Academic literature on the topic 'Giant magnetoresistance (GMR) sensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Giant magnetoresistance (GMR) sensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Giant magnetoresistance (GMR) sensor"

1

Djamal, Mitra. "Biosensor Based on Giant Magnetoresistance Material." International Journal of E-Health and Medical Communications 1, no. 3 (2010): 1–15. http://dx.doi.org/10.4018/jehmc.2010070101.

Full text
Abstract:
In recent years, giant magnetoresistance (GMR) sensors have shown a great potential as sensing elements for biomolecule detection. The resistance of a GMR sensor changes with the magnetic field applied to the sensor, so that a magnetically labeled biomolecule can induce a signal. Compared with the traditional optical detection that is widely used in biomedicine, GMR sensors are more sensitive, portable, and give a fully electronic readout. In addition, GMR sensors are inexpensive and the fabrication is compatible with the current VLSI (Very Large Scale Integration) technology. In this regard, GMR sensors can be easily integrated with electronics and microfluidics to detect many different analytes on a single chip. In this article, the authors demonstrate a comprehensive review on a novel approach in biosensors based on GMR material.
APA, Harvard, Vancouver, ISO, and other styles
2

Yin, Cong, Dan Xie, Jian-Long Xu, and Tian-Ling Ren. "Two-step thinning fabrication of giant magnetoresistance sensors for flexible applications." Modern Physics Letters B 28, no. 10 (2014): 1450081. http://dx.doi.org/10.1142/s021798491450081x.

Full text
Abstract:
Spin valve giant magnetoresistance (GMR) sensors were prepared by a two-step thinning method combining grind thinning and inductively coupled plasma (ICP) etching together. The fabrication processes of front GMR sensors and backside ICP etching were described in detail. Magnetoresistance ratio of about 4.24% and coercive field of approximately 11 Oe were obtained in a tested bendable GMR sensor. The variations of the magnetic property in GMR sensors were explained mainly from the temperature, ion beam damage and mechanical damage generated by the fabrication process.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Silin, and Junji Gao. "Overview of Magnetic Field Sensor." Journal of Physics: Conference Series 2613, no. 1 (2023): 012012. http://dx.doi.org/10.1088/1742-6596/2613/1/012012.

Full text
Abstract:
Abstract This article summarizes the commonly used in magnetic sensors Hall sensors, Anisotropic magnetoresistive sensor (AMR), Giant magnetoresistance effect sensor (GMR) and Tunneling magnetoresistance sensor (TMR). The structure and working principle of each sensor are introduced. In addition, some error sources of magnetic sensors and the calibration techniques used are introduced, and some typical application examples of each sensor are introduced.
APA, Harvard, Vancouver, ISO, and other styles
4

Djamal, Mitra, and Ramli. "Thin Film of Giant Magnetoresistance (GMR) Material Prepared by Sputtering Method." Advanced Materials Research 770 (September 2013): 1–9. http://dx.doi.org/10.4028/www.scientific.net/amr.770.1.

Full text
Abstract:
In recent decades, a new magnetic sensor based on magnetoresistance effect is highly researched and developed intensively. GMR material has great potential as next generation magnetic field sensing devices. It has also good magnetic and electric properties, and high potential to be developed into various applications of electronic devices such as: magnetic field sensor, current measurements, linear and rotational position sensor, data storage, head recording, and non-volatile magnetic random access memory. GMR material can be developed to be solid state magnetic sensors that are widely used in low field magnetic sensing applications. A solid state magnetic sensor can directly convert magnetic field into resistance, which can be easily detected by applying a sense current or voltage. Generally, there are many sensors for measuring the low magnetic field, such as: fluxgate sensor, Hall sensor, induction coil, GMR sensor, and SQUID sensor. Compared to other low magnetic field sensing techniques, solid state sensors have demonstrated many advantages, such as: small size (<0.1mm2), low power, high sensitivity (~0.1Oe) and good compatibility with CMOS technology. The thin film of GMR is usually prepared using: sputtering, electro deposition or molecular beam epitaxy (MBE) techniques. But so far, not many researchers reported the manufacture of thin film of GMR by dc-Opposed Target Magnetron Sputtering (dc-OTMS). In this paper, we inform the development of GMR thin film with sandwich and spin valve structures using dc-OTMS method. We have also developed organic GMR with Alq3 as a spacer layer.
APA, Harvard, Vancouver, ISO, and other styles
5

