Academic literature on the topic 'Giant Rashba-type spin splitting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Giant Rashba-type spin splitting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Giant Rashba-type spin splitting"

1

Ishizaka, K., M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, et al. "Giant Rashba-type spin splitting in bulk BiTeI." Nature Materials 10, no. 7 (June 19, 2011): 521–26. http://dx.doi.org/10.1038/nmat3051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liebmann, Marcus, Christian Rinaldi, Domenico Di Sante, Jens Kellner, Christian Pauly, Rui Ning Wang, Jos Emiel Boschker, et al. "Giant Rashba-Type Spin Splitting in Ferroelectric GeTe(111)." Advanced Materials 28, no. 3 (November 24, 2015): 560–65. http://dx.doi.org/10.1002/adma.201503459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bawden, Lewis, Jonathan M. Riley, Choong H. Kim, Raman Sankar, Eric J. Monkman, Daniel E. Shai, Haofei I. Wei, et al. "Hierarchical spin-orbital polarization of a giant Rashba system." Science Advances 1, no. 8 (September 2015): e1500495. http://dx.doi.org/10.1126/sciadv.1500495.

Full text
Abstract:
The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two “spin-split” branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.
APA, Harvard, Vancouver, ISO, and other styles
4

Xiang, Longjun, Youqi Ke, and Qingyun Zhang. "Tunable giant Rashba-type spin splitting in PtSe2/MoSe2 heterostructure." Applied Physics Letters 115, no. 20 (November 11, 2019): 203501. http://dx.doi.org/10.1063/1.5125303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eremeev, S. V., I. A. Nechaev, and E. V. Chulkov. "Giant Rashba-type spin splitting at polar surfaces of BiTeI." JETP Letters 96, no. 7 (December 2012): 437–44. http://dx.doi.org/10.1134/s0021364012190071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Ning, Xue-Jing Zhang, and Bang-Gui Liu. "Strain-enhanced giant Rashba spin splitting in ultrathin KTaO3 films for spin-polarized photocurrents." RSC Advances 10, no. 72 (2020): 44088–95. http://dx.doi.org/10.1039/d0ra08745a.

Full text
Abstract:
Strong Rashba effects at semiconductor surfaces and interfaces have attracted attention for exploration and applications. We show with first-principles investigation that applying biaxial stress can cause tunable and giant Rashba effects in ultrathin KTaO3 (KTO) (001) films.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Zhifeng, Lingjun Li, Leyuan Cui, Yongting Shi, Tielei Song, Jiangtao Cai, Xin Cui, Xue Jiang, and Jijun Zhao. "Intrinsic spin–valley-coupled Dirac state in Janus functionalized β-BiAs monolayer." Nanoscale Horizons 6, no. 3 (2021): 283–89. http://dx.doi.org/10.1039/d0nh00466a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Singh, N., Y. Saeed, and U. Schwingenschlögl. "Giant Rashba spin splitting in Bi2 Se3 :Tl." physica status solidi (RRL) - Rapid Research Letters 8, no. 10 (July 25, 2014): 849–52. http://dx.doi.org/10.1002/pssr.201409183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Qiu Zhi-Jun, Gui Yong-Sheng, Shu Xiao-Zhou, Dai Ning, Guo Shao-Ling, and Chu Jun-Hao. "Giant Rashba spin splitting in HgTe/HgCdTe quantum wells." Acta Physica Sinica 53, no. 4 (2004): 1186. http://dx.doi.org/10.7498/aps.53.1186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hong, Jisook, Jun-Won Rhim, Inkyung Song, Changyoung Kim, Seung Ryong Park, and Ji Hoon Shim. "Giant Rashba-Type Spin Splitting in Bi/Ag(111) from Asymmetric Interatomic-Hopping." Journal of the Physical Society of Japan 88, no. 12 (December 15, 2019): 124705. http://dx.doi.org/10.7566/jpsj.88.124705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Giant Rashba-type spin splitting"

1

Šikula, Marek. "Infračervená magneto-spektroskopie polovodičů Rashbova typu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231998.

Full text
Abstract:
Optická odezva BiTeX (X = I, Cl, Br) polovodičových materiálů s obřím spinovým štěpením Rashbova typu je studována za nízkých teplot do vysokých magnetických polí, kde je směr magnetické indukce kolmý na povrch vzorku (Faradayova konfigurace). Na rozdíl od reflexního uspořádání nám transmisní uspořádání umožňuje přímé pozorování přechodů mezi Landauovými hladinami v blízkosti křižiště vodivostních pásů - Diracův bod. Optická odezva BiTeX sloučenin je srovnána s teoretickým modelem spočteným v rámci Kubo-Greenwoodova formalismu z Rashbova hamiltonianu.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Giant Rashba-type spin splitting"

1

Qin, Zhenzhen. "Optimization of Thermoelectric Properties Based on Rashba Spin Splitting." In Thermoelectricity [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98788.

Full text
Abstract:
In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography