To see the other types of publications on this topic, follow the link: Giant Rashba-type spin splitting.

Journal articles on the topic 'Giant Rashba-type spin splitting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Giant Rashba-type spin splitting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ishizaka, K., M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, et al. "Giant Rashba-type spin splitting in bulk BiTeI." Nature Materials 10, no. 7 (June 19, 2011): 521–26. http://dx.doi.org/10.1038/nmat3051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liebmann, Marcus, Christian Rinaldi, Domenico Di Sante, Jens Kellner, Christian Pauly, Rui Ning Wang, Jos Emiel Boschker, et al. "Giant Rashba-Type Spin Splitting in Ferroelectric GeTe(111)." Advanced Materials 28, no. 3 (November 24, 2015): 560–65. http://dx.doi.org/10.1002/adma.201503459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bawden, Lewis, Jonathan M. Riley, Choong H. Kim, Raman Sankar, Eric J. Monkman, Daniel E. Shai, Haofei I. Wei, et al. "Hierarchical spin-orbital polarization of a giant Rashba system." Science Advances 1, no. 8 (September 2015): e1500495. http://dx.doi.org/10.1126/sciadv.1500495.

Full text
Abstract:
The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two “spin-split” branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.
APA, Harvard, Vancouver, ISO, and other styles
4

Xiang, Longjun, Youqi Ke, and Qingyun Zhang. "Tunable giant Rashba-type spin splitting in PtSe2/MoSe2 heterostructure." Applied Physics Letters 115, no. 20 (November 11, 2019): 203501. http://dx.doi.org/10.1063/1.5125303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eremeev, S. V., I. A. Nechaev, and E. V. Chulkov. "Giant Rashba-type spin splitting at polar surfaces of BiTeI." JETP Letters 96, no. 7 (December 2012): 437–44. http://dx.doi.org/10.1134/s0021364012190071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Ning, Xue-Jing Zhang, and Bang-Gui Liu. "Strain-enhanced giant Rashba spin splitting in ultrathin KTaO3 films for spin-polarized photocurrents." RSC Advances 10, no. 72 (2020): 44088–95. http://dx.doi.org/10.1039/d0ra08745a.

Full text
Abstract:
Strong Rashba effects at semiconductor surfaces and interfaces have attracted attention for exploration and applications. We show with first-principles investigation that applying biaxial stress can cause tunable and giant Rashba effects in ultrathin KTaO3 (KTO) (001) films.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Zhifeng, Lingjun Li, Leyuan Cui, Yongting Shi, Tielei Song, Jiangtao Cai, Xin Cui, Xue Jiang, and Jijun Zhao. "Intrinsic spin–valley-coupled Dirac state in Janus functionalized β-BiAs monolayer." Nanoscale Horizons 6, no. 3 (2021): 283–89. http://dx.doi.org/10.1039/d0nh00466a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Singh, N., Y. Saeed, and U. Schwingenschlögl. "Giant Rashba spin splitting in Bi2 Se3 :Tl." physica status solidi (RRL) - Rapid Research Letters 8, no. 10 (July 25, 2014): 849–52. http://dx.doi.org/10.1002/pssr.201409183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Qiu Zhi-Jun, Gui Yong-Sheng, Shu Xiao-Zhou, Dai Ning, Guo Shao-Ling, and Chu Jun-Hao. "Giant Rashba spin splitting in HgTe/HgCdTe quantum wells." Acta Physica Sinica 53, no. 4 (2004): 1186. http://dx.doi.org/10.7498/aps.53.1186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hong, Jisook, Jun-Won Rhim, Inkyung Song, Changyoung Kim, Seung Ryong Park, and Ji Hoon Shim. "Giant Rashba-Type Spin Splitting in Bi/Ag(111) from Asymmetric Interatomic-Hopping." Journal of the Physical Society of Japan 88, no. 12 (December 15, 2019): 124705. http://dx.doi.org/10.7566/jpsj.88.124705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Winkler, R., H. Noh, E. Tutuc, and M. Shayegan. "Anomalous giant Rashba spin splitting in two-dimensional hole systems." Physica E: Low-dimensional Systems and Nanostructures 12, no. 1-4 (January 2002): 428–31. http://dx.doi.org/10.1016/s1386-9477(01)00329-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Peng, Qiong, Yong Lei, Xiaohui Deng, Jiao Deng, Guang Wu, Jin Li, Chaoyu He, and Jianxin Zhong. "Giant and tunable Rashba spin splitting in MoS2/Bi2Te3 heterostructures." Physica E: Low-dimensional Systems and Nanostructures 135 (January 2022): 114944. http://dx.doi.org/10.1016/j.physe.2021.114944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Szary, Maciej J. "Giant Rashba spin splitting induced by heavy element adsorption at germanene." FlatChem 18 (November 2019): 100141. http://dx.doi.org/10.1016/j.flatc.2019.100141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhu, Jianbao, Wei Qin, and Wenguang Zhu. "Giant Rashba-like spin–orbit splitting with distinct spin texture in two-dimensional heterostructures*." Chinese Physics B 30, no. 8 (August 1, 2021): 087307. http://dx.doi.org/10.1088/1674-1056/ac0784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Liu, Zhao, Yingdi Jin, Yuchen Yang, Z. F. Wang, and Jinlong Yang. "Surface alloy engineering in 2D trigonal lattice: giant Rashba spin splitting and two large topological gaps." New Journal of Physics 20, no. 2 (February 16, 2018): 023041. http://dx.doi.org/10.1088/1367-2630/aaab98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ma, Yandong, Ying Dai, Wei Wei, Xinru Li, and Baibiao Huang. "Emergence of electric polarity in BiTeX (X = Br and I) monolayers and the giant Rashba spin splitting." Physical Chemistry Chemical Physics 16, no. 33 (June 26, 2014): 17603. http://dx.doi.org/10.1039/c4cp01975j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, Zhonghao, Setti Thirupathaiah, Alexander N. Yaresko, Satya Kushwaha, Quinn Gibson, Wei Xia, Yanfeng Guo, Dawei Shen, Robert J. Cava, and Sergey V. Borisenko. "A Giant Bulk‐Type Dresselhaus Splitting with 3D Chiral Spin Texture in IrBiSe." physica status solidi (RRL) – Rapid Research Letters 14, no. 4 (April 2020): 1900684. http://dx.doi.org/10.1002/pssr.201900684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Zhonghao, Setti Thirupathaiah, Alexander N. Yaresko, Satya Kushwaha, Quinn Gibson, Wei Xia, Yanfeng Guo, Dawei Shen, Robert J. Cava, and Sergey V. Borisenko. "A Giant Bulk‐Type Dresselhaus Splitting with 3D Chiral Spin Texture in IrBiSe." physica status solidi (RRL) – Rapid Research Letters 14, no. 4 (April 2020): 2070019. http://dx.doi.org/10.1002/pssr.202070019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Babayev, A. M., S. Cakmaktepe, and D. Turkoz Altug. "Rashba spin-orbital splitting in kane type quantum anti-wires." Journal of Physics: Conference Series 153 (March 1, 2009): 012043. http://dx.doi.org/10.1088/1742-6596/153/1/012043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Matsuyama, T., R. Kürsten, C. Meißner, and U. Merkt. "Rashba spin splitting in inversion layers onp-type bulk InAs." Physical Review B 61, no. 23 (June 15, 2000): 15588–91. http://dx.doi.org/10.1103/physrevb.61.15588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhou, Baozeng. "Ferroelectric Rashba semiconductors, AgBiP2X6 (X = S, Se and Te), with valley polarization: an avenue towards electric and nonvolatile control of spintronic devices." Nanoscale 12, no. 9 (2020): 5533–42. http://dx.doi.org/10.1039/c9nr10865c.

Full text
Abstract:
Coexistence of Rashba-type spin splitting (in-plane spin direction) and band splitting at the K/K′ valleys (out-of-plane spin direction) makes the FRS AgBiP2Te6 monolayer a promising candidate for 2D spin FET and spin/valley Hall effect devices.
APA, Harvard, Vancouver, ISO, and other styles
22

Du, X., Z. Y. Wang, and G. Q. Huang. "Rashba-type spin splitting and the electronic structure of ultrathin Pb/MoTe2heterostructure." Materials Research Express 3, no. 11 (November 3, 2016): 116302. http://dx.doi.org/10.1088/2053-1591/3/11/116302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ma, Yandong, Ying Dai, Na Yin, Tao Jing, and Baibiao Huang. "Ideal two-dimensional systems with a gain Rashba-type spin splitting: SrFBiS2and BiOBiS2nanosheets." J. Mater. Chem. C 2, no. 40 (August 18, 2014): 8539–45. http://dx.doi.org/10.1039/c4tc01394h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Raicevic, Nevena, and Milan Tadic. "Influence of strain on band structure of semiconductor nanostructures." Serbian Journal of Electrical Engineering 6, no. 3 (2009): 461–69. http://dx.doi.org/10.2298/sjee0903461r.

Full text
Abstract:
The influence of the mechanical strain on the electronic structure of the asymmetric (In,Ga)As/GaAs quantum well is considered. Both the direct influence of strain on the orbital part of the electronic structure and an indirect influence through the strain dependent Rashba and Dresselhaus Hamiltonians are taken into account. The analyzed quantum well is taken to have a triangular shape, and is oriented along the <110> direction. For this direction, there exists both the intrinsic and strain-induced spin-orbit interaction. For all analyzed types of spin-orbit interaction, subband splittings depend linearly on the in-plane wave vector. On the other hand, the electronic structure for the Rashba type of the strain-induced spin-orbit interaction shows isotropic dependence in the k-space, while the electronic structure due to the Dresselhaus type shows anisotropy. Furthermore, the Rashba strain-induced spin-orbit interaction increases subband splitting, while the effect of the Dresselhaus Hamiltonian on the electronic structure is opposite to the intrinsic spin-orbit interaction for certain polar angles.
APA, Harvard, Vancouver, ISO, and other styles
25

Aliev, Ziya S. "THE AV–BVI–I TERNARY SYSTEMS: A BRIEF REVIEW ON THE PHASE EQUILIBRIA REVIEW." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 3 (September 26, 2019): 338–49. http://dx.doi.org/10.17308/kcmf.2019.21/1149.

Full text
Abstract:
This paper presents a brief review on the ternary phase equilibria in the ternary AV–BVI–I systems (AV = Sb, Bi; BVI = S, Se, Te). These systems includes the series of ternary compounds those are very attractive source materials for photo-, thermos- and ferroelectric energy transformation along the recently discovered semiconductors that exhibit Rashba-type spin splitting in their surface states. In the Rashba semiconductors, a unique toroidal 3D Fermi surface appears on the crystal surface, which leads to unusual properties that make it possible to realize unique electronic devices based on these compounds. The thorough knowledge on the ternary phase diagram of these systems shed light on the chemical and structural design of new multifunctional materials with tunable properties. This knowledge is very important whenfocusing on the chemistry of such multifunctional materials based on complex element systems. REFERENCES Audzijonis A., Sereika R., Ћaltauskas R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun., 2008, v. 147(3–4), pp. 88–89. https://doi.org/10.1016/j.ssc.2008.05.008 Łukaszewicz K., Pietraszko A., Kucharska M. Diffuse Scattering, Short Range Order and Nanodomains in the Paraelectric SbSI. Ferroelectrics, 2008, v. 375(1), pp.170–177. https://doi.org/1080/00150190802438033 Audzijonis A., Gaigalas G., Ţigas L., Sereika R., Ţaltauskas R., Balnionis D., Rëza A. Electronic structure and optical properties of BiSeI crystal. Phys. Status Solidi B, 2009, v. 246(7), pp. 1702–1708. https://doi.org/10.1002/pssb.200945110 Audzijonis A., Zaltauskas R., Sereika R., Zigas L., Reza A. Electronic structure and optical properties of BiSI crystal. J. Phys. Chem. Solids. 2010, v. 71(6), pp. 884-891. https://doi.org/10.1016/j.jpcs.2010.03.042 Ganose A. M., Butler K. T., Walsh A., Scanlon D. O. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A, 2016, v. 4(6), pp. 2060-2068. https://doi.org/10.1039/c5ta09612j Gerzanich E.I., Fridkin V.M. Ferroelectric materials of type AVBVICVII. Moscow, Nauka Publ., 1982. (in Russ.) Pierrefeu A., Steigmeier E. F., Dorner B. Inelastic neutron scattering in SbSI near the ferroelectric phase transformation. Phys. Status Solidi B, 1977, v. 80(1), pp. 167–171. https://doi.org/10.1002/pssb.2220800119 Žičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B, 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 Rao K. K., Chaplot S. L. Dynamics of Paraelectric and Ferroelectric SbSI. Phys. Status Solidi B, 1985, v. 129(2), pp. 471–482. https://doi.org/10.1002/pssb.2221290204 Grigas J., Talik E., Lazauskas V. Splitting of the XPS in ferroelectric SbSI crystals. Ferroelectrics, 2003, v. 284(1), pp. 147–160. https://doi.org/10.1080/00150190390204790 Audzijonis A., Ћaltauskas R., Ћigas L., Vinokurova I. V., Farberovich O. V., Pauliukas A., Kvedaravičius A. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition. Physica B, 2006, v. 371(1), pp. 68–73. https://doi.org/10.1016/j.physb.2005. 09.039 Nowak M., Nowrot A., Szperlich P., Jesionek M., Kępińska M., Starczewska A., Mistewicz K., Stróż D., Szala J., Rzychoń T., Talik E., Wrzalik R. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A, 2014, v. 210, pp. 119–130. https://doi.org/10.1016/j.sna.2014.02.012 Ishizaka K., Bahramy M. S., Murakawa H., Sakano M., Shimojima T., Sonobe T., Koizumi K., Shin S., Miyahara H., Kimura A., Miyamoto K., Okuda T., Namatame H., Taniguchi M., Arita R., Nagaosa N., Kobayashi K., Murakami Y., Kumai R., Kaneko Y., Onose Y., Tokura Y. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater., 2011, v. 10(7), pp. 521–526. https://doi.org/10.1038/nmat3051 Landolt G., Eremeev S. V., Koroteev Yu. M., Slomski B., Muff S., Neupert T., Kobayashi M., Strocov V. N., Schmitt T., Aliev Z. S., Babanly M. B., Amiraslanov I. R., Chulkov E. V., Osterwalder J., Dil J. H. Phys. Rev. Lett., 2012, v. 109(11), p. 116403. https://doi.org/10.1103/physrevlett.109.116403 Bahramy M. S., Yang B.-J., Arita R., Nagaosa N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Commun., 2012, v. 3(1), p. 679. https://doi.org/10.1038/ncomms1679 Landolt G., Eremeev S. V., Tereshchenko O. E., Muff S., Slomski B., Kokh K. A., Kobayashi M., Schmitt T., Strocov V. N., Osterwalder J., Chulkov E. V., Dil J. H. Bulk and surface Rashba splitting in single termination BiTeCl. New J. Phys., 2013, v. 15(8), p. 085022. https://doi.org/10.1088/1367-2630/15/8/085022 Fiedler S., Bathon T., Eremeev S. V., Tereshchenko O. E., Kokh K. A., Chulkov E. V., Sessi P., Bentmann H., Bode M., Reinert F. Termination-dependent surface properties in the giant-Rashba semiconducto rsBiTeX(X=Cl, Br, I). Phys. Rev. B., 2015, v. 92(23), p. 235430. https://doi.org/10.1103/physrevb.92.235430 Bahramy M. S., Ogawa N. Bulk Rashba semiconductors and related quantum phenomena. Adv. Mater., 2017, v. 29(25), p. 1605911. https://doi.org/10.1002/adma.201605911 Gottstein G. Physical Foundations of Materials Science. Springer-Verlag Berlin Heidelberg, XIV, 2004, 502 p. Babanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russ. J. Inorg. Chem., 2017, v. 62(13), pp. 1703–1729. https://doi.org/10.1134/s0036023617130034 Žičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B., 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 Belyayev L. M., Lyakhovitskaya V. A., Netesov G. B., Mokhosoev M.V., Aleykina S.M. Synthesis and crystallization of antimony sulfoiodide. Izv. Akad. Nauk, Neorg. Mater., 1965, v. 1(12), pp. 2178–2181. (in Russ.) Ryazantsev A. A., Varekha L. M., Popovkin B. A., Lyakhovitskaya V. A., Novoselova A. V. Р–T–x phase diagram of the SbI3–Sb2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(7), pp. 1296–1297 (in Russ.) Aliev Z. S., Musayeva S. S., Babanly M. B. The phase relationships in the Sb–S–I system and thermodynamic properties of the SbSI. J. Phase Equilib. Diffus., 2017, v. 38, pp. 887–896. https://doi.org/10.1007/s11669-017-0601-4 Lukaszewicz K., Pietraszko A., Stepen’ Damm Yu., Kajokas A. Crystal structure and phase transitions of the ferroelectric antimony sulfoiodide SbSI. Part II. Crystal structure of SbSI in phases I, II and III. Pol. J. Chem., 1997, v. 71, pp. 1852–1857. Itoh K., Matsunaga H. A study of the crystal structure in ferroelectric SbSI. Zeitschrift für Krist., 1980, v. 152(3-4), p. 309–315. https://doi.org/10.1524/zkri.1980.152.3-4.309 Aliev Z. S., Musaeva S. S., Babanly D. M., Shevelkov A. V., Babanly M. B. Phase diagram of the Sb–Se–I system and thermodynamic properties of SbSeI. J. Alloys Compd., 2010, v. 505(2), pp. 450–455. https://doi.org/10.1016/j.jallcom.2010.06.103 Belotskiy D. P., Lapshin V. F., Boychuk R. F., Novalkovskiy N. P. The Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1972, v. 8(3), pp. 572–574. (in Russ.) Dolgikh V. A., Popovkin B. A., Odin I. N., Novoselova A. V. Р–Т–х phase diagram of the Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(6), pp. 919–922. (in Russ.) Rodionov Yu. I., Klokman V. V., Myakishev K. G. The solubility of semiconductor compounds AIIBVI, AIVBIV and AVBVI in halide melts. Russ. J. Inorg. Chem., 1973, v. 17(3), pp. 846–849. (in Russ.) Chervenyuk G. I., Niyger F. V., Belotskiy D. P., Novalkovskiy N. P. Investigation of the phase equilibria in the SbSI–Sb, SbSI–S, SbSI–I systems. Izv. Akad. Nauk, Neorg. Mater., 1977, v. 13(6), pp. 989–991. (in Russ.) Aliev Z. S., Babanly M. B., Babanly D. M., Shevelkov A. V., Tedenac J. C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. Int. J. Mat. Res., 2012, v. 103(3), pp. 290–295. https://doi.org/10.3139/146.110646 Belotskiy D. P., Antipov I. N., Nadtochiy V. F., Dodik S.M. Physicochemical investigations of the PbI2–SnI2, CdI2–ZnI2, BiI3–SbI3, Sb2Te3–SbI3, Bi2Te3–BiI3 systems. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(10), pp. 1663–1667. (in Russ.) Belotskiy D. P., Dodik S. M., Antipov I. N., Nefedov Z. I. Synthesis and investigation of the telluroiodides of antimony and bismuth. Ukr. Chem. J., 1970, v. 36, pp. 897–900. (in Russ.) Aleshin V. A., Valitova N. R., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the antimony iodide system – antimony telluride. Izv. Akad. Nauk, Zhur. Fiz. Khim., 1974, v. 48, p. 2395. (in Russ.) Valitova N. R., Popovkin B. A., Novoselova A. V., Aslanov L. A. The compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9, pp. 2222–2223. (in Russ.) Turyanitsa I. D., Olekseyuk I. D., Kozmanko I. I. Investigation of the Sb2Te3–SbI3 system and properties of the compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(8), pp. 433–1434. (in Russ.) Voutsas G. P., Rentzeperis P. J. The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift für Kristallographie, 1983, v. 161(1–2), pp. 111–118. https://doi.org/10.1524/zkri.1982.161.1-2.111 Kikuchi A., Oka Y., Sawaguchi E. Crystal Structure Determination of SbSI. J. Phys. Soc. Jap., 1967, v. 23(2), pp. 337–354. https://doi.org/10.1143/jpsj.23.337 Kichambare P., Sharon M. Preparation, characterization and physical properties of mixed Sb1–xBixTeI. Solid State Ionics, 1997, v. 101–103, pp. 155–159. https://doi.org/10.1016/s0167-2738(97)84024-6 Shevelkov A. V., Dikarev E. V., Shpanchenko R. V., Popovkin B.A. Crystal structures of bismuth tellurohalides BiTeX (X = Cl, Br, I) from X-ray powder diffraction data. J. Solid State Chem., 1995, v. 114(2), pp. 379–395. https://doi.org/10.1006/jssc.1995.1058 Aliev Z. S., Jafarov Y. I., Jafarli F. Y., Shevelkov A. V., Babanly M. B. The phase equilibria in the Bi–S–I ternary system and thermodynamic properties of the BiSI and Bi19S27I3 ternary compounds. J. Alloys Compd. 2014, v. 610, pp. 522–528. https://doi.org/10.1016/j.jallcom.2014.05.015 Ryazantsev T. A., Varekha L. M., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the BiI3–Bi2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1970, v. 6, pp. 1175–1179. (in Russ.) Oppermann H., Petasch U. Zu den pseudobinären Zustandssystemen Bi2Ch3-BiX3 und den ternären Phasen auf diesen Schnitten (Ch = S, Se, Te; X = Cl, Br, I), I: Bismutsulfi dhalogenide/The Pseudobinary Systems Bi2Ch3–BiX3 and the Ternary Phases on their Boundary Lines (Ch = S, Se, Te; X = Cl, Br, I), I: Bismuth Sulfi de Halides. Z. Naturforsch. 2003, v. 58b, pp. 725–740. https://doi.org/10.1515/znb-2003-0803 (in German) Haase-Wessel W. Die Kristallstruktur des Wismutsulfi djodids (BiSJ). Naturwissenschaften, 1973, v. 60, pp. 474–474. https://doi.org/10.1007/bf00592859 (in German) Miehe G., Kupcik V. Die Kristallstruktur des Bi(Bi2S3)9J3. Naturwissenschaften, 1971, v. 58, pp. 219–219. DOI: 10.1007/bf00591851 (in German) Turjanica I. D., Zajachkovskii N. F., Zajachkovskaja N. F., Kozmanko I. I. Investigation of the BiI3–Bi2Se3 system. Izv. Akad. Nauk, Neorg. Mater., 1974, v. 11(10), p. 1884. (in Russ.) Belotskii D. P., Lapsin V. F., Baichuk R. F. The BiI3–Bi2Se3 system. Izv. Akad. Nauk Neorg. Mater., 1971, v. 7(11), p. 1936. (in Russ.) Dolgikh V. A., Odin I. N., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the BiI3–Bi2Se3 system. Vestn. Mosk. Univ., Dep. VINITI., 1973, v. 23(3), Dep. No. 5683-73. (in Russ.) Dolgikh V. A., Popovkin B. A., Ivanova G. I., Novoselova A. V. Investigation of the sublimation of the SbSeI and BiSeI. Izv. Akad. Nauk, Neorg. Mater., 1975, v. 11(4), p. 637. (in Russ.) Petasch U., Goebel H., Oppermann H. Untersuchungen zum quasibinären System Bi2Se3/BiI3. Z. Anorg. Allg. Chem., 1998, v. 624, p. 1767. https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1767::aidzaac1767>3.0.co;2-t (in German) Doenges E. Z. Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. II. Über Selenohalogenide des dreiwertigen Antimons und Wismuts und über Antimon(III)-selenid Mit 2 Abbildungen. Anorg. Allg. Chem., 1950, v. 263(5–6), pp. 280–291. https://doi.org/10.1002/zaac.19502630508 (in German) Braun T. P., DiSalvo F. J. Bismuth selenide iodide. Acta Crystallogr., 2000, v. C56(1), pp. e1–e2. https://doi.org/10.1107/s0108270199016017 Chervenyuk G. I., Babyuk P. F., Belotskii D. P., Chervenyuk T. G. Phase equilibria in the Bi–Se–I system along the BiSeI–Bi and BiSeI–BiI sections. Izv. Akad. Nauk, Neorg. Mater., 1982, v. 18, pp. 1569–1572. (in Ukr.) Babanly M. B., Tedenac J. C., Aliev Z. S., Balitsky D. M. Phase equilibriums and thermodynamic properties of the system Bi–Te–I. J. Alloys Compd., 2009, v. 481, pp. 349–353. https://doi.org/10.1016/j.jallcom.2009.02.139 Horak J., Rodot H. Preparation de cristaux du compose BiTeI. C. R. Acad. Sci. Paris Serie B, 1968, v. 267(6), pp. 363–366. Valitova N. R., Aleshin V. A., Popovkin B. A., Novoselova A. V. Investigation of the P-T-x phase diagram for the BiI3–Bi2Te3 system. Izv. Akad. Nauk, Neorg. Mater., 1976, v. 12(2), pp. 225–228. (in Russ.) Tomokiyo A., Okada T., Kawanos S. Phase diagram of system (Bi2Te3)–(BiI3) and crystal structure of BiTeI. Jpn. J. Appl. Phys. 1977, v. 16(6), pp. 291–298. https://doi.org/10.1143/jjap.16.291 Evdokimenko L. T., Tsypin M. I. The effect of halogens on the structure and properties of alloys based on Bi2Te3. Izv. Akad. Nauk, Neorg. Mater., 1971, v. 7(8), pp. 1317–1320. (in Russ.) Savilov S. V., Khrustalev V. N., Kuznetsov A. N., Popovkin B. A., Antipin Ju.M. New subvalent bismuth telluroiodides incorporating Bi2 layers: the crystal and electronic structure of Bi2TeI. Russ. Chem. Bull., 2005, v. 54(1), pp. 87–92. https://doi.org/10.1007/s11172-005-0221-8
APA, Harvard, Vancouver, ISO, and other styles
26

Dil, J. Hugo, Fabian Meier, and Jürg Osterwalder. "Rashba-type spin splitting and spin interference of the Cu(1 1 1) surface state at room temperature." Journal of Electron Spectroscopy and Related Phenomena 201 (May 2015): 42–46. http://dx.doi.org/10.1016/j.elspec.2014.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Xuejiao, Lei Liu, and Dezhen Shen. "n-type Rashba spin splitting in a bilayer inorganic halide perovskite with external electric field." Journal of Physics: Condensed Matter 30, no. 26 (June 5, 2018): 265501. http://dx.doi.org/10.1088/1361-648x/aac523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

BUHMANN, HARTMUT. "SPIN HALL EFFECTS IN HgTe QUANTUM WELL STRUCTURES." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2551–55. http://dx.doi.org/10.1142/s0217979209061974.

Full text
Abstract:
Due to a strong spin orbit interaction HgTe quantum well structures exhibit an unusual subband structure ordering which leads to some remarkable transport properties depending on the actual carrier density. Especially for quantum wells with an inverted band structure ordering, a strong Rashba-type spin orbit splitting gives rise to a strong spin Hall effect in the metallic regime and in the bulk insulating regime spin polarized edge channel transport leads to the formation of the quantum spin Hall effect. Gated quantum well structures have been used to explore these, the metallic and insulating, transport regimes experimentally.
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Donghui, Weiwei Ju, Tongwei Li, Qingxiao Zhou, Yi Zhang, Zijian Gao, Dawei Kang, Haisheng Li, and Shijing Gong. "Dipole control of Rashba spin splitting in a type-II Sb/InSe van der Waals heterostructure." Journal of Physics: Condensed Matter 33, no. 4 (November 4, 2020): 045501. http://dx.doi.org/10.1088/1361-648x/abbc35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhao, X. N., W. Xu, Y. M. Xiao, and B. Van Duppen. "Spin polarization in monolayer MoS2 in the presence of proximity-induced interactions." International Journal of Modern Physics C 31, no. 10 (September 9, 2020): 2050143. http://dx.doi.org/10.1142/s0129183120501430.

Full text
Abstract:
When monolayer (ML) MoS2 is placed on a substrate, the proximity-induced interactions such as the Rashba spin-orbit coupling (RSOC) and exchange interaction (EI) can be introduced. Thus, the electronic system can behave like a spintronic device. In this study, we present a theoretical study on how the presence of the RSCO and EI can lead to the band splitting, the lifting of the valley degeneracy and to the spin polarization in [Formula: see text]- and [Formula: see text]-type ML MoS2. We find that the maxima of the in-plane spin orientation in the conduction and valence bands in ML MoS2 depend on the Rashba parameter and the effective Zeeman field factor. At a fixed Rashba parameter, the minima of the split conduction band and the maxima of the split valence band along with the spin polarization in ML MoS2 can be tuned effectively by varying the effective Zeeman field factor. On the basis that the EI can be induced by placing the ML MoS2 on a ferromagnetic substrate or by magnetic doping in ML MoS2, we predict that the interesting spintronic effects can be observed in [Formula: see text]- and [Formula: see text]-type ML MoS2. This work can be helpful to gain an in-depth understanding of the basic physical properties of ML MoS2 for application in advanced electronic and optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
31

Oshima, Daisuke, Katsuhisa Taguchi, and Yukio Tanaka. "Unconventional gate voltage dependence of the charge conductance caused by spin-splitting Fermi surface by Rashba-type spin-orbit coupling." Physica E: Low-dimensional Systems and Nanostructures 114 (October 2019): 113615. http://dx.doi.org/10.1016/j.physe.2019.113615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gui, Y. S., J. Liu, V. Daumer, C. R. Becker, H. Buhmann, and L. W. Molenkamp. "Large Rashba spin–orbit splitting in gate controlled n-type modulation doped HgTe/Hg0.3Cd0.7−xMnxTe quantum wells." Physica E: Low-dimensional Systems and Nanostructures 12, no. 1-4 (January 2002): 416–19. http://dx.doi.org/10.1016/s1386-9477(01)00320-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wissing, S. N. P., C. Eibl, A. Zumbülte, A. B. Schmidt, J. Braun, J. Minár, H. Ebert, and M. Donath. "Rashba-type spin splitting at Au(111) beyond the Fermi level: the other part of the story." New Journal of Physics 15, no. 10 (October 2, 2013): 105001. http://dx.doi.org/10.1088/1367-2630/15/10/105001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vedyayev, Anatoly, Mikhail Zhuravlev, Maria Titova, Daria Gusakova, and N. Ryzhanova. "Hall Effect Induced by Spin-Wave Excitation in Metal/Ferromagnetic Insulator Bilayer." Solid State Phenomena 233-234 (July 2015): 395–98. http://dx.doi.org/10.4028/www.scientific.net/ssp.233-234.395.

