Academic literature on the topic 'Gini impurity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gini impurity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gini impurity"
Yuan, Ye, Liji Wu, and Xiangmin Zhang. "Gini-Impurity Index Analysis." IEEE Transactions on Information Forensics and Security 16 (2021): 3154–69. http://dx.doi.org/10.1109/tifs.2021.3076932.
Full textSingh, Sudhir Kuamr, and Dr Vipin Saxena. "Reducing the Impurity of Object-Oriented DatabaseThrough Gini Index." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 13, no. 11 (November 30, 2014): 5172–78. http://dx.doi.org/10.24297/ijct.v13i11.2787.
Full textSingh, Vishwa Pratap, and R. L. Ujjwal. "Gini impurity based NDN cache pollution attack defence mechanism." Journal of Information and Optimization Sciences 41, no. 6 (August 17, 2020): 1353–63. http://dx.doi.org/10.1080/02522667.2020.1809092.
Full textJiang, Longquan, Bo Zhang, Qin Ni, Xuan Sun, and Pingping Dong. "Prediction of SNP Sequences via Gini Impurity Based Gradient Boosting Method." IEEE Access 7 (2019): 12647–57. http://dx.doi.org/10.1109/access.2019.2893269.
Full textZhi, Ting, Hongbin Luo, and Ying Liu. "A Gini Impurity-Based Interest Flooding Attack Defence Mechanism in NDN." IEEE Communications Letters 22, no. 3 (March 2018): 538–41. http://dx.doi.org/10.1109/lcomm.2018.2789896.
Full textKwon, Taeyong, and Sanghoo Yoon. "Design of rain gauge network using entropy and Gini impurity: A case study of Gangwon Province." Journal of the Korean Data And Information Science Society 31, no. 4 (July 31, 2020): 569–77. http://dx.doi.org/10.7465/jkdi.2020.31.4.569.
Full textLaber, Eduardo, and Lucas Murtinho. "Minimization of Gini Impurity: NP-completeness and Approximation Algorithm via Connections with the k-means Problem." Electronic Notes in Theoretical Computer Science 346 (August 2019): 567–76. http://dx.doi.org/10.1016/j.entcs.2019.08.050.
Full textGrabmeier, Johannes L., and Larry A. Lambe. "Decision trees for binary classification variables grow equally with the Gini impurity measure and Pearson's chi-square test." International Journal of Business Intelligence and Data Mining 2, no. 2 (2007): 213. http://dx.doi.org/10.1504/ijbidm.2007.013938.
Full textJia, Naizheng, Dian Zu, and Baojun Jia. "Influence Analysis in Music: Artists and Genres." Journal of Innovation and Social Science Research 8, no. 7 (July 30, 2021): 199–203. http://dx.doi.org/10.53469/jissr.2021.08(07).36.
Full textQu, Hongquan, Zhanli Fan, Shuqin Cao, Liping Pang, Hao Wang, and Jie Zhang. "A Study on Sensitive Bands of EEG Data under Different Mental Workloads." Algorithms 12, no. 7 (July 22, 2019): 145. http://dx.doi.org/10.3390/a12070145.
Full textDissertations / Theses on the topic "Gini impurity"
Blank, Clas, and Tomas Hermansson. "A Machine Learning approach to churn prediction in a subscription-based service." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240397.
Full textIn today’s world subscription-based online services are becoming increasingly popular. One of the keys to success in a subscription-based business model is to minimize churn, i.e. customer canceling their subscriptions. Due to the digitalization of the world, data is easier to collect than ever before. At the same time machine learning is growing and is made more available. That opens up new possibilities to solve different problems with the use of machine learning. This paper will test and evaluate a machine learning approach to churn prediction, based on the user data from a company with an online subscription service letting the user attend live shows to a fixed price. To perform the tests different machine learning models were used, both individually and combined. The models were Random Forests, Support Vector Machines, Logistic Regression and Neural Networks. In order to train them a data set containing either active or churned users was provided. Eventually the models returned accuracy results ranging from 73.7 % to 76.7 % when classifying churners based on their activity data. Furthermore, the models turned out to have higher scores for precision and recall for classifying the churners than the non-churners. In addition, the features that had the most impact on the model regarding the classification were Tickets Used and Length of Subscription. Moreover, this paper will discuss how churn prediction can be used from a business perspective.
Ekeberg, Lukas, and Alexander Fahnehjelm. "Maskininlärning som verktyg för att extrahera information om attribut kring bostadsannonser i syfte att maximera försäljningspris." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240401.
Full textDen svenska bostadsmarknaden har blivit alltmer digitaliserad under det senaste årtiondet med nuvarande praxis att säljaren publicerar sin bostadsannons online. En fråga som uppstår är hur en säljare kan optimera sin annons för att maximera budpremie. Denna studie analyserar tre maskininlärningsmetoder för att lösa detta problem: Linear Regression, Decision Tree Regressor och Random Forest Regressor. Syftet är att utvinna information om de signifikanta attribut som påverkar budpremien. Det dataset som använts innehåller lägenheter som såldes under åren 2014-2018 i Stockholmsområdet Östermalm / Djurgården. Modellerna som togs fram uppnådde ett R²-värde på approximativt 0.26 och Mean Absolute Error på approximativt 0.06. Signifikant information kunde extraheras from modellerna trots att de inte var exakta i att förutspå budpremien. Sammanfattningsvis skapar ett stort antal visningar och en publicering i april de bästa förutsättningarna för att uppnå en hög budpremie. Säljaren ska försöka hålla antal dagar sedan publicering under 15.5 dagar och undvika att publicera på tisdagar.
Hansén, Jacob, and Axel Gustafsson. "A Study on Comparison Websites in the Airline Industry and Using CART Methods to Determine Key Parameters in Flight Search Conversion." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254309.
Full textDetta kandidatexamensarbete inriktat på tillämpad matematik och industriell ekonomi syftade till att identifiera samband mellan sökparametrar från flygsökmotorer och konverteringsgraden för utträde till ett flygbolags hemsida, och samtidigt undersöka hur uppkomsten av flygsökmotorer har påverkat flygindustrin för flygbolag. För att identifiera sådana samband, tillämpades flera klassificeringsmodeller tillsammans med stickprovsmetoder för att bygga en predikativ modell i programmet R. För att undersöka påverkan av flygsökmotorer tillämpades Porters 5 krafter och SWOT-analys som teoretiska ramverk för att analysera information uppsamlad genom en litteraturstudie och en intervju. Klassificeringsmodellerna som byggdes presterade undermåligt med avseende på flera utvärderingsmått, vilket antydde att det fanns lite eller inget samband mellan de undersökta sökparametrarna och konverteringsgraden för utträde. Porters 5 krafter och SWOT-analysen visade att flygindustrin hade blivit mer konkurrensutsatt och att flygbolag som inte lyckas anpassa sig efter en omgivning i ändring kommer att uppleva minskande lönsamhet.
Book chapters on the topic "Gini impurity"
D’Ambrosio, Antonio, and Valerio A. Tutore. "Conditional Classification Trees by Weighting the Gini Impurity Measure." In Studies in Classification, Data Analysis, and Knowledge Organization, 273–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11363-5_31.
Full textConference papers on the topic "Gini impurity"
Ch'ng, Chee Keong, and Nor Idayu Mahat. "Winsorised gini impurity: A resistant to outliers splitting metric for classification tree." In INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014): Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903661.
Full textDas, Saptarshi, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. "Using Gini Impurity to Mine Attribute-based Access Control Policies with Environment Attributes." In SACMAT '18: The 23rd ACM Symposium on Access Control Models and Technologies. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205977.3208949.
Full textTan, Junyuan, Shan Jing, Lei Guo, and Bin Xiao. "DDoS detection method based on Gini impurity and random forest in SDN environment." In 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). IEEE, 2021. http://dx.doi.org/10.1109/spac53836.2021.9539920.
Full textYin, Hao, Zhenpo Wang, Peng Liu, Zhaosheng Zhang, and Yang Li. "Voltage Fault Diagnosis of Power Batteries based on Boxplots and Gini Impurity for Electric Vehicles." In 2019 Electric Vehicles International Conference (EV). IEEE, 2019. http://dx.doi.org/10.1109/ev.2019.8892849.
Full text