Kok, K. Y., and I. K. Ng. "GIANT MAGNETORESISTANCE (GMR): SPINNING FROM RESEARCH TO ADVANCED TECHNOLOGY." ASEAN Journal on Science and Technology for Development 19, no. 2 (2017): 33–43. http://dx.doi.org/10.29037/ajstd.336.

Full text
Abstract:
In this paper, we aim to examine the research and development of materials demonstrating the giant magnetoresistance (GMR) property, a novel material property that has revolutionalised the advances of magnetic sensor and mass-memory technology today. A comprehensive outline for the fundamental materials aspects as well as the physics of the underlying mechanisms behind the GMR property is given. Recent development of GMR materials in data storage industry and other potential technological applications exploiting the GMR property are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Kusumadjati, Adhi, Sony Wardoyo, Agung Hirawan, Mochamad Ibnu Alwan, and Ramandasoavina Blanchard. "A development of high sensitivity magnetic sensor based on giant magnetoresistance with simple implementation on smartphone." International Journal of Applied Mathematics, Sciences, and Technology for National Defense 1, no. 3 (2023): 75–80. http://dx.doi.org/10.58524/app.sci.def.v1i3.280.

Full text
Abstract:
In this paper, the magnetic field-based sensor that can connect with smartphones through Bluetooth connectivity was developed. The design of this high sensitivity magnetic sensor system used Giant Magnetoresistance (GMR) sensors in the form of SOIC8 with AA002-02 series from NVE Corp. The results obtained from the measurements show that the sensor is able to work well when connected to an Android-based smartphone. Measurements were carried out by placing a magnet with a magnetic field strength of 0.4 T in the direction of the sensitivity plane of the GMR sensor. The result showed that the closer the magnet distance relative to the GMR sensor the more voltage signal output from the sensor. Since this developed method is simple but effective for detecting position of magnetic object, the further development of this method will be benefit for many applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Babaytsev, Georgy V., Nikolay G. Chechenin, Irina O. Dzhun, Mikhail G. Kozin, Alexey V. Makunin, and Irina L. Romashkina. "Clusters of Spin Valve Sensors in 3D Magnetic Field of a Label." Sensors 21, no. 11 (2021): 3595. http://dx.doi.org/10.3390/s21113595.

Full text
Abstract:
Magnetic field sensors based on the giant magnetoresistance (GMR) effect have a number of practical current and future applications. We report on a modeling of the magnetoresistive response of moving spin-valve (SV) GMR sensors combined in certain cluster networks to an inhomogeneous magnetic field of a label. We predicted a large variety of sensor responses dependent on the number of sensors in the cluster, their types of interconnections, the orientation of the cluster, and the trajectory of sensor motion relative to the label. The model included a specific shape of the label, producing an inhomogeneous magnetic field. The results can be used for the optimal design of positioning devices.
APA, Harvard, Vancouver, ISO, and other styles
8

Ramdhani, Aris, Ahmad Aminudin, and Agus Danawan. "Rancang Bangun Sistem Pengukur Kecepatan Kendaraan Menggunakan Sensor Magnetik." Wahana Fisika 2, no. 1 (2017): 28. http://dx.doi.org/10.17509/wafi.v2i1.7021.

Full text
Abstract:
Data kecepatan kendaran di jalan raya sangat berpengaruh bagi keamanan dan keselamatan pengguna jalan raya. Kemajuan tekhnologi sensor sangat membantu dalam mengukur kecepatan kendaraan dengan otomatis. Metode yang umum dipakai ialah metode dengan menggunakan dua buah rangkaian sensor yang sudah diatur pada jarak tertentu. Sensor digunakan sebagai pendeteksi keberadaan kendaraan. Data kecepatan kendaraan didapatkan dengan mencari selang waktu yang dibutuhkan kendaraan melaju dari sensor pertama menuju sensor kedua. Saat kendaraan melaju melewati sensor maka sinyal keluaran sensor menjadi acuan perhitungan waktu start dan stop. Berbagai jenis sensor yang sudah digunakan ialah sensor LDR, sensor ultrasonic, sensor laser, sensor loop induktif dan sensor kamera. Setiap sensor yang sudah dipergunakan memiliki berbagai jenis kekurangan dalam mendeteksi kendaraan pada jalan raya. Oleh karena itu penulis memunculkan ide baru dengan menggunakan sensor magnetik yang memiliki faktor gangguan eksternal yang rendah. Sensor magnetik yang digunakan ialah sensor Giant MagnetoResistance (GMR). Perancangan sistem pengukur kecepatan kendaraan yang penulis lakukan berupa sebuah prototype. Hasil pengujian sistem pengukur kecepatan kendaraan menggunakan sensor magnetik GMR menunjukan respon yang bagus saat pengujian dilakukan pada jarak 30cm dan 70cm antara dua buah sensor GMR.Data speed of vehicles on the highway are very influential to the security and safety of users of the highway. Advances in sensor technology is very helpful in measuring the speed of vehicles with automatic. A common method used is the method by using two sensor circuit which is set at a certain distance. The sensor is used as a detector for the exixtance of the vehicle. Vehicle speed data obtained by finding the time required vehicles drove from the first sensor to the second sensor. When the vehicle drove past the sensor, the sensor output signal to be a reference calculation start and stop time. Many types of sensors that have been used are LDR sensors, ultrasonic sensors, laser sensors, inductive loop sensors and camera sensors. Each of the sensor is already used to have various types of shortcomings in detecting vehicles on highways. Therefore, the authors bring up new ideas by using a magnetic sensor that has a low external noise factor. The type of sensor used magnetic sensor is giant magnetoresistance (GMR). Measuring system design vehicle speed that the author did such a prototype. The results of testing measuring vehicle speed using the GMR sensor showed a good response when testing is done at a distance of 30cm and 70cm between the two GMR sensors.
APA, Harvard, Vancouver, ISO, and other styles
9

Kulkarni, Prabhanjan D., Hitoshi Iwasaki, and Tomoya Nakatani. "The Effect of Geometrical Overlap between Giant Magnetoresistance Sensor and Magnetic Flux Concentrators: A Novel Comb-Shaped Sensor for Improved Sensitivity." Sensors 22, no. 23 (2022): 9385. http://dx.doi.org/10.3390/s22239385.

Full text
Abstract:
The combination of magnetoresistive (MR) element and magnetic flux concentrators (MFCs) offers highly sensitive magnetic field sensors. To maximize the effect of MFC, the geometrical design between the MR element and MFCs is critical. In this paper, we present simulation and experimental studies on the effect of the geometrical relationship between current-in-plane giant magnetoresistive (GMR) element and MFCs made of a NiFeCuMo film. Finite element method (FEM) simulations showed that although an overlap between the MFCs and GMR element enhances their magneto-static coupling, it can lead to a loss of magnetoresistance ratio due to a magnetic shielding effect by the MFCs. Therefore, we propose a comb-shaped GMR element with alternate notches and fins. The FEM simulations showed that the fins of the comb-shaped GMR element provide a strong magneto-static coupling with the MFCs, whereas the electric current is confined within the main body of the comb-shaped GMR element, resulting in improved sensitivity. We experimentally demonstrated a higher sensitivity of the comb-shaped GMR sensor (36.5 %/mT) than that of a conventional rectangular GMR sensor (28 %/mT).
APA, Harvard, Vancouver, ISO, and other styles
10

Mabarroh, Ni’matil, Taufikuddin Alfansuri, Nurul Imani Istiqomah, Rivaldo Marsel Tumbelaka, and Edi Suharyadi. "GMR Biosensor Based on Spin-Valve Thin Films for Green-Synthesized Magnetite (Fe<sub>3</sub>O<sub>4</sub>) Nanoparticles Label Detection." Nano Hybrids and Composites 37 (August 31, 2022): 9–14. http://dx.doi.org/10.4028/p-v5gmkk.

Full text
Abstract:
The giant magnetoresistance (GMR) thin film with spin valve (SV) structure of Ta (2 nm)/Ir20Mn80(10 nm)/Co90Fe10(3 nm)/Cu (2.2 nm)/Co84Fe10B4(10 nm)/Ta (5 nm)] fabricated by RF magnetron sputtering method with a magnetoresistance (MR) of 6% was used in this work. Green synthesis of Fe3O4 magnetic nanoparticles (MNPs) using Moringa Oleifera (MO) leaf extract have been successfully conducted using the coprecipitation method. Fe3O4 MNPs demonstrated the inverse cubic spinel structure with the average crystallite size of 13.8 nm and decreased to 11.8 nm for Fe3O4/PEG. Fe3O4, as a magnetic label, integrated with a Wheatstone bridge-GMR sensor provides access to GMR-based biosensors. The induced-field increase leads the signal (ΔV) to increase with increasing nanoparticle concentration. It was discovered that a sensor can distinguish different types of magnetic labels. The sensitivity for Fe3O4 and MO-green synthesized Fe3O4 magnetic label was 0.04 and 0.1 mV/g/L, respectively. The GMR sensor performed the highest sensitivity on the MO-green synthesized Fe3O4 label. Thus, the SV thin film as a sensor and the green-synthesized Fe3O4 nanoparticles as a superior magnetic label are an excellent combination for biosensor application.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Giant magnetoresistance (GMR) sensor"

1

Chalastaras, Athanasios. "Giant magnetoresistance in magnetic multilayers using a new embossed surface." ScholarWorks@UNO, 2004. http://louisdl.louislibraries.org/u?/NOD,137.

Full text
Abstract:
Thesis (M.S.)--University of New Orleans, 2004.<br>Title from electronic submission form. "A thesis ... in partial fulfillment of the requirements for the degree of Master of Science in the Department of Physics."--Thesis t.p. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
2

Östling, Johan. "High Accuracy Speed and Angular Position Detection by Dual Sensor." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-365726.

Full text
Abstract:
For many decades there has been a need in many industries to measure speed and position of ferrous gears. This is commonly done by converting passing gear teeth from trigger wheels to electrical impulses to calculate speed and angular position. By using Hall effect sensors or Giant Magnetoresistance sensors (GMR), a zero speed detection of gear teeth is possible while at the same time be cheap to produce and durable for harsh environments. A specially designed trigger-wheel (cogwheel created for measurements) with gear teeth in a specific pattern, exact position can be detected by using a dual sensor, even when no earlier information is available. The new design of trigger-wheel also makes this new method more accurate and universal compared to previous solutions. This thesis demonstrates and argues for the advantages of using a dual sensor for speed and angular position detection on gear wheels. Were one sensor do quantitative measurements for pattern detection in the teeth arrangements and the other sensor do qualitative measurements for position detection.
APA, Harvard, Vancouver, ISO, and other styles
3

Hadadeh, Fawaz. "3D Probe for Magnetic Imaging and Non-destructive Testing." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS421/document.

Full text
Abstract:
La thèse est dédiée au développement des sondes à base de capteurs magnétorésistifs capable de détecter les trois composantes du champ simultanément pour le contrôle non destructif par courants de Foucault et pour l’imagerie magnétique. Une première partie donne un aperçu de l’état de l’art des capteurs et des méthodes d’imagerie et du contrôle. Dans une seconde partie, la réalisation des sondes trois axes est donnée. Cela a inclus la micro fabrication, la réalisation de l’électronique de lecture, la conception et la réalisation de la partie mécanique et d’émission. Pour cela un travail important de simulation a été nécessaire. L’application de ces sondes sur des cas modèle pour l’imagerie magnétique avec une résolution submillimétrique est ensuite décrite. La sonde proposée dans cette thèse a été aussi utilisée avec succès pour détecter des défauts dans des échantillons d'aluminium et de titane avec un bon rapport signal sur bruit<br>The thesis is dedicated to the development of probes based on magnetoresistive sensors capable of detecting the three components of the field simultaneously for eddy current non-destructive testing and for magnetic imaging. A first part provides an overview of the state of the art of sensors, and imaging and control methods. In a second part, the realization of the three-axis probes is given. This included the micro-fabrication, the realization of the reading electronics, the design and realization of the mechanical part and emission. For this, an important simulation work was necessary. The application of these probes to model cases for magnetic imaging with submillimeter resolution is then described. The probe proposed in this thesis has also been used successfully to detect defects in aluminum and titanium samples with a good signal-to-noise ratio
APA, Harvard, Vancouver, ISO, and other styles
4

Binder, Jörg. "Giant Magnetoresistance - eine ab-initio Beschreibung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-997704395015-96808.

Full text
Abstract:
Die vorliegende Arbeit ist ein Beitrag zur Theorie des spinabhängigen Transports in magnetischen Vielfachschichten. Es wird erstmalig eine parameterfreie Beschreibung des Giant Magnetoresistance (GMR) vorgelegt, welche detaillierte Einsichten in die mikroskopischen Vorgänge gestattet. Die ab-initio Berechnung der Elektronenstruktur der magnetischen Vielfachschichten basiert auf der Spindichtefunktionaltheorie unter Verwendung eines Screened Korringa-Kohn-Rostoker-Verfahrens. Die Streueigenschaften von Punktdefekten werden über die Greensche Funktion des gestörten Systems selbstkonsistent bestimmt. Die Transporteigenschaften werden durch Lösung der quasiklassischen Boltzmann-Gleichung unter Berücksichtigung der Elektronenstruktur der Vielfachschicht und der Anisotropie der Streuung an Fremdatomen berechnet. Die Boltzmann-Gleichung wird iterativ unter Einbeziehung der Vertex-Korrekturen gelöst. Der Formalismus wird auf Co/Cu- und Fe/Cr-Vielfachschichten, die Standardsysteme der Magnetoelektronik, angewandt. Es werden die Abhängigkeit der Streuquerschnitte, der spezifischen Restwiderstände und des GMR von der Art und der Lage der Übergangsmetalldefekte in Co/Cu- und Fe/Cr-Vielfachschichten diskutiert. Darüber hinaus wird der Einfluß des Quantum Confinements auf den GMR eingehend untersucht. Vorteile und Grenzen der vorliegenden theoretischen Beschreibung werden aufgezeigt<br>A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened Korringa-Kohn-Rostoker method. Scattering at impurity atoms in the multilayers is described by means of a Green's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the Boltzmann equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the Boltzmann equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the relation between spin dependence of the electronic structure and GMR as well as the role of quantum confinement effects for GMR are investigated. Advantages and limits of the approach are discussed in detail
APA, Harvard, Vancouver, ISO, and other styles
5

Binder, Jörg. "Giant Magnetoresistance - eine ab-initio Beschreibung." Doctoral thesis, Technische Universität Dresden, 2000. https://tud.qucosa.de/id/qucosa%3A24782.

Full text
Abstract:
Die vorliegende Arbeit ist ein Beitrag zur Theorie des spinabhängigen Transports in magnetischen Vielfachschichten. Es wird erstmalig eine parameterfreie Beschreibung des Giant Magnetoresistance (GMR) vorgelegt, welche detaillierte Einsichten in die mikroskopischen Vorgänge gestattet. Die ab-initio Berechnung der Elektronenstruktur der magnetischen Vielfachschichten basiert auf der Spindichtefunktionaltheorie unter Verwendung eines Screened Korringa-Kohn-Rostoker-Verfahrens. Die Streueigenschaften von Punktdefekten werden über die Greensche Funktion des gestörten Systems selbstkonsistent bestimmt. Die Transporteigenschaften werden durch Lösung der quasiklassischen Boltzmann-Gleichung unter Berücksichtigung der Elektronenstruktur der Vielfachschicht und der Anisotropie der Streuung an Fremdatomen berechnet. Die Boltzmann-Gleichung wird iterativ unter Einbeziehung der Vertex-Korrekturen gelöst. Der Formalismus wird auf Co/Cu- und Fe/Cr-Vielfachschichten, die Standardsysteme der Magnetoelektronik, angewandt. Es werden die Abhängigkeit der Streuquerschnitte, der spezifischen Restwiderstände und des GMR von der Art und der Lage der Übergangsmetalldefekte in Co/Cu- und Fe/Cr-Vielfachschichten diskutiert. Darüber hinaus wird der Einfluß des Quantum Confinements auf den GMR eingehend untersucht. Vorteile und Grenzen der vorliegenden theoretischen Beschreibung werden aufgezeigt.<br>A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened Korringa-Kohn-Rostoker method. Scattering at impurity atoms in the multilayers is described by means of a Green's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the Boltzmann equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the Boltzmann equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the relation between spin dependence of the electronic structure and GMR as well as the role of quantum confinement effects for GMR are investigated. Advantages and limits of the approach are discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
6

Theodoropoulou, Nikoleta. "Experimental studies of spin dependent phenomena in Giant Magnetoresistance (GMR) and Dilute Magnetic Semiconductor (DMS) systems." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stirk, Stewart. "Emissivity - a remote sensor of giant magnetoresistance with spatial resolution." Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, G. A., S. Nakashima, S. Arai, T. Kato, and S. Iwata. "High sensitivity giant magnetoresistance magnetic sensor using oscillatory domain wall displacement." American Institute of Physics, 2010. http://hdl.handle.net/2237/14167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carroll, Turhan Kendall. "Radiation Damage in GMR Spin Valves." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281633368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Woochan. "Integrated Current Sensor using Giant Magneto Resistive (GMR) Field Detector for Planar Power Module." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/46064.

Full text
Abstract:
Conventional wire bond power modules have limited application for high-current operation, mainly because of their poor thermal management capability. Planar power modules have excellent thermal management capability and lower parasitic inductance, which means that the planar packaging method is desirable for high-power applications. For these reasons, a planar power module for an automotive motor drive system was developed, and a gate-driver circuit with an over-current protection was planned to integrate into the module. This thesis discusses a current-sensing method for the planar module, and the integrated gate driver circuit with an over-current protection. After reviewing several current-sensing methods, it becomes clear that most popular current-sensing methods, such as the Hall-Effect sensor, the current transformer, the Shunt resistor, and Rogowski coils, exhibit limitations for the planar module integration. For these reasons, a giant magneto resistive (GMR) magnetic-field detector was chosen as a current-sensing method. The GMR sensor utilizes the characteristics of the giant magneto resistive (GMR) effect in that it changes its resistance when it is exposed to the magnetic-flux. Because the GMR resistor can be fabricated at the wafer level, a packaged GMR sensor is very compact when compared with conventional current sensors. In addition, the sensor detects magnetic-fields, which does not require direct contact to the current-carrying conductor, and the bandwidth of the sensor can be up to 1 MHz, which is wide enough for the switching frequencies of most of motor drive applications. However, there are some limiting factors that need to be considered for accurate current measurement: â ¢ Operating temperature â ¢ Magnetic-flux density seen by a GMR resistor â ¢ Measurement noise If the GMR sensor is integrated into the power module, the ambient temperature of the sensor will be highly influenced by the junction temperature of the power devices. Having a consistent measurement for varying temperature is important for module-integrated current sensors. An experiment was performed to see the temperature characteristics of a GMR sensor. The measurement error caused by temperature variation was quantified by measurement conditions. This thesis also proposes an active temperature error compensation method for the best use of the GMR sensor. The wide current trace of the planar power module helps to reduce the electrical/thermal resistance, but it hinders having a strong and constant magnetic-field-density seen by the GMR sensor. In addition, the eddy-current effect will change the distribution of the current density and the magnetic-flux-density. These changes directly influence the accurate measurement of the GMR sensor. Therefore, analyzing the magnetic-flux distribution in the planar power module is critical for integrating the GMR sensor. A GMR sensor is very sensitive to noise, especially when it is sensing current flowing in a wide trace and exposed to external fields, neither of which can be avoided for the operation of power modules. Post-signal processing is required, and the signal-conditioning circuit was designed to attenuate noise. The signal-conditioning circuit was designed using an instrumentation amplifier, and the circuit attenuated most of the noise that hindered accurate measurement. The over-current protection circuit along with the gate driver circuit was designed, and the concept was verified by experiments. The main achievements of this study can be summarized as: â ¢ Characterization of conventional current-sensing methods â ¢ Temperature characterization of the GMR resistor â ¢ Magnetic-flux distribution of the planar power module â ¢ Design of the signal-conditioning circuit and over-current protection circuit<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Giant magnetoresistance (GMR) sensor"

1

Reig, Candid, Susana Cardoso, and Subhas Chandra Mukhopadhyay. Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Giant magnetoresistance (GMR) sensor"

1

De Marcellis, Andrea, Giuseppe Ferri, and Paolo Mantenuto. "Resistive Sensor Interfacing." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Michelena, M. D. "Commercial Off-The-Shelf GMR Based Sensor on Board Optos Picosatellite." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baraduc, C., M. Chshiev, and B. Dieny. "Spintronic Phenomena: Giant Magnetoresistance, Tunnel Magnetoresistance and Spin Transfer Torque." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gooneratne, C. P., K. Chomsuwan, M. Kakikawa, and S. Yamada. "High-Spatial Resolution Giant Magnetoresistive Sensors - Part II: Application in Biomedicine." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leitão, D. C., J. Borme, A. Orozco, S. Cardoso, and P. P. Freitas. "Magnetoresistive Sensors for Surface Scanning." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leitão, Diana C., José Pedro Amaral, Susana Cardoso, and Càndid Reig. "Microfabrication Techniques." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fermon, C., and M. Pannetier-Lecoeur. "Noise in GMR and TMR Sensors." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reig, Càndid, and M. D. Cubells-Beltrán. "GMR Based Sensors for IC Current Monitoring." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kapser, Konrad, Markus Weinberger, Wolfgang Granig, and Peter Slama. "GMR Sensors in Automotive Applications." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haji-Sheikh, Michael J. "Compass Applications Using Giant Magnetoresistance Sensors (GMR)." In Giant Magnetoresistance (GMR) Sensors. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Giant magnetoresistance (GMR) sensor"

1

Zhao, Changhui, Hao Sun, Xuecheng Sun, and Yujiao Zhou. "The Simulation Study of High-Sensitivity GMR (Giant Magnetoresistive) Biosensors." In 2024 3rd International Symposium on Sensor Technology and Control (ISSTC). IEEE, 2024. https://doi.org/10.1109/isstc63573.2024.10824160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guo, Zhanhu, Suying Wei, Sung Park, et al. "An investigation on granular-nanocomposite-based giant magnetoresistance (GMR) sensor fabrication." In The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, edited by Marcelo J. Dapino. SPIE, 2007. http://dx.doi.org/10.1117/12.715367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reig, Candid, Fernando Pardo, Jose A. Boluda, et al. "Advanced Giant Magnetoresistance (GMR) sensors for Selective-Change Driven (SCD) circuits." In 2021 13th Spanish Conference on Electron Devices (CDE). IEEE, 2021. http://dx.doi.org/10.1109/cde52135.2021.9455731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adnani, Rachid El B., Fernando Pardo, Susana Cardoso, et al. "Finite Element Model of Giant Magnetoresistance (GMR) Based Sensors for Microfluidic Applications." In 2023 14th Spanish Conference on Electron Devices (CDE). IEEE, 2023. http://dx.doi.org/10.1109/cde58627.2023.10339464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Marcellis, Andrea, C. Reig, M. D. Cubells, et al. "Giant Magnetoresistance (GMR) sensors for 0.35µm CMOS technology sub-mA current sensing." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suharyadi, Edi, Indra Pardede, and Ferawati A. Hasibuan. "Giant magnetoresistance (GMR) sensors based on Co/Cu multilayers for biomaterial detection applications." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7734392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Hao, Mengqi Zhang, Xinrong Li, and Xuecheng Sun. "The simulation of a high sensitivity GMR (giant magnetoresistance) biosensor for magnetic nanoparticle detection." In Ninth International Symposium on Sensors, Mechatronics, and Automation System (ISSMAS 2023), edited by Lijia Pan and Zaifa Zhou. SPIE, 2024. http://dx.doi.org/10.1117/12.3015003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nurpriyanti, Indah, Indra Pardede, Edi Suharyadi, Takeshi Kato, and Satoshi Iwata. "Detection of Fe3O4 Magnetic Nanoparticles using Giant Magnetoresistance (GMR) Sensor Based on Multilayer and Spin Valve Thin Films by Wheatstone Bridge Circuit." In 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM). IEEE, 2016. http://dx.doi.org/10.1109/issimm.2016.7803717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yoo, JinHyeong, James B. Restorff, and Marilyn Wun-Fogle. "Non-Contact Tension Sensing Using Fe-Ga Alloy Strip." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8909.

Full text
Abstract:
This paper describes a proof-of-concept non-contact strain sensor, using a magnetostrictive Fe-Ga alloy (Galfenol). Magnetostrictive materials demonstrate dimensional changes in response to a magnetic field. In contrast with typical piezoceramic materials, Galfenol is the most ductile of the current transduction materials and appears to have an excellent ability to withstand mechanical shock and tension. Galfenol also exhibits the inverse (Villari) effect: both the magnetization and permeability change in response to an applied stress. Galfenol has low hysteresis loses, less than ∼10% of its transduction potential over a range of −20 to +80 °C. The magnetization’s response to stress depends strongly on both magnetic field bias and alloy composition. Galfenol’s Villari effect can be used in various sensor configurations together with either a giant magnetoresistance (GMR) sensor, Hall Effect sensor or pickup coil to sense the magnetization / permeability changes in Galfenol when stressed. The sensor described in this paper utilizes the permeability change, which is not time dependent and can measure static loads. The design reported here targets low force, low frequency applications, such as inclination measurements and stress monitoring. The sensor was able to measure both static and dynamic stress. The static sensitivity was +3.64 Oe/kN for the Hall sensor close to the bias magnet and −1.49 Oe/kN for the Hall sensor at the other end of the Galfenol strip. We conclude that a Galfenol strain sensor is a viable candidate for bolt stress monitoring in critical applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Thilakaraj, Rishma, Kanimozhi Natarajan, Amuda Rajamani, and Brinda Arumugam. "A Comprehensive Review on Enhancement of Sensitivity of Spin Diode." In The Second National Conference on Emerging Materials for Sustainable Future. Asian Research Association, 2024. http://dx.doi.org/10.54392/ara2415.

Full text
Abstract:
Spintronics, a branch of electronics that uses the quantum property of electron spin has been widely developing nowadays. Spin diode technology is a part of this emerging trend that shows better performance beyond the traditional semiconductor diodes in certain parameters. This review focuses on the spin diodes with a primary objective of studying the enhancement in the sensitivity of these devices to be used in various applications including memory devices, sensors and advanced computing. The review covers the basic principle of spin diode, its historical development, working, methods to enhance sensitivity and studies on its resonant frequency. The key mechanisms like Spin Transfer Torque (STT) and Giant Magnetoresistance (GMR) were also given importance. Additionally, the study covers the various techniques used to analyze the performance of spin diode and its practical limitations. Overall, the work is made to provide a better understanding of the present scenario and future potential of the spin diode technology and suggest better ways to enhance the sensitivity of the device for real time applications.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography