Journal articles on the topic 'GGGGCC repeats'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'GGGGCC repeats.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jiao, Bin, Mengli Wang, Hao Feng, et al. "Downregulation of TOP2 modulates neurodegeneration caused by GGGGCC expanded repeats." Human Molecular Genetics 30, no. 10 (2021): 893–901. http://dx.doi.org/10.1093/hmg/ddab079.
Full textLiu, Xiaole, Xinyue Zhao, Jinhan He, et al. "Advances in the Structure of GGGGCC Repeat RNA Sequence and Its Interaction with Small Molecules and Protein Partners." Molecules 28, no. 15 (2023): 5801. http://dx.doi.org/10.3390/molecules28155801.
Full textvan ‘t Spijker, Heleen M., Emily E. Stackpole, Sandra Almeida, et al. "Ribosome profiling reveals novel regulation of C9ORF72 GGGGCC repeat-containing RNA translation." RNA 28, no. 2 (2021): 123–38. http://dx.doi.org/10.1261/rna.078963.121.
Full textBabić Leko, Mirjana, Vera Župunski, Jason Kirincich, et al. "Molecular Mechanisms of Neurodegeneration Related to C9orf72 Hexanucleotide Repeat Expansion." Behavioural Neurology 2019 (January 15, 2019): 1–18. http://dx.doi.org/10.1155/2019/2909168.
Full textOhki, Yu, Andrea Wenninger-Weinzierl, Alexander Hruscha, et al. "Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration." Molecular Neurodegeneration 12, no. 1 (2017): 6. https://doi.org/10.1186/s13024-016-0146-8.
Full textYan, Bing, Monica Ching Suen, Naining Xu, Chao Lu, Changdong Liu, and Guang Zhu. "G-Quadruplex Structures Formed by Human Telomere and C9orf72 GGGGCC Repeats." International Journal of Molecular Sciences 26, no. 4 (2025): 1591. https://doi.org/10.3390/ijms26041591.
Full textHatanaka, Yukari, Tomohiro Umeda, Keiko Shigemori, Toshihide Takeuchi, Yoshitaka Nagai, and Takami Tomiyama. "C9orf72 Hexanucleotide Repeat Expansion-Related Neuropathology Is Attenuated by Nasal Rifampicin in Mice." Biomedicines 10, no. 5 (2022): 1080. http://dx.doi.org/10.3390/biomedicines10051080.
Full textZhang, Yong-Jie, Lin Guo, Patrick K. Gonzales, et al. "Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity." Science 363, no. 6428 (2019): eaav2606. http://dx.doi.org/10.1126/science.aav2606.
Full textShevchuk, Denis V., Natalya Yu Abramycheva, Arina R. Protsenko, Darya A. Grishinа, Angelina G. Makarova, and Maria N. Zakharova. "Young-Onset Amyotrophic Lateral Sclerosis: Genetic Structure and Phenotypic Features." Annals of Clinical and Experimental Neurology 19, no. 2 (2025): 25–33. https://doi.org/10.17816/acen.1317.
Full textTeng, Ye, Ming Zhu, and Zhidong Qiu. "G-quadruplexes in Repeat Expansion Disorders." International Journal of Molecular Sciences 24, no. 3 (2023): 2375. http://dx.doi.org/10.3390/ijms24032375.
Full textHaeusler, Aaron R. "Nucleotide Structural Polymorphisms Formed by GGGGCC Repeats Cause C9orf72 Abortive Transcription and Nucleolar Stress." Biophysical Journal 106, no. 2 (2014): 488a. http://dx.doi.org/10.1016/j.bpj.2013.11.4477.
Full textBalendra, Rubika, Igor Ruiz de los Mozos, Hana M. Odeh, et al. "Transcriptome-wide RNA binding analysis of C9orf72 poly(PR) dipeptides." Life Science Alliance 6, no. 9 (2023): e202201824. http://dx.doi.org/10.26508/lsa.202201824.
Full textDeJesus-Hernandez, Mariely, Ross A. Aleff, Jazmyne L. Jackson, et al. "Long-read targeted sequencing uncovers clinicopathological associations for C9orf72-linked diseases." Brain 144, no. 4 (2021): 1082–88. http://dx.doi.org/10.1093/brain/awab006.
Full textHalim, Dilara O., Gopinath Krishnan, Evan P. Hass, et al. "The exocyst subunit EXOC2 regulates the toxicity of expanded GGGGCC repeats in C9ORF72-ALS/FTD." Cell Reports 43, no. 7 (2024): 114375. http://dx.doi.org/10.1016/j.celrep.2024.114375.
Full textReddy, Kaalak, Monika H. M. Schmidt, Jaimie M. Geist, et al. "Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability." Nucleic Acids Research 42, no. 16 (2014): 10473–87. http://dx.doi.org/10.1093/nar/gku658.
Full textTaki, Motahareh, Kushal J. Rohilla, Maria Barton, et al. "Novel probes for label-free detection of neurodegenerative GGGGCC repeats associated with amyotrophic lateral sclerosis." Analytical and Bioanalytical Chemistry 411, no. 26 (2019): 6995–7003. http://dx.doi.org/10.1007/s00216-019-02075-8.
Full textvan der Ende, Emma L., Jazmyne L. Jackson, Adrianna White, Harro Seelaar, Marka van Blitterswijk, and John C. Van Swieten. "Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions." Journal of Neurology, Neurosurgery & Psychiatry 92, no. 5 (2021): 502–9. http://dx.doi.org/10.1136/jnnp-2020-325377.
Full textSatoh, Jun-Ichi, Yoji Yamamoto, Shouta Kitano, Mika Takitani, Naohiro Asahina, and Yoshihiro Kino. "Molecular Network Analysis Suggests a Logical Hypothesis for the Pathological Role of C9orf72 in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia." Journal of Central Nervous System Disease 6 (January 2014): JCNSD.S18103. http://dx.doi.org/10.4137/jcnsd.s18103.
Full textCooper-Knock, Johnathan, Joanna J. Bury, Paul R. Heath, et al. "C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis." PLOS ONE 10, no. 5 (2015): e0127376. http://dx.doi.org/10.1371/journal.pone.0127376.
Full textOrmandzhiev, S., T. Todorov, T. Angelov, et al. "Targeted Screening of the C9orf72 Gene in Bulgarian Amyotrophic Lateral Sclerosis Patients." Acta Medica Bulgarica 49, no. 1 (2022): 12–16. http://dx.doi.org/10.2478/amb-2022-0002.
Full textShpilyukova, Yu A., E. Yu Fedotova, T. V. Pogoda, et al. "Evaluation of methylation status of the 5’-promoter region of C9orf72 gene in Russian patients with neurodegenerative diseases." Neuromuscular Diseases 8, no. 2 (2018): 33–41. http://dx.doi.org/10.17650/2222-8721-2018-8-2-33-41.
Full textShi, Kevin Y., Eiichiro Mori, Zehra F. Nizami, et al. "Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export." Proceedings of the National Academy of Sciences 114, no. 7 (2017): E1111—E1117. http://dx.doi.org/10.1073/pnas.1620293114.
Full textZhang, Yuan, Christopher Roland, and Celeste Sagui. "Structural and Dynamical Characterization of DNA and RNA Quadruplexes Obtained from the GGGGCC and GGGCCT Hexanucleotide Repeats Associated with C9FTD/ALS and SCA36 Diseases." ACS Chemical Neuroscience 9, no. 5 (2017): 1104–17. http://dx.doi.org/10.1021/acschemneuro.7b00476.
Full textKaur, Jaslovleen, Shaista Parveen, Uzma Shamim, et al. "Investigations of Huntington’s Disease and Huntington’s Disease-Like Syndromes in Indian Choreatic Patients." Journal of Huntington's Disease 9, no. 3 (2020): 283–89. http://dx.doi.org/10.3233/jhd-200398.
Full textHu, Jiaxin, Jing Liu, Liande Li, Keith T. Gagnon, and David R. Corey. "Engineering Duplex RNAs for Challenging Targets: Recognition of GGGGCC/CCCCGG Repeats at the ALS/FTD C9orf72 Locus." Chemistry & Biology 22, no. 11 (2015): 1505–11. http://dx.doi.org/10.1016/j.chembiol.2015.09.016.
Full textKitano, Shouta, Yoshihiro Kino, Yoji Yamamoto, et al. "Bioinformatics Data Mining Approach Suggests Coexpression of AGTPBP1 with an ALS-linked Gene C9orf72." Journal of Central Nervous System Disease 7 (January 2015): JCNSD.S24317. http://dx.doi.org/10.4137/jcnsd.s24317.
Full textChong, Zhao Zhong, and Nizar Souayah. "Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis." International Journal of Molecular Sciences 26, no. 9 (2025): 4276. https://doi.org/10.3390/ijms26094276.
Full textDunn, Ella, Joern R. Steinert, Aelfwin Stone, et al. "Medium-Chain Fatty Acids Rescue Motor Function and Neuromuscular Junction Degeneration in a Drosophila Model of Amyotrophic Lateral Sclerosis." Cells 12, no. 17 (2023): 2163. http://dx.doi.org/10.3390/cells12172163.
Full textBožič, Tim, Matja Zalar, Boris Rogelj, Janez Plavec, and Primož Šket. "Structural Diversity of Sense and Antisense RNA Hexanucleotide Repeats Associated with ALS and FTLD." Molecules 25, no. 3 (2020): 525. http://dx.doi.org/10.3390/molecules25030525.
Full textLopez-Gonzalez, Rodrigo, Dejun Yang, Mochtar Pribadi, et al. "Partial inhibition of the overactivated Ku80-dependent DNA repair pathway rescues neurodegeneration in C9ORF72-ALS/FTD." Proceedings of the National Academy of Sciences 116, no. 19 (2019): 9628–33. http://dx.doi.org/10.1073/pnas.1901313116.
Full textBuchman, Vladimir L., Johnathan Cooper-Knock, Natalie Connor-Robson, et al. "Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation." Molecular Neurodegeneration 8, no. 1 (2013): 12. http://dx.doi.org/10.1186/1750-1326-8-12.
Full textSteffke, Christina, Shreya Agarwal, Edor Kabashi, and Alberto Catanese. "Overexpression of Toxic Poly(Glycine-Alanine) Aggregates in Primary Neuronal Cultures Induces Time-Dependent Autophagic and Synaptic Alterations but Subtle Activity Impairments." Cells 13, no. 15 (2024): 1300. http://dx.doi.org/10.3390/cells13151300.
Full textMori, Kohji, Sven Lammich, Ian R. A. Mackenzie, et al. "hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations." Acta Neuropathologica 125, no. 3 (2013): 413–23. http://dx.doi.org/10.1007/s00401-013-1088-7.
Full textZhang, Yuan, Christopher Roland, and Celeste Sagui. "Structure and Dynamics of DNA and RNA Double Helices Obtained from the GGGGCC and CCCCGG Hexanucleotide Repeats That Are the Hallmark of C9FTD/ALS Diseases." ACS Chemical Neuroscience 8, no. 3 (2016): 578–91. http://dx.doi.org/10.1021/acschemneuro.6b00348.
Full textFreibaum, Brian D., Yubing Lu, Rodrigo Lopez-Gonzalez, et al. "GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport." Nature 525, no. 7567 (2015): 129–33. http://dx.doi.org/10.1038/nature14974.
Full textThys, Ryan Griffin, and Yuh-Hwa Wang. "DNA Replication Dynamics of the GGGGCC Repeat of theC9orf72Gene." Journal of Biological Chemistry 290, no. 48 (2015): 28953–62. http://dx.doi.org/10.1074/jbc.m115.660324.
Full textAkimoto, Chizuru, Lars Forsgren, Jan Linder, et al. "No GGGGCC-hexanucleotide repeat expansion inC9ORF72in parkinsonism patients in Sweden." Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 14, no. 1 (2012): 26–29. http://dx.doi.org/10.3109/17482968.2012.725415.
Full textFratta, Pietro, Mark Poulter, Tammaryn Lashley, et al. "Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia." Acta Neuropathologica 126, no. 3 (2013): 401–9. http://dx.doi.org/10.1007/s00401-013-1147-0.
Full textYe, Amanda J., W. John Haynes, and Daniel P. Romero. "Expression of Mutated Paramecium Telomerase RNAs In Vivo Leads to Templating Errors That Resemble Those Made by Retroviral Reverse Transcriptase." Molecular and Cellular Biology 19, no. 4 (1999): 2887–94. http://dx.doi.org/10.1128/mcb.19.4.2887.
Full textMori, K., S. M. Weng, T. Arzberger, et al. "The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS." Science 339, no. 6125 (2013): 1335–38. http://dx.doi.org/10.1126/science.1232927.
Full textZhang, Yun, Junliu Huang, Kainan Yu, and Xiaojie Cui. "G-Quadruplexes Formation by the C9orf72 Nucleotide Repeat Expansion d(GGGGCC)n and Conformation Regulation by Fangchinoline." Molecules 28, no. 12 (2023): 4671. http://dx.doi.org/10.3390/molecules28124671.
Full textTseng, Yi-Ju, Siara N. Sandwith, Katelyn M. Green, et al. "The RNA helicase DHX36–G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat–associated translation." Journal of Biological Chemistry 297, no. 2 (2021): 100914. http://dx.doi.org/10.1016/j.jbc.2021.100914.
Full textKonno, T., A. Shiga, A. Tsujino, et al. "Japanese amyotrophic lateral sclerosis patients with GGGGCC hexanucleotide repeat expansion in C9ORF72." Journal of Neurology, Neurosurgery & Psychiatry 84, no. 4 (2012): 398–401. http://dx.doi.org/10.1136/jnnp-2012-302272.
Full textBrčić, Jasna, and Janez Plavec. "G-quadruplex formation of oligonucleotides containing ALS and FTD related GGGGCC repeat." Frontiers of Chemical Science and Engineering 10, no. 2 (2016): 222–37. http://dx.doi.org/10.1007/s11705-016-1556-4.
Full textHe, Hua, Wen Huang, Ruoxi Wang, et al. "Amyotrophic Lateral Sclerosis-associated GGGGCC repeat expansion promotes Tau phosphorylation and toxicity." Neurobiology of Disease 130 (October 2019): 104493. http://dx.doi.org/10.1016/j.nbd.2019.104493.
Full textLu, Yihuan, Chikara Dohno, and Kazuhiko Nakatani. "Recognition of expanded GGGGCC hexanucleotide repeat by synthetic ligand through interhelical binding." Biochemical and Biophysical Research Communications 531, no. 1 (2020): 56–61. http://dx.doi.org/10.1016/j.bbrc.2020.03.107.
Full textGoodman, Lindsey D., and Nancy M. Bonini. "Repeat-associated non-AUG (RAN) translation mechanisms are running into focus for GGGGCC-repeat associated ALS/FTD." Progress in Neurobiology 183 (December 2019): 101697. http://dx.doi.org/10.1016/j.pneurobio.2019.101697.
Full textRutherford, Nicola J., Michael G. Heckman, Mariely DeJesus-Hernandez, et al. "Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype." Neurobiology of Aging 33, no. 12 (2012): 2950.e5–2950.e7. http://dx.doi.org/10.1016/j.neurobiolaging.2012.07.005.
Full textZamiri, Bita, Kaalak Reddy, Christopher E. Pearson, and Robert B. Macgregor. "The Structure of the Disease-Associated (GGGGCC)N Repeat from the C9ORF72 Gene." Biophysical Journal 106, no. 2 (2014): 283a. http://dx.doi.org/10.1016/j.bpj.2013.11.1655.
Full textCelona, Barbara, Sally E. Salomonsson, Haifan Wu, et al. "Zfp106 binds to G-quadruplex RNAs and inhibits RAN translation and formation of RNA foci caused by G4C2 repeats." Proceedings of the National Academy of Sciences 121, no. 31 (2024). http://dx.doi.org/10.1073/pnas.2220020121.
Full text