Full text
Abstract:
We investigate Anomalous Hall effect in nonmagnetic metal/ferromagnetic insulator bilayer with rotating magnetization of the magnetic insulator. Spin-orbit interaction of Rashba type takes place near metal/insulator interface. Magnetization of the ferromagnetic insulator rotates with some frequency w by microwave radiation under ferromagnetic resonance condition. This rotation together with spin-orbit interaction in non-magnetic metal layer induced Hall current along the interface. The Hall current appears under zero bias in the system. The dependence of Hall current on the exchange splitting, the magnetization rotation frequency and the barrier height is calculated. We analyze various contributions in Hall current and discuss the limit of small frequencies.
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Zhi-Xin, Cheng-Hong Yin, and Xiu-Yun Zhu. "Influence of Rashba spin-orbit interaction and Zeeman splitting on the ground state energy of polaron in an asymmetric quantum dot." Modern Physics Letters B 29, no. 22 (August 20, 2015): 1550124. http://dx.doi.org/10.1142/s0217984915501249.

Full text
Abstract:
On the basis of Lee–Low–Pines unitary transformation, the influence of Rashba spin-orbit (RSO) interaction and Zeeman splitting on the ground state energy of polaron in an asymmetric quantum dot (AQD) is studied by using the variational method of Pekar type. The variations of the absolute ratios of the Zeeman splitting energy and the RSO coupling energy to the ground state energy of polaron with the transverse confinement length (TCL) and the longitudinal confinement length (LCL) of AQD and the magnetic field adjusting length (MFAL) are derived when the RSO interaction and the Zeeman splitting are taken into account. We find the influences of the Zeeman splitting energy and the RSO coupling energy on the ground state energy of a polaron are more dominant when the values of the TCL and the LCL are small. The absolute ratio of the Zeeman splitting energy to the ground state energy rapidly decreases with increasing the MFAL and the absolute ratio of the RSO coupling energy to the ground state energy slowly decreases with increase in MFAL when [Formula: see text], whereas the absolute ratio of the RSO coupling energy to the ground state energy rapidly increases with increase in MFAL when [Formula: see text]. The above results can be attributed to the interesting quantum size confining and spin effects.
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Mingxing, and Feng Liu. "Prediction of giant and ideal Rashba-type splitting in ordered alloy monolayers grown on a polar surface." National Science Review, September 25, 2020. http://dx.doi.org/10.1093/nsr/nwaa241.

Full text
Abstract:
Abstract A large and ideal Rashba-type spin-orbit splitting is desired for the applications of materials in spintronic devices and the detection of Majorana Fermions in solids. Here, we propose an approach to achieve giant and ideal spin-orbit splittings through a combination of ordered surface alloying and interface engineering, that is, growing alloy monolayers on an insulating polar surface. We illustrate this unique strategy by means of first-principles calculations of buckled hexagonal monolayers of SbBi and PbBi supported on Al2O3(0001). Both systems display ideal Rashba-type states with giant SO splittings, characterized with energy offsets over 600 meV and momentum offsets over 0.3 Å −1, respectively. Our study thus points to an effective way of tuning spin-orbit splitting in low-dimensional materials to draw immediate experimental interest.
APA, Harvard, Vancouver, ISO, and other styles
37

Feng, Ya, Qi Jiang, Baojie Feng, Meng Yang, Tao Xu, Wenjing Liu, Xiufu Yang, et al. "Rashba-like spin splitting along three momentum directions in trigonal layered PtBi2." Nature Communications 10, no. 1 (October 18, 2019). http://dx.doi.org/10.1038/s41467-019-12805-2.

Full text
Abstract:
Abstract Spin-orbit coupling (SOC) has gained much attention for its rich physical phenomena and highly promising applications in spintronic devices. The Rashba-type SOC in systems with inversion symmetry breaking is particularly attractive for spintronics applications since it allows for flexible manipulation of spin current by external electric fields. Here, we report the discovery of a giant anisotropic Rashba-like spin splitting along three momentum directions (3D Rashba-like spin splitting) with a helical spin polarization around the M points in the Brillouin zone of trigonal layered PtBi2. Due to its inversion asymmetry and reduced symmetry at the M point, Rashba-type as well as Dresselhaus-type SOC cooperatively yield a 3D spin splitting with αR ≈ 4.36 eV Å in PtBi2. The experimental realization of 3D Rashba-like spin splitting not only has fundamental interests but also paves the way to the future exploration of a new class of material with unprecedented functionalities for spintronics applications.
APA, Harvard, Vancouver, ISO, and other styles
38

Fu, Huaxiang. "Tunability of giant Rashba spin splitting in BiTeI." Physical Review B 87, no. 7 (February 25, 2013). http://dx.doi.org/10.1103/physrevb.87.075139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mondal, Chiranjit, Chanchal K. Barman, Aftab Alam, and Biswarup Pathak. "Intertwined nontrivial band topology and giant Rashba spin splitting." Physical Review B 104, no. 8 (August 9, 2021). http://dx.doi.org/10.1103/physrevb.104.085113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sakano, M., J. Miyawaki, A. Chainani, Y. Takata, T. Sonobe, T. Shimojima, M. Oura, et al. "Three-dimensional bulk band dispersion in polar BiTeI with giant Rashba-type spin splitting." Physical Review B 86, no. 8 (August 16, 2012). http://dx.doi.org/10.1103/physrevb.86.085204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bian, G., X. Wang, T. Miller, and T. C. Chiang. "Origin of giant Rashba spin splitting in Bi/Ag surface alloys." Physical Review B 88, no. 8 (August 21, 2013). http://dx.doi.org/10.1103/physrevb.88.085427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Yan, Yang Li, Peng Li, Bin Fang, Xu Yang, Yan Wen, Dong-xing Zheng, et al. "Nonreciprocal charge transport up to room temperature in bulk Rashba semiconductor α-GeTe." Nature Communications 12, no. 1 (January 22, 2021). http://dx.doi.org/10.1038/s41467-020-20840-7.

Full text
Abstract:
AbstractNonmagnetic Rashba systems with broken inversion symmetry are expected to exhibit nonreciprocal charge transport, a new paradigm of unidirectional magnetoresistance in the absence of ferromagnetic layer. So far, most work on nonreciprocal transport has been solely limited to cryogenic temperatures, which is a major obstacle for exploiting the room-temperature two-terminal devices based on such a nonreciprocal response. Here, we report a nonreciprocal charge transport behavior up to room temperature in semiconductor α-GeTe with coexisting the surface and bulk Rashba states. The combination of the band structure measurements and theoretical calculations strongly suggest that the nonreciprocal response is ascribed to the giant bulk Rashba spin splitting rather than the surface Rashba states. Remarkably, we find that the magnitude of the nonreciprocal response shows an unexpected non-monotonical dependence on temperature. The extended theoretical model based on the second-order spin–orbit coupled magnetotransport enables us to establish the correlation between the nonlinear magnetoresistance and the spin textures in the Rashba system. Our findings offer significant fundamental insight into the physics underlying the nonreciprocity and may pave a route for future rectification devices.
APA, Harvard, Vancouver, ISO, and other styles
43

Veit, M. J., R. Arras, B. J. Ramshaw, R. Pentcheva, and Y. Suzuki. "Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures." Nature Communications 9, no. 1 (April 13, 2018). http://dx.doi.org/10.1038/s41467-018-04014-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Qi, Shifei, Yulei Han, Fuming Xu, Xiaohong Xu, and Zhenhua Qiao. "Engineering giant Rashba spin-orbit splitting in graphene via n−p codoping." Physical Review B 99, no. 19 (May 22, 2019). http://dx.doi.org/10.1103/physrevb.99.195439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ponet, Louis, and S. Artyukhin. "First-principles theory of giant Rashba-like spin splitting in bulk GeTe." Physical Review B 98, no. 17 (November 5, 2018). http://dx.doi.org/10.1103/physrevb.98.174102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhou, Jin-Jian, Wanxiang Feng, Ying Zhang, Shengyuan A. Yang, and Yugui Yao. "Engineering Topological Surface States and Giant Rashba Spin Splitting in BiTeI/Bi2Te3 Heterostructures." Scientific Reports 4, no. 1 (January 23, 2014). http://dx.doi.org/10.1038/srep03841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Eremeev, S. V., I. A. Nechaev, Yu M. Koroteev, P. M. Echenique, and E. V. Chulkov. "Ideal Two-Dimensional Electron Systems with a Giant Rashba-Type Spin Splitting in Real Materials: Surfaces of Bismuth Tellurohalides." Physical Review Letters 108, no. 24 (June 13, 2012). http://dx.doi.org/10.1103/physrevlett.108.246802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bordács, Sándor, Joseph G. Checkelsky, Hiroshi Murakawa, Harold Y. Hwang, and Yoshinori Tokura. "Landau Level Spectroscopy of Dirac Electrons in a Polar Semiconductor with Giant Rashba Spin Splitting." Physical Review Letters 111, no. 16 (October 18, 2013). http://dx.doi.org/10.1103/physrevlett.111.166403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Singh, Sobhit, and Aldo H. Romero. "Giant tunable Rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures." Physical Review B 95, no. 16 (April 25, 2017). http://dx.doi.org/10.1103/physrevb.95.165444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shapira, Y. "Magnetoresistance and Hall Effect Near the Metal-Insulator Transition of Cd1-xMnxSe." MRS Proceedings 89 (1986). http://dx.doi.org/10.1557/proc-89-209.

Full text
Abstract:
AbstractA large magnetoresistance was observed in n-type Cdl-xMnxSe (x ≤ 0.10) at low temperatures. The concomitant changes in the Half coefficient as a function of H were also studied. These magnetotransport effects are caused by the s-d interaction. Some specific magnetoresistance mechanisms are discussed. The most likely dominant mechanisms are related to the giant spin splitting of the conduction band.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography