Academic literature on the topic 'Glacial-Interglacial cycle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Glacial-Interglacial cycle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Glacial-Interglacial cycle"

1

Zeng, N. "Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release." Climate of the Past 3, no. 1 (March 2, 2007): 135–53. http://dx.doi.org/10.5194/cp-3-135-2007.

Full text
Abstract:
Abstract. A mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can lead to quasi-100 ky glacial-interglacial cycles. A central process is the burial and preservation of organic carbon by icesheets which contributes to the observed glacial-interglacial CO2 change (the glacial burial hypothesis, Zeng, 2003). Allowing carbon cycle to interact with physical climate, here I further hypothesize that deglaciation can be triggered by the ejection of glacial burial carbon when a major icesheet grows to sufficiently large size after a prolonged glaciation so that subglacial transport becomes significant. Glacial inception may be initiated by CO2 drawdown due to a relaxation from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception may be the CO2 uptake by vegetation and soil regrowth in the previously ice-covered regions. When tested in a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced under certain parameter regimes self-sustaining glacial-interglacial cycles with durations of 93 ky, CO2 changes of 90 ppmv, temperature changes of 6°C. Since the 100 ky cycles can not be easily explained by the Milankovitch astronomical forcing alone, this carbon-climate-icesheet mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations. It is speculated that some glacial terminations may be triggered by this internal feedback while others by orbital forcing. Some observable consequences are highlighted that may support or falsify the theory.
APA, Harvard, Vancouver, ISO, and other styles
2

Zeng, N. "Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release." Climate of the Past Discussions 2, no. 4 (July 7, 2006): 371–97. http://dx.doi.org/10.5194/cpd-2-371-2006.

Full text
Abstract:
Abstract. A new mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can produce quasi-100 ky glacial-interglacial cycles. A key process is the burial and preservation of organic carbon by icesheets. The switch from glacial maximum to deglaciation is triggered by the ejection of glacial burial carbon when icesheets grow to sufficiently large size and subglacial transport becomes significant. Glacial inception is initiated by CO2 drawdown due to a ''rebound'' from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception is the CO2 uptake by vegetation regrowth in the previously ice-covered boreal regions. When tested using a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced self-sustaining glacial-interglacial cycles of duration about 93 ky, CO2 change of 90 ppmv, temperature change of 6°C under certain parameter regimes. Since the 100 ky cycles can not be easily explained by the weak Milankovitch astronomical forcing alone, this carbon-climate mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations.
APA, Harvard, Vancouver, ISO, and other styles
3

Andersen, Bjørn G., and Jan Mangerud. "The last interglacial-glacial cycle in fennoscandia." Quaternary International 3-4 (January 1989): 21–29. http://dx.doi.org/10.1016/1040-6182(89)90070-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Houmark-Nielsen, Michael. "The last interglacial-glacial cycle in Denmark." Quaternary International 3-4 (January 1989): 31–39. http://dx.doi.org/10.1016/1040-6182(89)90071-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brovkin, V., A. Ganopolski, D. Archer, and G. Munhoven. "Glacial CO<sub>2</sub> cycle as a succession of key physical and biogeochemical processes." Climate of the Past 8, no. 1 (February 9, 2012): 251–64. http://dx.doi.org/10.5194/cp-8-251-2012.

Full text
Abstract:
Abstract. During glacial-interglacial cycles, atmospheric CO2 concentration varied by about 100 ppmv in amplitude. While testing mechanisms that have led to the low glacial CO2 level could be done in equilibrium model experiments, an ultimate goal is to explain CO2 changes in transient simulations through the complete glacial-interglacial cycle. The computationally efficient Earth System model of intermediate complexity CLIMBER-2 is used to simulate global biogeochemistry over the last glacial cycle (126 kyr). The physical core of the model (atmosphere, ocean, land and ice sheets) is driven by orbital changes and reconstructed radiative forcing from greenhouses gases, ice, and aeolian dust. The carbon cycle model is able to reproduce the main features of the CO2 changes: a 50 ppmv CO2 drop during glacial inception, a minimum concentration at the last glacial maximum 80 ppmv lower than the Holocene value, and an abrupt 60 ppmv CO2 rise during the deglaciation. The model deep ocean δ13C also resembles reconstructions from deep-sea cores. The main drivers of atmospheric CO2 evolve in time: changes in sea surface temperatures and in the volume of bottom water of southern origin control atmospheric CO2 during the glacial inception and deglaciation; changes in carbonate chemistry and marine biology are dominant during the first and second parts of the glacial cycle, respectively. These feedback mechanisms could also significantly impact the ultimate climate response to the anthropogenic perturbation.
APA, Harvard, Vancouver, ISO, and other styles
6

Willeit, M., A. Ganopolski, R. Calov, and V. Brovkin. "Mid-Pleistocene transition in glacial cycles explained by declining CO2and regolith removal." Science Advances 5, no. 4 (April 2019): eaav7337. http://dx.doi.org/10.1126/sciadv.aav7337.

Full text
Abstract:
Variations in Earth’s orbit pace the glacial-interglacial cycles of the Quaternary, but the mechanisms that transform regional and seasonal variations in solar insolation into glacial-interglacial cycles are still elusive. Here, we present transient simulations of coevolution of climate, ice sheets, and carbon cycle over the past 3 million years. We show that a gradual lowering of atmospheric CO2and regolith removal are essential to reproduce the evolution of climate variability over the Quaternary. The long-term CO2decrease leads to the initiation of Northern Hemisphere glaciation and an increase in the amplitude of glacial-interglacial variations, while the combined effect of CO2decline and regolith removal controls the timing of the transition from a 41,000- to 100,000-year world. Our results suggest that the current CO2concentration is unprecedented over the past 3 million years and that global temperature never exceeded the preindustrial value by more than 2°C during the Quaternary.
APA, Harvard, Vancouver, ISO, and other styles
7

Ganopolski, Andrey, and Victor Brovkin. "Simulation of climate, ice sheets and CO<sub>2</sub> evolution during the last four glacial cycles with an Earth system model of intermediate complexity." Climate of the Past 13, no. 12 (November 29, 2017): 1695–716. http://dx.doi.org/10.5194/cp-13-1695-2017.

Full text
Abstract:
Abstract. In spite of significant progress in paleoclimate reconstructions and modelling of different aspects of the past glacial cycles, the mechanisms which transform regional and seasonal variations in solar insolation into long-term and global-scale glacial–interglacial cycles are still not fully understood – in particular, in relation to CO2 variability. Here using the Earth system model of intermediate complexity CLIMBER-2 we performed simulations of the co-evolution of climate, ice sheets, and carbon cycle over the last 400 000 years using the orbital forcing as the only external forcing. The model simulates temporal dynamics of CO2, global ice volume, and other climate system characteristics in good agreement with paleoclimate reconstructions. These results provide strong support for the idea that long and strongly asymmetric glacial cycles of the late Quaternary represent a direct but strongly nonlinear response of the Northern Hemisphere ice sheets to orbital forcing. This response is strongly amplified and globalised by the carbon cycle feedbacks. Using simulations performed with the model in different configurations, we also analyse the role of individual processes and sensitivity to the choice of model parameters. While many features of simulated glacial cycles are rather robust, some details of CO2 evolution, especially during glacial terminations, are sensitive to the choice of model parameters. Specifically, we found two major regimes of CO2 changes during terminations: in the first one, when the recovery of the Atlantic meridional overturning circulation (AMOC) occurs only at the end of the termination, a pronounced overshoot in CO2 concentration occurs at the beginning of the interglacial and CO2 remains almost constant during the interglacial or even declines towards the end, resembling Eemian CO2 dynamics. However, if the recovery of the AMOC occurs in the middle of the glacial termination, CO2 concentration continues to rise during the interglacial, similar to the Holocene. We also discuss the potential contribution of the brine rejection mechanism for the CO2 and carbon isotopes in the atmosphere and the ocean during the past glacial termination.
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Yongming, Zhisheng An, Jennifer R. Marlon, Raymond S. Bradley, Changlin Zhan, Richard Arimoto, Youbin Sun, et al. "Asian inland wildfires driven by glacial–interglacial climate change." Proceedings of the National Academy of Sciences 117, no. 10 (February 24, 2020): 5184–89. http://dx.doi.org/10.1073/pnas.1822035117.

