution semigroups and sines, in general, with nondensely defined generators and contemplate several known results concerning the regularization of Gevrey type ultradistribution semigroups. We prove that, for every closed linear operator A which generates an ultradistribution semigroup (sine), there exists a bounded injective operator C such that A generates a global differentiable C-semigroup (C-cosine function) whose derivatives possess some expected properties of operator valued ultradifferentiable functions. With the help of regularized semigroups, we establish the new important characterizations of abstract Beurling spaces associated to nondensely defined generators of ultradistribution semigroups (sines). The study of regularization of ultradistribution sines also enables us to perceive significant ultradifferentiable properties of higher-order abstract Cauchy problems.
APA, Harvard, Vancouver, ISO, and other styles
42

Gramchev, Todor V. "The stationary phase method in Gevrey classes and Fourier integral operators on ultradistributions." Banach Center Publications 19, no. 1 (1987): 101–12. http://dx.doi.org/10.4064/-19-1-101-112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tahara, Hidetoshi. "Cauchy problems for Fuchsian hyperbolic equations in spaces of functions of Gevrey classes." Proceedings of the Japan Academy, Series A, Mathematical Sciences 61, no. 3 (1985): 63–65. http://dx.doi.org/10.3792/pjaa.61.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

WAKABAYASHI, Seiiehiro. "Singularities of solutions of the Cauchy problem for hyperbolic systems in Gevrey classes." Japanese journal of mathematics. New series 11, no. 1 (1985): 157–201. http://dx.doi.org/10.4099/math1924.11.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

TAHARA, Hidetoshi. "Singular hyperbolic systems, VI. Asymptotic analysis for Fuchsian hyperbolic equations in Gevrey classes." Journal of the Mathematical Society of Japan 39, no. 4 (October 1987): 551–80. http://dx.doi.org/10.2969/jmsj/03940551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Thilliez, Vincent. "Classes de Gevrey non isotropes dans les domaines de type fini de ℂ2." Journal d Analyse Mathematique 60, no. 1 (December 1993): 259–305. http://dx.doi.org/10.1007/bf03341976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Albanese, A. A., and L. Zanghirati. "Global hypoellipticity and global solvability in Gevrey classes on the n-dimensional torus." Journal of Differential Equations 199, no. 2 (May 2004): 256–68. http://dx.doi.org/10.1016/j.jde.2004.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Itoh, Shigeharu. "Well-posedness of the Cauchy problem for some weakly hyperbolic operators in Gevrey classes." Proceedings of the Japan Academy, Series A, Mathematical Sciences 61, no. 3 (1985): 66–69. http://dx.doi.org/10.3792/pjaa.61.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Qifan. "Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes." Communications on Pure & Applied Analysis 11, no. 3 (2012): 1097–109. http://dx.doi.org/10.3934/cpaa.2012.11.1097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Corli, Andrea. "On local solvability in gevrey classes of linear partial differential operators with multiple characteristics." Communications in Partial Differential Equations 14, no. 1 (January 1989): 1–25. http://dx.doi.org/10.1080/03605308908820589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography