Academic literature on the topic 'Giant Magnetoresistance (GMR)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Giant Magnetoresistance (GMR).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Giant Magnetoresistance (GMR)"

1

Djamal, Mitra. "Biosensor Based on Giant Magnetoresistance Material." International Journal of E-Health and Medical Communications 1, no. 3 (July 2010): 1–15. http://dx.doi.org/10.4018/jehmc.2010070101.

Full text
Abstract:
In recent years, giant magnetoresistance (GMR) sensors have shown a great potential as sensing elements for biomolecule detection. The resistance of a GMR sensor changes with the magnetic field applied to the sensor, so that a magnetically labeled biomolecule can induce a signal. Compared with the traditional optical detection that is widely used in biomedicine, GMR sensors are more sensitive, portable, and give a fully electronic readout. In addition, GMR sensors are inexpensive and the fabrication is compatible with the current VLSI (Very Large Scale Integration) technology. In this regard, GMR sensors can be easily integrated with electronics and microfluidics to detect many different analytes on a single chip. In this article, the authors demonstrate a comprehensive review on a novel approach in biosensors based on GMR material.
APA, Harvard, Vancouver, ISO, and other styles
2

Ramli, Mitra Djamal, Freddy Haryanto, Sparisoma Viridi, and Khairurrijal. "Giant Magnetoresistance in (Ni60Co30Fe10/Cu) Trilayer Growth by Opposed Target Magnetron Sputtering." Advanced Materials Research 535-537 (June 2012): 1319–22. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1319.

Full text
Abstract:
The giant magnetoresistance thin film of (Ni60Co30Fe10/Cu) trilayer were grown onto Si (100) substrate by dc-opposed target magnetron sputtering (dc-OTMS) technique. The growth parameters are: temperature of 100 0C, applied voltage of 600 volt, flow rate of Ar gas of 100 sccm, and growth pressure of 5.2 x10-1 Torr. The effects of Cu layer thickness and NiCoFe layer thickness on giant magnetoresistance (GMR) property of (Ni60Co30Fe10/Cu) trilayer were studied. We have found that the giant magnetoresistance (GMR) ratio of the sample was varied depend on the non-magnetic (Cu) layer thickness. The variation of Cu layer thickness presents an oscillatory behavior of GMR ratio. This oscillation reflects the exchange coupling oscillations between ferromagnetic and antiferromagnetic states, which are caused by an oscillation in the sign of the interlayer exchange coupling between ferromagnetic layers. The GMR ratio is change with increasing of NiCoFe layer thickness and presents GMR ratio of 70.0 % at tNiCoFe = 62.5 nm.
APA, Harvard, Vancouver, ISO, and other styles
3

Yin, Cong, Dan Xie, Jian-Long Xu, and Tian-Ling Ren. "Two-step thinning fabrication of giant magnetoresistance sensors for flexible applications." Modern Physics Letters B 28, no. 10 (April 20, 2014): 1450081. http://dx.doi.org/10.1142/s021798491450081x.

Full text
Abstract:
Spin valve giant magnetoresistance (GMR) sensors were prepared by a two-step thinning method combining grind thinning and inductively coupled plasma (ICP) etching together. The fabrication processes of front GMR sensors and backside ICP etching were described in detail. Magnetoresistance ratio of about 4.24% and coercive field of approximately 11 Oe were obtained in a tested bendable GMR sensor. The variations of the magnetic property in GMR sensors were explained mainly from the temperature, ion beam damage and mechanical damage generated by the fabrication process.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Yadong, X. F. Duan, J. H. Zhang, H. R. Wang, Y. T. Qian, Z. Huang, J. Zhou, S. L. Yuan, W. Liu, and C. F. Zhu. "Giant magnetoresistance in bulk La0.6Mg0.4MnO3." Journal of Materials Research 12, no. 10 (October 1997): 2648–50. http://dx.doi.org/10.1557/jmr.1997.0353.

Full text
Abstract:
A bulk sample of La0.6Mg0.4MnO3 has been prepared from coprecipitated carbonate precursor for the first time in this study. Structure analysis conducted by powder x-ray diffraction indicates that the sample is in the cubic perovskite phase. It shows a metal-insulator transition at 115 K (Tp) When applied to an external field, GMR effects are observed in the whole measured temperature range. The maximum negative MR value reaches as large as 480% at 105 K and 5 T. There may be two different mechanisms governing the GMR effects in the sample for the temperatures below and above Tp.
APA, Harvard, Vancouver, ISO, and other styles
5

Kok, K. Y., and I. K. Ng. "GIANT MAGNETORESISTANCE (GMR): SPINNING FROM RESEARCH TO ADVANCED TECHNOLOGY." ASEAN Journal on Science and Technology for Development 19, no. 2 (December 13, 2017): 33–43. http://dx.doi.org/10.29037/ajstd.336.

Full text
Abstract:
In this paper, we aim to examine the research and development of materials demonstrating the giant magnetoresistance (GMR) property, a novel material property that has revolutionalised the advances of magnetic sensor and mass-memory technology today. A comprehensive outline for the fundamental materials aspects as well as the physics of the underlying mechanisms behind the GMR property is given. Recent development of GMR materials in data storage industry and other potential technological applications exploiting the GMR property are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

He, J., Z. D. Zhang, J. P. Liu, and D. J. Sellmyer. "Effects of germanium on the electronic transport mechanism in Co20(Cu1-xGex)80 nanogranular ribbons." Journal of Materials Research 17, no. 12 (December 2002): 3050–55. http://dx.doi.org/10.1557/jmr.2002.0443.

Full text
Abstract:
The dependency of giant magnetoresistance (GMR) on the nonmagnetic matrix in nanogranular Co20(Cu1-xGex)80 ribbons was studied. When the matrix Cu is substituted with semiconductor Ge, the magnetoresistance transitioned from negative to positive at low temperatures. The positive GMR effect is closely related to the quantity of Co/Co3Ge2/Co junctionlike configurations. This result provides evidence for the competition between two types of electronic transport mechanisms in the magnetic granular ribbons: (i) electronic spin-dependent scattering, inducing a negative magnetoresistance and (ii) Coulomb blockade of the electronic tunneling, inducing a positive magnetoresistance.
APA, Harvard, Vancouver, ISO, and other styles
7

YIN, CONG, DAN XIE, JIAN-LONG XU, and TIAN-LING REN. "PROTON IRRADIATION INFLUENCE ON THE MAGNETIC PROPERTIES OF GMR-SVs." Modern Physics Letters B 28, no. 04 (February 4, 2014): 1450022. http://dx.doi.org/10.1142/s0217984914500225.

Full text
Abstract:
In this paper, crystal and magnetic properties of proton irradiated giant magnetoresistance spin valves (GMR-SVs) were investigated based on Ta / NiFe / CoFe / Cu / CoFe / IrMn / Ta stack. GMR-SVs were fabricated by magnetron sputtering and irradiated by 5 MeV proton energy. After irradiation, the magnetic phase of GMR-SV core structures was not affected distinctly while the crystal structure of Ta changed with the radiation dose and dose rate. Degradation of the saturated magnetization and the magnetoresistance ratio was shown in the proton-irradiated samples from the magnetization hysteresis curves and the magnetoresistance measurements, which was explained from the change in the zero-field resistance and the exchange interaction.
APA, Harvard, Vancouver, ISO, and other styles
8

Liang, Shuang, Phanatchakorn Sutham, Kai Wu, Kumar Mallikarjunan, and Jian-Ping Wang. "Giant Magnetoresistance Biosensors for Food Safety Applications." Sensors 22, no. 15 (July 28, 2022): 5663. http://dx.doi.org/10.3390/s22155663.

Full text
Abstract:
Nowadays, the increasing number of foodborne disease outbreaks around the globe has aroused the wide attention of the food industry and regulators. During food production, processing, storage, and transportation, microorganisms may grow and secrete toxins as well as other harmful substances. These kinds of food contamination from microbiological and chemical sources can seriously endanger human health. The traditional detection methods such as cell culture and colony counting cannot meet the requirements of rapid detection due to some intrinsic shortcomings, such as being time-consuming, laborious, and requiring expensive instrumentation or a central laboratory. In the past decade, efforts have been made to develop rapid, sensitive, and easy-to-use detection platforms for on-site food safety regulation. Herein, we review one type of promising biosensing platform that may revolutionize the current food surveillance approaches, the giant magnetoresistance (GMR) biosensors. Benefiting from the advances of nanotechnology, hundreds to thousands of GMR biosensors can be integrated into a fingernail-sized area, allowing the higher throughput screening of food samples at a lower cost. In addition, combined with on-chip microfluidic channels and filtration function, this type of GMR biosensing system can be fully automatic, and less operator training is required. Furthermore, the compact-sized GMR biosensor platforms could be further extended to related food contamination and the field screening of other pathogen targets.
APA, Harvard, Vancouver, ISO, and other styles
9

SHENG, L., and D. Y. XING. "THEORY OF GIANT MAGNETORESISTANCE IN NONMULTILAYER MAGNETIC SYSTEMS." Modern Physics Letters B 07, no. 21 (September 10, 1993): 1365–72. http://dx.doi.org/10.1142/s0217984993001405.

Full text
Abstract:
We present a simple theoretical description of recently measured giant magnetoresistance (GMR) effect in granular ferromagnetic systems. We propose that single-domain ferromagnetic particles embedded in a metallic medium form a series of randomly distributed and spin-dependent potential barriers and wells. This spin-dependent scattering is considered as the main origin of the GMR effect. Good agreement with experiment is found for phase-separated Co x Cu 1−x samples.
APA, Harvard, Vancouver, ISO, and other styles
10

RIZWAN, SYED, H. F. LIU, X. F. HAN, SEN ZHANG, Y. G. ZHAO, and S. ZHANG. "ELECTRIC-FIELD CONTROL OF GIANT MAGNETORESISTANCE IN SPIN-VALVES." SPIN 02, no. 01 (March 2012): 1250006. http://dx.doi.org/10.1142/s2010324712500063.

Full text
Abstract:
It has been known that magnetic properties of a ferromagnet grown on piezoelectric substrates can be altered by the electric field-induced strain. We consider spin-valve CoFe/Cu/CoFe/IrMn grown on (011)-cut piezoelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) substrate and investigate the effect of the electric field on the giant magnetoresistance (GMR) of the spin valve. We found that the electric field induced strain on PMN–PT substrate enhances the coercivity of the magnetic layers. The transport measurement shows that the GMR ratio of the spin valve could be altered as much as 50% for an electric field of -8 kV/cm. The change of GMR is attributed to the reduced maximum degree of the antiparallel alignment between the magnetization directions of the free and pinned layers. The present studies establish a prototype electrically tunable magnetic memory device such that the electric field can reversibly tune spin valve magnetoresistance without deteriorating electric and magnetic properties.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Giant Magnetoresistance (GMR)"

1

Binder, Jörg. "Giant Magnetoresistance - eine ab-initio Beschreibung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-997704395015-96808.

Full text
Abstract:
Die vorliegende Arbeit ist ein Beitrag zur Theorie des spinabhängigen Transports in magnetischen Vielfachschichten. Es wird erstmalig eine parameterfreie Beschreibung des Giant Magnetoresistance (GMR) vorgelegt, welche detaillierte Einsichten in die mikroskopischen Vorgänge gestattet. Die ab-initio Berechnung der Elektronenstruktur der magnetischen Vielfachschichten basiert auf der Spindichtefunktionaltheorie unter Verwendung eines Screened Korringa-Kohn-Rostoker-Verfahrens. Die Streueigenschaften von Punktdefekten werden über die Greensche Funktion des gestörten Systems selbstkonsistent bestimmt. Die Transporteigenschaften werden durch Lösung der quasiklassischen Boltzmann-Gleichung unter Berücksichtigung der Elektronenstruktur der Vielfachschicht und der Anisotropie der Streuung an Fremdatomen berechnet. Die Boltzmann-Gleichung wird iterativ unter Einbeziehung der Vertex-Korrekturen gelöst. Der Formalismus wird auf Co/Cu- und Fe/Cr-Vielfachschichten, die Standardsysteme der Magnetoelektronik, angewandt. Es werden die Abhängigkeit der Streuquerschnitte, der spezifischen Restwiderstände und des GMR von der Art und der Lage der Übergangsmetalldefekte in Co/Cu- und Fe/Cr-Vielfachschichten diskutiert. Darüber hinaus wird der Einfluß des Quantum Confinements auf den GMR eingehend untersucht. Vorteile und Grenzen der vorliegenden theoretischen Beschreibung werden aufgezeigt
A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened Korringa-Kohn-Rostoker method. Scattering at impurity atoms in the multilayers is described by means of a Green's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the Boltzmann equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the Boltzmann equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the relation between spin dependence of the electronic structure and GMR as well as the role of quantum confinement effects for GMR are investigated. Advantages and limits of the approach are discussed in detail
APA, Harvard, Vancouver, ISO, and other styles
2

Binder, Jörg. "Giant Magnetoresistance - eine ab-initio Beschreibung." Doctoral thesis, Technische Universität Dresden, 2000. https://tud.qucosa.de/id/qucosa%3A24782.

Full text
Abstract:
Die vorliegende Arbeit ist ein Beitrag zur Theorie des spinabhängigen Transports in magnetischen Vielfachschichten. Es wird erstmalig eine parameterfreie Beschreibung des Giant Magnetoresistance (GMR) vorgelegt, welche detaillierte Einsichten in die mikroskopischen Vorgänge gestattet. Die ab-initio Berechnung der Elektronenstruktur der magnetischen Vielfachschichten basiert auf der Spindichtefunktionaltheorie unter Verwendung eines Screened Korringa-Kohn-Rostoker-Verfahrens. Die Streueigenschaften von Punktdefekten werden über die Greensche Funktion des gestörten Systems selbstkonsistent bestimmt. Die Transporteigenschaften werden durch Lösung der quasiklassischen Boltzmann-Gleichung unter Berücksichtigung der Elektronenstruktur der Vielfachschicht und der Anisotropie der Streuung an Fremdatomen berechnet. Die Boltzmann-Gleichung wird iterativ unter Einbeziehung der Vertex-Korrekturen gelöst. Der Formalismus wird auf Co/Cu- und Fe/Cr-Vielfachschichten, die Standardsysteme der Magnetoelektronik, angewandt. Es werden die Abhängigkeit der Streuquerschnitte, der spezifischen Restwiderstände und des GMR von der Art und der Lage der Übergangsmetalldefekte in Co/Cu- und Fe/Cr-Vielfachschichten diskutiert. Darüber hinaus wird der Einfluß des Quantum Confinements auf den GMR eingehend untersucht. Vorteile und Grenzen der vorliegenden theoretischen Beschreibung werden aufgezeigt.
A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened Korringa-Kohn-Rostoker method. Scattering at impurity atoms in the multilayers is described by means of a Green's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the Boltzmann equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the Boltzmann equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the relation between spin dependence of the electronic structure and GMR as well as the role of quantum confinement effects for GMR are investigated. Advantages and limits of the approach are discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
3

Chalastaras, Athanasios. "Giant magnetoresistance in magnetic multilayers using a new embossed surface." ScholarWorks@UNO, 2004. http://louisdl.louislibraries.org/u?/NOD,137.

Full text
Abstract:
Thesis (M.S.)--University of New Orleans, 2004.
Title from electronic submission form. "A thesis ... in partial fulfillment of the requirements for the degree of Master of Science in the Department of Physics."--Thesis t.p. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Theodoropoulou, Nikoleta. "Experimental studies of spin dependent phenomena in Giant Magnetoresistance (GMR) and Dilute Magnetic Semiconductor (DMS) systems." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carroll, Turhan Kendall. "Radiation Damage in GMR Spin Valves." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281633368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guenther, Justin. "Magnetoresistance in Permalloy/GaMnAs Circular Microstructures." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1407772238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Östling, Johan. "High Accuracy Speed and Angular Position Detection by Dual Sensor." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-365726.

Full text
Abstract:
For many decades there has been a need in many industries to measure speed and position of ferrous gears. This is commonly done by converting passing gear teeth from trigger wheels to electrical impulses to calculate speed and angular position. By using Hall effect sensors or Giant Magnetoresistance sensors (GMR), a zero speed detection of gear teeth is possible while at the same time be cheap to produce and durable for harsh environments. A specially designed trigger-wheel (cogwheel created for measurements) with gear teeth in a specific pattern, exact position can be detected by using a dual sensor, even when no earlier information is available. The new design of trigger-wheel also makes this new method more accurate and universal compared to previous solutions. This thesis demonstrates and argues for the advantages of using a dual sensor for speed and angular position detection on gear wheels. Were one sensor do quantitative measurements for pattern detection in the teeth arrangements and the other sensor do qualitative measurements for position detection.
APA, Harvard, Vancouver, ISO, and other styles
8

Hadadeh, Fawaz. "3D Probe for Magnetic Imaging and Non-destructive Testing." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS421/document.

Full text
Abstract:
La thèse est dédiée au développement des sondes à base de capteurs magnétorésistifs capable de détecter les trois composantes du champ simultanément pour le contrôle non destructif par courants de Foucault et pour l’imagerie magnétique. Une première partie donne un aperçu de l’état de l’art des capteurs et des méthodes d’imagerie et du contrôle. Dans une seconde partie, la réalisation des sondes trois axes est donnée. Cela a inclus la micro fabrication, la réalisation de l’électronique de lecture, la conception et la réalisation de la partie mécanique et d’émission. Pour cela un travail important de simulation a été nécessaire. L’application de ces sondes sur des cas modèle pour l’imagerie magnétique avec une résolution submillimétrique est ensuite décrite. La sonde proposée dans cette thèse a été aussi utilisée avec succès pour détecter des défauts dans des échantillons d'aluminium et de titane avec un bon rapport signal sur bruit
The thesis is dedicated to the development of probes based on magnetoresistive sensors capable of detecting the three components of the field simultaneously for eddy current non-destructive testing and for magnetic imaging. A first part provides an overview of the state of the art of sensors, and imaging and control methods. In a second part, the realization of the three-axis probes is given. This included the micro-fabrication, the realization of the reading electronics, the design and realization of the mechanical part and emission. For this, an important simulation work was necessary. The application of these probes to model cases for magnetic imaging with submillimeter resolution is then described. The probe proposed in this thesis has also been used successfully to detect defects in aluminum and titanium samples with a good signal-to-noise ratio
APA, Harvard, Vancouver, ISO, and other styles
9

Vovk, Vitaliy [Verfasser]. "Thermal stability of Py/Cu and Co/Cu giant magnetoresistance (GMR) multilayer systems / von Vitaly Vovk." 2007. http://d-nb.info/990687384/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mahesh, R. "Solid State Chemistry Of Transition Metal Oxides With Fascinating Properties." Thesis, 1996. https://etd.iisc.ac.in/handle/2005/1947.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Giant Magnetoresistance (GMR)"

1

Reig, Candid, Susana Cardoso, and Subhas Chandra Mukhopadhyay. Giant Magnetoresistance (GMR) Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Giant Magnetoresistance (GMR)"

1

Dey, Puja, and Jitendra Nath Roy. "Giant Magnetoresistance (GMR)." In Spintronics, 75–101. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0069-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baraduc, C., M. Chshiev, and B. Dieny. "Spintronic Phenomena: Giant Magnetoresistance, Tunnel Magnetoresistance and Spin Transfer Torque." In Giant Magnetoresistance (GMR) Sensors, 1–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gooneratne, C. P., K. Chomsuwan, M. Kakikawa, and S. Yamada. "High-Spatial Resolution Giant Magnetoresistive Sensors - Part II: Application in Biomedicine." In Giant Magnetoresistance (GMR) Sensors, 243–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leitão, D. C., J. Borme, A. Orozco, S. Cardoso, and P. P. Freitas. "Magnetoresistive Sensors for Surface Scanning." In Giant Magnetoresistance (GMR) Sensors, 275–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leitão, Diana C., José Pedro Amaral, Susana Cardoso, and Càndid Reig. "Microfabrication Techniques." In Giant Magnetoresistance (GMR) Sensors, 31–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fermon, C., and M. Pannetier-Lecoeur. "Noise in GMR and TMR Sensors." In Giant Magnetoresistance (GMR) Sensors, 47–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

De Marcellis, Andrea, Giuseppe Ferri, and Paolo Mantenuto. "Resistive Sensor Interfacing." In Giant Magnetoresistance (GMR) Sensors, 71–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reig, Càndid, and M. D. Cubells-Beltrán. "GMR Based Sensors for IC Current Monitoring." In Giant Magnetoresistance (GMR) Sensors, 103–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kapser, Konrad, Markus Weinberger, Wolfgang Granig, and Peter Slama. "GMR Sensors in Automotive Applications." In Giant Magnetoresistance (GMR) Sensors, 133–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haji-Sheikh, Michael J. "Compass Applications Using Giant Magnetoresistance Sensors (GMR)." In Giant Magnetoresistance (GMR) Sensors, 157–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Giant Magnetoresistance (GMR)"

1

Yang, Y., J. G. Zhu, R. M. White, and M. Asheghi. "Field-Dependent Electrical and Thermal Characterization of Cu/CoFe Multilayer for Giant Magnetoresistive (GMR) Head Applications." In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87055.

Full text
Abstract:
Giant Magnetoresistance (GMR) head technology is one of the latest advancement in hard disk drive (HDD) storage industry. The GMR head superlattice structure consists of alternating layers of extremely thin metallic ferromagnet and paramagnet films. A large decrease in the resistivity from antiparallel to parallel alignment of the film magnetizations can be observed, known as giant magnetoresistance (GMR) effect (Baibich et al., 1988; Binasch et al., 1989). The GMR effect is generally due to the spin dependent electron bulk and interfacial scattering in the GMR multilayer structures (Zhang et al., 1992). However, in order to understand the nature of the spin-dependent electron scattering mechanism responsible for the GMR effect, both electrical and thermal transport properties of such multilayer structures must be measured and understood. It is suggested that the thermal transport property measurements in GMR can be used to judge whether the scattering processes responsible for the GMR have elastic and/or inelastic components (Shi et al., 1996). Moreover, the GMR effect is anticipated to have a thermal counterpart, known as giant magnetothermal resistance (GMTR) effect in which the thermal conductivity shows a ‘giant’ change under magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Y., and M. Asheghi. "Thermal Characterization of Cu/CoFe Multilayer for Giant Magnetoresistive (GMR) Head Applications." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62113.

Full text
Abstract:
Giant Magnetoresistance (GMR) head technology is one of the latest advancement in hard disk drive (HDD) storage industry. The GMR head superlattice structure consists of alternating layers of extremely thin metallic ferromagnet and paramagnet films. A large decrease in the resistivity from antiparallel to parallel alignment of the film magnetizations can be observed, known as giant magnetoresistance (GMR) effect. The present work characterizes the in-plane electrical and thermal conductivities of Cu/CoFe GMR multilayer structure in the temperature range of 50 K to 340 K using Joule-heating and electrical resistance thermometry in suspended bridges. The thermal conductivity of the GMR layer monotonously increased from 25 Wm−1K−1 (at 55 K) to nearly 50 Wm−1K−1 (at room temperature). We also report the GMR ratio of 17% and a large negative magnetothermal resistance effect (GMTR) of 33% in Cu/CoFe superlattice structure. The Boltzmann transport equation (BTE) is used to estimate the GMR ratio, and to investigate the effect of repeats, as well as the spin-dependent interface and boundary scatting on the transport properties of the GMR structure. Aside from the interesting underlying physics, these data can be used in the predictions of the Electrostatic Discharge (ESD) failure and self-heating in GMR heads.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Yizhang, Taehee Jeong, Jimmy Zhu, and Mehdi Asheghi. "Predictions of Field-Dependent Thermal and Electrical Transport in a Cu/CoFe Multilayer." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32831.

Full text
Abstract:
The discovery of the giant magnetoresistance effect in metallic multilayers and alloys has led to extensive theoretical and experimental investigations of this effect for the past few decades. Recently, we discovered that Cu/CoFe giant magneto-resistance layers exhibit a giant magnetothermal resistance effect (GMTR), in which the thermal conductivity shows a “giant” change under a magnetic field. In the present study, we adopted the Fuchs-So¨ndheimer extension of the semiclassical Boltzmann theory to predict the in-plane giant magneto-resistance (GMR) and giant magnetothermal resistance (GMTR) ratios in the Cu/CoFe multilayer structure. The present model has been implemented in an attempt to explain the measured differences in the giant magnetoresistance and giant magnetothermal resistance ratios, which have previously been attributed to the different mechanisms for charge and heat transport in the Cu/CoFe multilayer structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Reig, Candid, Fernando Pardo, Jose A. Boluda, Francisco Vegara, Maria D. Cubells-Beltran, Javio Sanchis, Sofia Abrunhosa, and Susana Cardoso. "Advanced Giant Magnetoresistance (GMR) sensors for Selective-Change Driven (SCD) circuits." In 2021 13th Spanish Conference on Electron Devices (CDE). IEEE, 2021. http://dx.doi.org/10.1109/cde52135.2021.9455731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Zhanhu, Suying Wei, Sung Park, Monica Moldovan, Amar Karki, David Young, and H. Thomas Hahn. "An investigation on granular-nanocomposite-based giant magnetoresistance (GMR) sensor fabrication." In The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Marcelo J. Dapino. SPIE, 2007. http://dx.doi.org/10.1117/12.715367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suharyadi, Edi, Indra Pardede, and Ferawati A. Hasibuan. "Giant magnetoresistance (GMR) sensors based on Co/Cu multilayers for biomaterial detection applications." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7734392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

de Marcellis, Andrea, C. Reig, M. D. Cubells, J. Madrenas, F. Cardoso, S. Cardoso, and P. P. Freitas. "Giant Magnetoresistance (GMR) sensors for 0.35µm CMOS technology sub-mA current sensing." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nurpriyanti, Indah, Indra Pardede, Edi Suharyadi, Takeshi Kato, and Satoshi Iwata. "Detection of Fe3O4 Magnetic Nanoparticles using Giant Magnetoresistance (GMR) Sensor Based on Multilayer and Spin Valve Thin Films by Wheatstone Bridge Circuit." In 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM). IEEE, 2016. http://dx.doi.org/10.1109/issimm.2016.7803717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yoo, JinHyeong, James B. Restorff, and Marilyn Wun-Fogle. "Non-Contact Tension Sensing Using Fe-Ga Alloy Strip." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8909.

Full text
Abstract:
This paper describes a proof-of-concept non-contact strain sensor, using a magnetostrictive Fe-Ga alloy (Galfenol). Magnetostrictive materials demonstrate dimensional changes in response to a magnetic field. In contrast with typical piezoceramic materials, Galfenol is the most ductile of the current transduction materials and appears to have an excellent ability to withstand mechanical shock and tension. Galfenol also exhibits the inverse (Villari) effect: both the magnetization and permeability change in response to an applied stress. Galfenol has low hysteresis loses, less than ∼10% of its transduction potential over a range of −20 to +80 °C. The magnetization’s response to stress depends strongly on both magnetic field bias and alloy composition. Galfenol’s Villari effect can be used in various sensor configurations together with either a giant magnetoresistance (GMR) sensor, Hall Effect sensor or pickup coil to sense the magnetization / permeability changes in Galfenol when stressed. The sensor described in this paper utilizes the permeability change, which is not time dependent and can measure static loads. The design reported here targets low force, low frequency applications, such as inclination measurements and stress monitoring. The sensor was able to measure both static and dynamic stress. The static sensitivity was +3.64 Oe/kN for the Hall sensor close to the bias magnet and −1.49 Oe/kN for the Hall sensor at the other end of the Galfenol strip. We conclude that a Galfenol strain sensor is a viable candidate for bolt stress monitoring in critical applications.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography