Journal articles on the topic 'GFET'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'GFET.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Safari, Ali, Massoud Dousti, and Mohammad Bagher Tavakoli. "Distributed Amplifier Based on Monolayer Graphene Field Effect Transistor." Journal of Circuits, Systems and Computers 28, no. 14 (February 25, 2019): 1950231. http://dx.doi.org/10.1142/s0218126619502311.
Full textJmai, Bassem, Vitor Silva, and Paulo M. Mendes. "2D Electronics Based on Graphene Field Effect Transistors: Tutorial for Modelling and Simulation." Micromachines 12, no. 8 (August 18, 2021): 979. http://dx.doi.org/10.3390/mi12080979.
Full textToral-Lopez, Alejandro, Enrique G. Marin, Francisco Pasadas, Jose Maria Gonzalez-Medina, Francisco G. Ruiz, David Jiménez, and Andres Godoy. "GFET Asymmetric Transfer Response Analysis through Access Region Resistances." Nanomaterials 9, no. 7 (July 18, 2019): 1027. http://dx.doi.org/10.3390/nano9071027.
Full textSri Selvarajan, Reena, Azrul Azlan Hamzah, Norliana Yusof, and Burhanuddin Yeop Majlis. "Channel length scaling and electrical characterization of graphene field effect transistor (GFET)." Indonesian Journal of Electrical Engineering and Computer Science 15, no. 2 (August 1, 2019): 697. http://dx.doi.org/10.11591/ijeecs.v15.i2.pp697-703.
Full textXiao, Xiang-Jie, Piao-Rong Xu, Gen-Hua Liu, Hui-Ying Zhou, Jian-Jun Li, Ai-Bin Chen, Yong-Zhong Zhang, and Hong-Xu Huang. "A numerical model of electrical characteristics for the monolayer graphene field effect transistors." European Physical Journal Applied Physics 86, no. 3 (June 2019): 30101. http://dx.doi.org/10.1051/epjap/2019190124.
Full textNastasi, Giovanni, and Vittorio Romano. "An Efficient GFET Structure." IEEE Transactions on Electron Devices 68, no. 9 (September 2021): 4729–34. http://dx.doi.org/10.1109/ted.2021.3096492.
Full textBungon, Theodore, Carrie Haslam, Samar Damiati, Benjamin O’Driscoll, Toby Whitley, Paul Davey, Giuliano Siligardi, Jerome Charmet, and Shakil A. Awan. "Graphene FET Sensors for Alzheimer’s Disease Protein Biomarker Clusterin Detection." Proceedings 60, no. 1 (November 5, 2020): 14. http://dx.doi.org/10.3390/iecb2020-07229.
Full textLi, Fang, Zhongrong Wang, and Yunfang Jia. "Reduced Carboxylate Graphene Oxide based Field Effect Transistor as Pb2+ Aptamer Sensor." Micromachines 10, no. 6 (June 11, 2019): 388. http://dx.doi.org/10.3390/mi10060388.
Full textAkbari, Moaazameh, Mehdi Jafari Shahbazzadeh, Luigi La Spada, and Alimorad Khajehzadeh. "The Graphene Field Effect Transistor Modeling Based on an Optimized Ambipolar Virtual Source Model for DNA Detection." Applied Sciences 11, no. 17 (August 31, 2021): 8114. http://dx.doi.org/10.3390/app11178114.
Full textBehera, S., S. R. Pattanaik, and G. Dash. "Contact Resistance Induced Variability in Graphene Field Effect Transistors." Journal of Scientific Research 13, no. 1 (January 1, 2021): 153–63. http://dx.doi.org/10.3329/jsr.v13i1.48948.
Full textBehera, S., S. R. Pattanaik, and G. Dash. "Contact Resistance Induced Variability in Graphene Field Effect Transistors." Journal of Scientific Research 13, no. 1 (January 1, 2021): 153–63. http://dx.doi.org/10.3329/jsr.v13i1.48948.
Full textJia, Yunfang, Jizhao Zhang, and Qingjie Fan. "A disposable DNA methylation sensor based on the printable graphene field effect transistor." E3S Web of Conferences 271 (2021): 04045. http://dx.doi.org/10.1051/e3sconf/202127104045.
Full textIsmail, Muhamad Amri, Khairil Mazwan Mohd Zaini, and Mohd Ismahadi Syono. "Modeling of Dirac voltage for highly p-doped graphene field-effect transistor measured at atmospheric pressure." Bulletin of Electrical Engineering and Informatics 9, no. 5 (October 1, 2020): 2117–24. http://dx.doi.org/10.11591/eei.v9i5.2209.
Full textSafari, Ali, Massoud Dousti, and Mohammad Bagher Tavakoli. "Monolayer Graphene Field Effect Transistor-Based Operational Amplifier." Journal of Circuits, Systems and Computers 28, no. 03 (February 24, 2019): 1950052. http://dx.doi.org/10.1142/s021812661950052x.
Full textZhu, R., Y. Zhang, J. Luo, S. Chang, Hao Wang, Q. Huang, and Jin He. "Graphene Field Effect Transistor’s Circuit Modeling and Radio Frequency Application Study." Key Engineering Materials 645-646 (May 2015): 139–44. http://dx.doi.org/10.4028/www.scientific.net/kem.645-646.139.
Full textFadil, Dalal, Vikram Passi, Wei Wei, Soukaina Ben Salk, Di Zhou, Wlodek Strupinski, Max C. Lemme, et al. "A Broadband Active Microwave Monolithically Integrated Circuit Balun in Graphene Technology." Applied Sciences 10, no. 6 (March 23, 2020): 2183. http://dx.doi.org/10.3390/app10062183.
Full textS., Nanda B., and Puttaswamy P. S. "Modeling and simulation of graphene field effect transistor (GFET)." International Journal of Electrical and Computer Engineering (IJECE) 9, no. 6 (December 1, 2019): 4826. http://dx.doi.org/10.11591/ijece.v9i6.pp4826-4835.
Full textDinh, Hien Sy. "Simulation of current-voltage characteristics of graphene field effect transistor (GFET)." Science and Technology Development Journal 16, no. 3 (September 30, 2013): 5–12. http://dx.doi.org/10.32508/stdj.v16i3.1633.
Full textKam, Kevin, Brianne Tengan, Cody Hayashi, Richard Ordonez, and David Garmire. "Polar Organic Gate Dielectrics for Graphene Field-Effect Transistor-Based Sensor Technology." Sensors 18, no. 9 (August 23, 2018): 2774. http://dx.doi.org/10.3390/s18092774.
Full textLi, Shasha, Tao Deng, Yang Zhang, Yuning Li, Weijie Yin, Qi Chen, and Zewen Liu. "Solar-blind ultraviolet detection based on TiO2 nanoparticles decorated graphene field-effect transistors." Nanophotonics 8, no. 5 (April 26, 2019): 899–908. http://dx.doi.org/10.1515/nanoph-2019-0060.
Full textSingh, Paramjot, Parsoua Abedini Sohi, and Mojtaba Kahrizi. "Finite Element Modelling of Bandgap Engineered Graphene FET with the Application in Sensing Methanethiol Biomarker." Sensors 21, no. 2 (January 15, 2021): 580. http://dx.doi.org/10.3390/s21020580.
Full textKurchak, Anatolii I., Anna N. Morozovska, and Maksym V. Strikha. "Hysteretic phenomena in GFET: Comprehensive theory and experiment." Journal of Applied Physics 122, no. 4 (July 28, 2017): 044504. http://dx.doi.org/10.1063/1.4996095.
Full textFahim-Al-Fattah, Md, Md Tawabur Rahman, Md Sherajul Islam, and Ashraful G. Bhuiyan. "A Study on Theoretical Performance of Graphene FET using Analytical Approach with Reference to High Cutoff Frequency." International Journal of Nanoscience 15, no. 03 (May 10, 2016): 1640001. http://dx.doi.org/10.1142/s0219581x16400019.
Full textHao, Zhuang, Ziran Wang, Yijun Li, Yibo Zhu, Xuejun Wang, Carlos Gustavo De Moraes, Yunlu Pan, Xuezeng Zhao, and Qiao Lin. "Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications." Nanoscale 10, no. 46 (2018): 21681–88. http://dx.doi.org/10.1039/c8nr04315a.
Full textKhan, Niazul I., and Edward Song. "Detection of an IL-6 Biomarker Using a GFET Platform Developed with a Facile Organic Solvent-Free Aptamer Immobilization Approach." Sensors 21, no. 4 (February 13, 2021): 1335. http://dx.doi.org/10.3390/s21041335.
Full textZhang, Yanan, Yue Ding, Can Li, Huaqiang Xu, Chunxiang Liu, Jingjing Wang, Yong Ma, Junfeng Ren, Yuefeng Zhao, and Weiwei Yue. "An optic-fiber graphene field effect transistor biosensor for the detection of single-stranded DNA." Analytical Methods 13, no. 15 (2021): 1839–46. http://dx.doi.org/10.1039/d1ay00101a.
Full textHu, Guangliang, Jingying Wu, Chunrui Ma, Zhongshuai Liang, Weihua Liu, Ming Liu, Judy Z. Wu, and Chun-Lin Jia. "Controlling the Dirac point voltage of graphene by mechanically bending the ferroelectric gate of a graphene field effect transistor." Materials Horizons 6, no. 2 (2019): 302–10. http://dx.doi.org/10.1039/c8mh01499j.
Full textMasoumi, Saeid, Hassan Hajghassem, Alireza Erfanian, and Ahmad Molaei Rad. "Design and manufacture of TNT explosives detector sensors based on GFET." Sensor Review 38, no. 2 (March 19, 2018): 181–93. http://dx.doi.org/10.1108/sr-08-2017-0167.
Full textZhang, Ji, Yawei Lv, Sheng Chang, Hao Wang, Jin He, and Qijun Huang. "Prior knowledge input neural network method for GFET description." Journal of Computational Electronics 15, no. 3 (June 20, 2016): 911–18. http://dx.doi.org/10.1007/s10825-016-0842-1.
Full textPurwidyantri, Agnes, Telma Domingues, Jérôme Borme, Joana Rafaela Guerreiro, Andrey Ipatov, Catarina M. Abreu, Marco Martins, Pedro Alpuim, and Marta Prado. "Influence of the Electrolyte Salt Concentration on DNA Detection with Graphene Transistors." Biosensors 11, no. 1 (January 17, 2021): 24. http://dx.doi.org/10.3390/bios11010024.
Full textAbuelma’atti, Muhammad Taher. "Harmonic and intermodulation performance of MoS2FET- and GFET-based amplifiers." Analog Integrated Circuits and Signal Processing 76, no. 1 (April 27, 2013): 147–54. http://dx.doi.org/10.1007/s10470-013-0068-0.
Full textNastasi, Giovanni, and Vittorio Romano. "A full coupled drift-diffusion-Poisson simulation of a GFET." Communications in Nonlinear Science and Numerical Simulation 87 (August 2020): 105300. http://dx.doi.org/10.1016/j.cnsns.2020.105300.
Full textTakabayashi, Susumu, Meng Yang, Shuichi Ogawa, Yuji Takakuwa, Tetsuya Suemitsu, and Taiichi Otsuji. "Dielectric-Tuned Diamondlike Carbon Materials for an Ultrahigh-Speed Self-Aligned Graphene Channel Field Effect Transistor." Advances in Science and Technology 77 (September 2012): 270–75. http://dx.doi.org/10.4028/www.scientific.net/ast.77.270.
Full textTakabayashi, Susumu, Meng Yang, Shuichi Ogawa, Yuji Takakuwa, Tetsuya Suemitsu, and Taiichi Otsuji. "Dielectric-tuned Diamondlike Carbon Materials for High-performance Self-aligned Graphene-channel Field Effect Transistors." MRS Proceedings 1451 (2012): 185–90. http://dx.doi.org/10.1557/opl.2012.960.
Full textNekrasov, Kireev, Emelianov, and Bobrinetskiy. "Graphene-Based Sensing Platform for On-Chip Ochratoxin A Detection." Toxins 11, no. 10 (September 20, 2019): 550. http://dx.doi.org/10.3390/toxins11100550.
Full textFregonese, Sebastien, Manuel Potereau, Nathalie Deltimple, Cristell Maneux, and Thomas Zimmer. "Benchmarking of GFET devices for amplifier application using multiscale simulation approach." Journal of Computational Electronics 12, no. 4 (November 15, 2013): 692–700. http://dx.doi.org/10.1007/s10825-013-0525-0.
Full textSingh, Neeta, Sachin Kumar, Binod Kumar Kanaujia, Mirza Tariq Beg, Mainuddin, and Sandeep Kumar. "A compact broadband GFET based rectenna for RF energy harvesting applications." Microsystem Technologies 26, no. 6 (January 2, 2020): 1881–88. http://dx.doi.org/10.1007/s00542-019-04737-0.
Full textLamberti, P., M. La Mura, F. Pasadas, D. Jiménez, and V. Tucci. "Tolerance analysis of a GFET transistor for aerospace and aeronautical application." IOP Conference Series: Materials Science and Engineering 1024, no. 1 (January 1, 2021): 012005. http://dx.doi.org/10.1088/1757-899x/1024/1/012005.
Full textBandyopadhyay, M., G. Chakraborty, S. Roy, and S. Bhattacharjee. "Study of Graphene field effect transistor (GFET) for chemical sensing application." Journal of Physics: Conference Series 1797, no. 1 (February 1, 2021): 012045. http://dx.doi.org/10.1088/1742-6596/1797/1/012045.
Full textVimala, P., Manjunath Bassapuri, C. R. Harshavardhan, P. Harshith, Rahul Jarali, and T. S. Arun Samuel. "Study of a New Device Structure: Graphene Field Effect Transistor (GFET)." Journal of Nano- and Electronic Physics 13, no. 4 (2021): 04021–1. http://dx.doi.org/10.21272/jnep.13(4).04021.
Full textUpadhyay, Abhishek Kumar, Ajay Kumar Kushwaha, and Santosh Kumar Vishvakarma. "A Unified Scalable Quasi-Ballistic Transport Model of GFET for Circuit Simulations." IEEE Transactions on Electron Devices 65, no. 2 (February 2018): 739–46. http://dx.doi.org/10.1109/ted.2017.2782658.
Full textPacheco-Sanchez, Anibal, Javier N. Ramos-Silva, Eloy Ramirez-Garcia, and David Jimenez. "A Small-Signal GFET Equivalent Circuit Considering an Explicit Contribution of Contact Resistances." IEEE Microwave and Wireless Components Letters 31, no. 1 (January 2021): 29–32. http://dx.doi.org/10.1109/lmwc.2020.3036845.
Full textNimje, Rohit, Rabinder Henry, Amit Patwardhan, Jayant Pawar, Prakash Viswanathan, Ashish Kumar Patel, and Pratik More. "AC and DC caracteristics of simulated Doped Graphene Field Effect Transistor (GFET) Frequency Multipliyer." International Journal of Applied Engineering Research 14, no. 1 (January 15, 2019): 240. http://dx.doi.org/10.37622/ijaer/14.1.2019.240-245.
Full textLiang, Ji, Xing Yang, Shijun Zheng, Chongling Sun, Menglun Zhang, Hao Zhang, Daihua Zhang, and Wei Pang. "Modulation of acousto-electric current using a hybrid on-chip AlN SAW/GFET device." Applied Physics Letters 110, no. 24 (June 12, 2017): 243504. http://dx.doi.org/10.1063/1.4986481.
Full textYang, Xinxin, Andrei Vorobiev, Jian Yang, Kjell Jeppson, and Jan Stake. "A Linear-Array of 300-GHz Antenna Integrated GFET Detectors on a Flexible Substrate." IEEE Transactions on Terahertz Science and Technology 10, no. 5 (September 2020): 554–57. http://dx.doi.org/10.1109/tthz.2020.2997599.
Full textRoslan, Ameer F., K. E. Kaharudin, F. Salehuddin, A. S. M. Zain, I. Ahmad, Z. A. N. Faizah, H. Hazura, et al. "Optimization of 10nm Bi-GFET Device for higher ION/IOFF ratio using Taguchi Method." Journal of Physics: Conference Series 1123 (November 2018): 012046. http://dx.doi.org/10.1088/1742-6596/1123/1/012046.
Full textBardhan, Sudipta, Manodipan Sahoo, and Hafizur Rahaman. "Boltzmann transport equation‐based semi‐classical drain current model for bilayer GFET including scattering effects." IET Circuits, Devices & Systems 13, no. 4 (May 16, 2019): 456–64. http://dx.doi.org/10.1049/iet-cds.2018.5104.
Full textPasadas, Francisco, and David Jimenez. "Large-Signal Model of Graphene Field-Effect Transistors—Part I: Compact Modeling of GFET Intrinsic Capacitances." IEEE Transactions on Electron Devices 63, no. 7 (July 2016): 2936–41. http://dx.doi.org/10.1109/ted.2016.2570426.
Full textBala Tripura Sundari, B., and K. Arya Raj. "DC, frequency characterization of Dual Gated Graphene FET (GFET) Compact Model and its Circuit Application - Doubler Circuit." IOP Conference Series: Materials Science and Engineering 225 (August 2017): 012016. http://dx.doi.org/10.1088/1757-899x/225/1/012016.
Full textYadav, Deepika, Gen Tamamushi, Takayuki Watanabe, Junki Mitsushio, Youssef Tobah, Kenta Sugawara, Alexander A. Dubinov, et al. "Terahertz light-emitting graphene-channel transistor toward single-mode lasing." Nanophotonics 7, no. 4 (March 28, 2018): 741–52. http://dx.doi.org/10.1515/nanoph-2017-0106.
Full text