Full text
Abstract:
Wildfire can influence climate directly and indirectly, but little is known about the relationships between wildfire and climate during the Quaternary, especially how wildfire patterns varied over glacial–interglacial cycles. Here, we present a high-resolution soot record from the Chinese Loess Plateau; this is a record of large-scale, high-intensity fires over the past 2.6 My. We observed a unique and distinct glacial–interglacial cyclicity of soot over the entire Quaternary Period synchronous with marine δ18O and dust records, which suggests that ice-volume-modulated aridity controlled wildfire occurrences, soot production, and dust fluxes in central Asia. The high-intensity fires were also found to be anticorrelated with global atmospheric CO2 records over the past eight glacial–interglacial cycles, implying a possible connection between the fires, dust, and climate mediated through the iron cycle. The significance of this hypothetical connection remains to be determined, but the relationships revealed in this study hint at the potential importance of wildfire for the global climate system.
APA, Harvard, Vancouver, ISO, and other styles
9

Brovkin, V., A. Ganopolski, D. Archer, and G. Munhoven. "Glacial CO<sub>2</sub> cycle as a succession of key physical and biogeochemical processes." Climate of the Past Discussions 7, no. 3 (May 30, 2011): 1767–95. http://dx.doi.org/10.5194/cpd-7-1767-2011.

Full text
Abstract:
Abstract. During glacial-interglacial cycles, atmospheric CO2 concentration varied by about 100 ppmv in amplitude. While testing mechanisms that had led to the low glacial CO2 level could be done in equilibrium model experiments, an ultimate goal is to explain CO2 changes in transient simulations through the complete glacial-interglacial cycle. A computationally efficient Earth System model of intermediate complexity CLIMBER-2 is used to simulate global biogeochemistry over the last glacial cycle (126 kyr). The physical core of the model (atmosphere, ocean, land and ice sheets) is driven by orbital changes and reconstructed radiative forcing from greenhouses gases, ice, and aeolian dust. The carbon cycle model is able to reproduce the main features of the CO2 changes: a 50 ppmv CO2 drop during glacial inception, a minimum concentration at the last glacial maximum by 80 ppmv lower than the Holocene value, and an abrupt 60 ppmv CO2 rise during the deglaciation. The model deep ocean δ13C also resembles reconstructions from deep-sea cores. The main drivers of atmospheric CO2 evolve with time: changes in sea surface temperatures and in the volume of bottom water of southern origin controls atmospheric CO2 during the glacial inception and deglaciation, while changes in carbonate chemistry and marine biology are dominant during the first and second parts of the glacial cycle, respectively. These feedback mechanisms could also significantly impact the ultimate climate response to the anthropogenic perturbation.
APA, Harvard, Vancouver, ISO, and other styles
10

Kotlyakov, V. M., and K. Lorius. "Global changes during the latest glacial‐interglacial cycle." Polar Geography and Geology 16, no. 2 (April 1992): 89–113. http://dx.doi.org/10.1080/10889379209377479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Glacial-Interglacial cycle"

1

Ridgwell, Andy J. "Glacial-interglacial perturbations in the global carbon cycle." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schachtman, Nathan. "Climate Regulates Stable Weathering Fluxes over Interglacial-Glacial Cycles." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23107.

Full text
Abstract:
Feedbacks between climate, tectonics and erosion drive mineral dissolution in the subsurface and may provide strong controls on chemical weathering as a mechanism for modulating climate through CO2 drawdown. However, few quantitative evaluations of chemical weathering intensity or flux variations with time exist to support this hypothesized feedback. Trace element concentrations in colluvial sediment demonstrate that in unglaciated mid-latitude terrain, climate exerts a strong control on chemical weathering intensity and erosion over glacial-interglacial cycles by modulating the efficacy of abiotic and biotic processes. Weakly chemically altered sediment corresponds with high erosion rates during the Last Glacial interval (vice versa during the Holocene) such that we observe stable weathering rates despite variations in temperature and vegetation. Our results suggest that climate-weathering feedbacks in mid-latitude regions may be weaker than previously hypothesized and provide a new framework to explain stable solute fluxes over Milankovitch climate fluctuations.
10000-01-01
APA, Harvard, Vancouver, ISO, and other styles
3

Rokosh, Charles Dean. "Stratigraphy and palaeoclimatology of loess of the Loess Plateau, China during the last interglacial-glacial cycle." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ60340.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pickarski, Nadine [Verfasser]. "Vegetation and climate history during the last glacial-interglacial cycle at Lake Van, eastern Anatolia / Nadine Pickarski." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1051028027/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morri, Clara Melissa. "The last glacial-interglacial cycle : palaeocurrent reconstruction and sediment response to climate change in the North Atlantic." Thesis, Open University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gong, Xun [Verfasser], Gerrit [Akademischer Betreuer] Lohmann, and Peter [Akademischer Betreuer] Lemke. "Modelling the Last Glacial Maximum and Abrupt Climate Changes during the Last Glacial-Interglacial Cycle / Xun Gong. Gutachter: Gerrit Lohmann ; Peter Lemke. Betreuer: Gerrit Lohmann." Bremen : Staats- und Universitätsbibliothek Bremen, 2012. http://d-nb.info/1072046881/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crocket, Kirsty Clare. "Pb and Nd isotope constraints on continental weathering and ocean circulation in the North Atlantic during the last glacial/interglacial cycle." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505751.

Full text
Abstract:
This thesis investigated changes in the circum-North Atlantic continental weathering regime and ocean circulation across the last glacial/interglacial cycle, using Pb and Nd isotopes respectively as proxies. The northern North Atlantic was selected on the basis that the greatest changes in weathering regime took place on the surrounding continental landmasses, which have been successively glaciated and deglaciated.
APA, Harvard, Vancouver, ISO, and other styles
8

Le, Mezo Priscilla. "Variabilité des écosystèmes marins de l'échelle inter-annuelle au dernier cycle glaciaire-interglaciaire." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV003/document.

Full text
Abstract:
La variabilité du système climatique influence la productivité et la distribution des espèces marines sur toutes les échelles de temps, de la variabilité saisonnière et inter-annuelle aux cycles glaciaires-interglaciaires. Mais ces liens entre climat et écosystèmes marins sont encore largement méconnus, de telle sorte que les prévisions des changements à venir sont difficiles. De plus, parce que les indicateurs paléoclimatiques issus des archives marines sont souvent liés au fonctionnement de l’écosystème, cette méconnaissance limite la fiabilité de la reconstruction de la variabilité climatique passée.Ce travail de thèse vise à améliorer notre connaissance de ces liens entre climat et écosystèmes marins : nous nous sommes intéressés aux changements de productivité marine au cours du dernier cycle glaciaire-interglaciaire, et nous nous sommes aussi penchés sur la réponse de l’écosystème, incluant l'ensemble des niveaux de la chaine trophique, à la variabilité inter-annuelle à décennale en climat pré-industriel. Ce travail est basé sur l’utilisation d’un modèle climatique (IPSL-CM), d’un modèle de biogéochimie marine (PISCES) et d’un modèle de niveaux trophiques supérieurs (APECOSM).Dans un premier temps, nous montrons que le lien entre l’intensité de la mousson indienne et la productivité primaire marine, en été boréal dans la mer d’Arabie, n’est pas direct. En effet, il apparait indispensable pour comprendre les changements de productivité de considérer, en plus de l'intensité de la mousson, la structure de la mousson. En particulier, la position du Jet de Findlater par rapport à la côte de la péninsule arabique est un paramètre important puisqu'elle conditionne la dynamique d'Ekman dans la région.Dans un second temps, nous avons étudié les variations de la productivité marine au large de l'embouchure du fleuve Congo et leurs liens avec le fleuve et les changements de dynamique atmosphérique africaine. Ce travail a mis en évidence que la relation entre l'intensité de la mousson et l'intensité des alizés, souvent utilisée dans les reconstructions climatiques, n'est pas toujours vérifiée. Selon le climat étudié, l'importance des effets thermiques ou dynamiques sur les changements de précipitations et de vents simulés est différente.Dans un troisième temps, nous avons étudié l'effet de la variabilité inter-annuelle sur les changements de productivité passés et sur le signal climatique potentiellement enregistré par des indicateurs climatiques biologiques.Enfin, la dernière partie de cette thèse se focalise sur la réponse des organismes marins des haut-niveaux trophiques à la variabilité climatique à différentes fréquences. Ce travail a révélé que les organismes marins répondent de façons différentes aux variations environnementales en fonction de leur taille et de leur habitat
Climate variability influences marine primary productivity and marine species distribution over all timescales, from seasonal to interannual variability and glacial-interglacial cycles. The links between climate and marine ecosystems are still sparsely known so that the predictions of futur changes are difficult. Moreover, because paleoclimate recorders extracted from marine archives are often linked to the functionning of the ecosystem, this lack of knowledge limits our ability to reconstruct past climate variability.This thesis work aims at improving our knowledge of these links between climate and marine ecosystems : we have looked into marine productivity changes during the last glacial-interglacial cycle, but we also examined the "end-to-end" ecosystem response to inter-annual to decadal variability in a pre-industrial climate. This work uses a climate model (IPSL-CM), a bio-geochemical model (PISCES) and a model of high trophic levels (APECOSM).First, we show that the link between Indian summer monsoon intensity and marine primary productivity in the Arabian Sea is indirect. Indeed, it appears necessary to consider the monsoon pattern, such as the Findlater Jet position, which drives the Ekman dynamics in the region, as well as its intensity to understand the productivity changes.Second, we study the marine productivity changes off the Congo river mouth and their links with the river runoff and the African atmospheric dynamics. This work shows that the relationship between monsoon intensity and trade winds intensity, often used to reconstruct past changes, is not always verified. Depending on the climate, thermal or dynamical effects are more or less prominent drivers of the simulated changes in precipitation and winds. Productivity off the Congo river mouth, which is mainly located in the subsurface, seems more affected by the ocean and atmosphere dynamics than by the river supply in nutrients.Third, we study the inter-annual variability effects over past productivity changes and over the climatic signal potentially recorded in the biological climate proxies.Finally, the last part of the thesis focuses on high trophic levels marine organisms response to climate variability at different frequencies. This study shows that marine organisms response to environmental changes varies with the organism' size and habitat
APA, Harvard, Vancouver, ISO, and other styles
9

Krauß, Lydia [Verfasser], Frank [Akademischer Betreuer] Lehmkuhl, and Eileen Sandra [Akademischer Betreuer] Eckmeier. "Paleoenvironmental reconstruction of the last interglacial-glacial cycle of the quaternary in Central Europe applying a multi-proxy approach investigating loess-paleosol sequences / Lydia Krauß ; Frank Lehmkuhl, Eileen Sandra Eckmeier." Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1162450932/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Godbillot, Camille. "Réponse biogéochimique des coccolithes du Pléistocène aux variations de pCO2." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS140.

Full text
Abstract:
Des résultats croisés d’études biogéochimiques de cultures in vivo et de modélisations cellulaires ont mis en évidence un lien entre le fractionnement biologique des coccolithes et la concentration en CO2 du milieu de vie de leurs producteurs, les coccolithophoridés. Ces résultats ont ouvert la voie à l’utilisation des effets vitaux des coccolithes comme proxy du CO2 dans le milieu. Toutefois, des biais affectent l’application des calibrations empiriques de culture à des populations naturelles de coccolithes. Ainsi, ce travail cherche à formaliser la fonction de transfert entre les effets vitaux et les [CO2aq] en milieu naturel, qui puisse être appliquée pour reconstruire les pCO2 passées. Nous utilisons pour cela les enregistrements provenant des carottes de glace antarctiques pour quantifier le forçage de la pCO2 sur l’intensité des effets vitaux des coccolithes. Nous mettons notamment en évidence, et discutons, un contrôle des concentrations en CO2 sur la différence isotopique (Δδ18O, Δδ13C) entre coccolithes de différentes tailles produits pendant la pénultième terminaison glaciaire (130-140 ka). Dans un deuxième volet de la thèse, nous appliquons cette fonction de transfert à des coccolithes datant de la transition mi-Pléistocène (800-1250 ka), une période clé de changement climatique, pour laquelle les pCO2 ne sont pas documentées. Nous obtenons un enregistrement de pCO2 avec des amplitudes et des variations cohérentes couvrant l’intégralité de la transition, ce qui accrédite la calibration proposée. Nos travaux permettent d’étayer l’hypothèse d’une sensibilité accrue des calottes glaciaires au forçage radiatif par le CO2 depuis la MPT
Results from both in vivo cultures and cell modelling biogeochemical studies have demonstrated a link between the biological fractionation of coccoliths and the CO2 concentration of the living environment of their producers, the coccolithophores. These results have encouraged the use of coccolith vital effects as proxies for the levels of CO2 in the medium. However, a number of biases hinder the application of the empirical calibrations from culture experiments to natural coccolith populations. This work aims at formalizing the transfer function linking the vital effects to the [CO2aq] in natural environments, to be used for the reconstruction of past pCO2. To this end, we use the records from Antarctic ice cores to quantify the forcing of pCO2 on the magnitude of the coccoliths’ vital effects. We evidence, and discuss, a control of CO2 concentrations on the isotopic difference (Δδ18O, Δδ13C) between coccoliths of different sizes produced during the penultimate glacial termination (130-140 ka). The second part of this thesis is dedicated to applying the transfer function to coccoliths from the Mid-Pleistocene Transition (800-1250 ka), a key period of climate change for which pCO2 variations are not documented. The pCO2 record we obtain, which covers the entire transition, exhibits self-consistent amplitudes and variations, thus giving credit to the calibration we present. Our record supports the hypothesis of an increased sensitivity of ice sheets to the radiative forcing of CO2 since the MPT
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Glacial-Interglacial cycle"

1

M, Funnell Brian, Kay R. L. F, and Natural Environment Research Council. Earth Sciences Directorate., eds. Palaeoclimate of the last glacial/interglacial cycle. Swindon, Wilts: Natural Environment Research Council, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cvetkoska, Aleksandra. Diatoms as indicators of environmental change in ancient Lake Ohrid during the last glacial-interglacial cycle (ca. 140 ka). Kö̈nigstein, Germany: Koeltz Scientific Books, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Glacial-Interglacial cycle"

1

Gildor, Hezi. "Glacial-Interglacial CO 2 Variations." In The Ocean Carbon Cycle and Climate, 317–52. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2087-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Broecker, W. S., and T. H. Peng. "What Caused the Glacial to Interglacial CO2 Change?" In The Global Carbon Cycle, 95–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84608-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prokopenko, Alexander A., and Douglas F. Williams. "Glacial/Interglacial Changes in the Carbon Cycle of Lake Baikal." In Long Continental Records from Lake Baikal, 163–85. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-67859-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ennever, Fanny Knox, and Michael B. Mcelroy. "Changes in Atmospheric CO2 : Factors Regulating the Glacial to Interglacial Transition." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 154–62. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Metcalfe, Sarah E. "Evolution of the Pretoria Saltpan — a diatom record spanning a full glacial-interglacial cycle." In Twelfth International Diatom Symposium, 159–66. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-3622-0_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crucifix, Michel. "Glacial/Interglacial Cycles." In Encyclopedia of Earth Sciences Series, 359–66. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Toggweiler, J. R., and J. L. Sarmiento. "Glacial to Interglacial Changes in Atmospheric Carbon Dioxide: The Critical Role of Ocean Surface Water in High Latitudes." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 163–84. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berger, A., C. Tricot, H. Gallée, and M. F. Loutre. "Water vapour, CO2 and insolation over the last glacial-interglacial cycles." In Palaeoclimates and their Modelling, 45–53. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1254-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berger, A., C. Tricot, H. Gallée, Th Fichefet, and M. F. Loutre. "The Last Two Glacial-Interglacial Cycles Simulated by the LLN Model." In Long-Term Climatic Variations, 411–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79066-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meijer, Xander D., George Postma, Peter A. Burrough, and Poppe L. de Boer. "Modelling the Preservation of Sedimentary Deposits on Passive Continental Margins during Glacial-Interglacial Cycles." In Analogue and Numerical Modelling of Sedimentary Systems: From Understanding to Prediction, 223–38. Oxford, UK: Wiley-Blackwell, 2009. http://dx.doi.org/10.1002/9781444303131.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Glacial-Interglacial cycle"

1

Fawcett, P. J., J. Heikoop, R. S. Anderson, L. Donohoo-Hurley, J. W. Geisman, C. Johnson, C. D. Allen, G. Woldegabriel, J. Fesenden-Rahn, and F. Goff. "A Mid-Pleistocene glacial-interglacial cycle from the Valles Caldera, New Mexico." In 2007 New Mexico Geological Society Annual Spring Meeting. Socorro, NM: New Mexico Geological Society, 2006. http://dx.doi.org/10.56577/sm-2006.951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Long, Katherine L., Donald Prothero, and V. J. P. Syverson. "STASIS IN RANCHO LA BREA BLACK VULTURES (CORAGYPS OCCIDENTALIS) OVER THE LAST GLACIAL-INTERGLACIAL CYCLE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-277136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gillespy, Patrick, Donald Prothero, and V. J. P. Syverson. "STASIS IN TERATORNS FROM THE LA BREA TAR PITS DURING THE LAST GLACIAL-INTERGLACIAL CYCLE." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Madan, Meena A., Donald Prothero, and V. J. P. Syverson. "SIZE AND SHAPE STASIS IN RANCHO LA BREA BARN OWLS OVER THE LAST GLACIAL-INTERGLACIAL CYCLE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-278550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kumari, Nisha, and Sushant Naik. "Northern Indian Ocean bottom water condition for the last glacial-interglacial cycle: Evidence from redox-sensitive elements." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.14376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fadina, Omotayo, Igor Venancio, Andre Belem, Emmanoel Vieira Silva-Filho, and Ana Luiza S. Albuquerque. "ENHANCED MERCURY DYNAMICS IN NORTHEASTERN BRAZIL DURING THE NORTH ATLANTIC COLD EVENTS OF THE LAST GLACIAL-INTERGLACIAL CYCLE." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-315744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olson, Sara, Donald Prothero, Daniella Balassa, and V. J. P. Syverson. "STASIS IN NEOPHRONTOPS AMERICANUS (EGYPTIAN VULTURES) FROM LA BREA TAR PITS DURING THE LAST GLACIAL-INTERGLACIAL CYCLE." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-379820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duimering, Abigail, Aaron Gomberg, and Leah Joseph. "PALEOCLIMATE AND OCEAN SEDIMENT TRANSPORT MECHANISMS THROUGHOUT A GLACIAL/INTERGLACIAL CYCLE: TERRIGENOUS MARS, GRAINSIZE, AND MAGNETIC FABRIC ANALYSIS OF ODP SITE 1233." In GSA Connects 2023 Meeting in Pittsburgh, Pennsylvania. Geological Society of America, 2023. http://dx.doi.org/10.1130/abs/2023am-394760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De Vleeschouwer, François, Charly Massa, Gaël Le Roux, and Dave Beilman. "Hawaiian Peats Record Glacial-Interglacial Dust Cycles." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wood, Madison, Ana Kolevica, Anton Eisenhauer, Mathis Hain, Andy Ridgewell, Elizabeth Griffith, and Adina Paytan. "Seawater stable strontium isotope fluctuations over glacial/interglacial cycles." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography